51
|
Kappos L, Achtnichts L, Dahlke F, Kuhle J, Naegelin Y, Sandbrink R, Lindberg RLP. Genomics and proteomics: role in the management of multiple sclerosis. J Neurol 2005; 252 Suppl 3:iii21-iii27. [PMID: 16170496 DOI: 10.1007/s00415-005-2013-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Epidemiological studies and neuro-imaging have provided important insights into the natural course and prognostic factors of multiple sclerosis (MS), but our ability to predict different courses of the disease, and especially its response to treatment, is still very limited. Pharmacogenetic, pharmacogenomic and proteomic studies aim to assess gene and protein function in disease and promise to help to fill this important gap in our knowledge. Such studies may increase our understanding of disease mechanisms and responses to therapeutic compounds. Large-scale transcriptional expression profiling can be performed using gene chip microarrays; this technology allows screening for differentially expressed genes without having well-defined underlying hypotheses ("discovery-driven research"). To complement the technique, real time reverse transcription and polymerase chain reaction (RT-PCR) can be used for more targeted profiling and provides quantitative data on pre-selected genes. However, to maximise their clinical utility, expression profiling results need to be combined with well-documented clinical and imaging data. Two forthcoming studies will investigate the long-term effects of early treatment with interferon beta-1b (IFNbeta) on the course of MS. The BENEFIT (BEtaseron/Betaferon in Newly Emerging MS for Initial Treatment) study will incorporate pharmacogenetic and pharmacogenomic analyses to determine the genetic elements controlling treatment response. BEST-PGx (Betaferon/Betaseron in Early relapsing-remitting MS Surveillance Trial-Pharmacogenomics) is an exploratory 2-year study that will investigate the value of RNA expression profiling and pharmacogenetics in predicting treatment response to IFNbeta in patients with early relapsing MS. The main goal of BEST-PGx is the identification of differences in gene expression profiles of patients showing differential treatment responses. In addition, this study may reveal new information relevant to the mechanism of action of interferon treatment in MS and also to differences in the underlying pathology of the immune system. These data may help us approach the goal of a really "individualised therapy" with increased efficacy, reduced adverse drug reactions and more efficient use of health care resources.
Collapse
Affiliation(s)
- Ludwig Kappos
- Outpatient Clinic Neurology-Neurosurgery, University Hospital, Petersgraben 4, 4031 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
52
|
Pachner AR, Dail D, Pak E, Narayan K. The importance of measuring IFNbeta bioactivity: monitoring in MS patients and the effect of anti-IFNbeta antibodies. J Neuroimmunol 2005; 166:180-8. [PMID: 16005084 DOI: 10.1016/j.jneuroim.2005.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
Many multiple sclerosis (MS) patients treated with IFNbeta develop anti-IFNbeta antibodies, which can interfere with the bioactivity of the injected cytokine, i.e., antibody-mediated decreased bioactivity (ADB). The precise levels of anti-IFNbeta antibodies inducing decreased bioactivity is unknown. We repeatedly used a bioactivity measure, gene expression of MxA or GEM, and correlated bioactivity with measures of binding and neutralizing antibodies. The binding antibody assay was a capture ELISA, and the neutralizing antibody (NAb) assay was a cytopathic effect (CPE) assay. 27% (17/64) of patients repeatedly sampled developed critical ADB. Bioactivity as determined by GEM correlated negatively with NAb titer, and bioactivity that had been lost with the development of NAbs returned if NAb levels diminished. These data reveal that the GEM assay is a useful adjunct in the management of MS patients treated with IFNbeta, and that lost bioactivity returns when anti-IFNbeta antibody levels diminish.
Collapse
Affiliation(s)
- Andrew R Pachner
- Department of Neurology and Neurosciences, UMDNJ-New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
53
|
Satoh JI, Nakanishi M, Koike F, Miyake S, Yamamoto T, Kawai M, Kikuchi S, Nomura K, Yokoyama K, Ota K, Kanda T, Fukazawa T, Yamamura T. Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis. Neurobiol Dis 2005; 18:537-50. [PMID: 15755681 DOI: 10.1016/j.nbd.2004.10.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2004] [Revised: 09/09/2004] [Accepted: 10/13/2004] [Indexed: 11/29/2022] Open
Abstract
To clarify the molecular mechanisms underlying multiple sclerosis (MS)-promoting autoimmune process, we have investigated a comprehensive gene expression profile of T cell and non-T cell fractions of peripheral blood mononuclear cells (PBMC) isolated from 72 MS patients and 22 age- and sex-matched healthy control (CN) subjects by using a cDNA microarray. Among 1258 genes examined, 173 genes in T cells and 50 genes in non-T cells were expressed differentially between MS and CN groups. Downregulated genes greatly outnumbered upregulated genes in MS. More than 80% of the top 30 most significant genes were categorized into apoptosis signaling-related genes of both proapoptotic and antiapoptotic classes. They included upregulation in MS of orphan nuclear receptor Nurr1 (NR4A2), receptor-interacting serine/threonine kinase 2 (RIPK2), and silencer of death domains (SODD), and downregulation in MS of TNF-related apoptosis-inducing ligand (TRAIL), B-cell CLL/lymphoma 2 (BCL2), and death-associated protein 6 (DAXX). Furthermore, a set of the genes involved in DNA repair, replication, and chromatin remodeling was downregulated in MS. These results suggest that MS lymphocytes show a complex pattern of gene regulation that represents a counterbalance between promoting and preventing apoptosis and DNA damage of lymphocytes.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Immunology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Minagar A, Shapshak P, Duran EM, Kablinger AS, Alexander JS, Kelley RE, Seth R, Kazic T. HIV-associated dementia, Alzheimer's disease, multiple sclerosis, and schizophrenia: gene expression review. J Neurol Sci 2004; 224:3-17. [PMID: 15450765 DOI: 10.1016/j.jns.2004.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 06/15/2004] [Accepted: 06/16/2004] [Indexed: 12/18/2022]
Abstract
RNA and protein gene expression technologies are revolutionizing our view and understanding of human diseases and enable us to analyze the concurrent expression patterns of large numbers of genes. These new technologies allow simultaneous study of thousands of genes and their changes in regulation and modulation patterns in relation to disease state, time, and tissue specificity. This review summarizes the application of this modern technology to four common neurological and psychiatric disorders: HIV-1-associated dementia, Alzheimer's disease, multiple sclerosis, and schizophrenia and is a first comparison of these diseases using this approach.
Collapse
Affiliation(s)
- Alireza Minagar
- Department of Neurology, Louisiana State University School of Medicine, Shreveport 71130, USA.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Satoh JI, Yamamura T. Gene expression profile following stable expression of the cellular prion protein. Cell Mol Neurobiol 2004; 24:793-814. [PMID: 15672681 PMCID: PMC11529964 DOI: 10.1007/s10571-004-6920-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The cellular prion protein (PrPC) is expressed widely in neural and nonneural tissues at the highest level in neurons in the central nervous system (CNS). 2. Recent studies indicated that transgenic mice with the cytoplasmic accumulation of PrPC exhibited extensive neurodegeneration in the cerebellum, although the underlying mechanism remains unknown. To identify the genes whose expression is controlled by over-expression of PrPC in human cells, we have established a stable PrPC-expressing HEK293 cell line designated P1 by the site-specific recombination technique. 3. Microarray analysis identified 33 genes expressed differentially between P1 and the parent PrPC-non-expressing cell line among 12,814 genes examined. They included 18 genes involved in neuronal and glial functions, 5 related to production of extracellular matrix proteins, and 2 located in the complement cascade. 4. Northern blot analysis verified marked upregulation in P1 of the brain-specific protein phosphatase 2A beta subunit (PPP2R2B), a causative gene of spinocerebellar ataxia 12, and the cerebellar degeneration-related autoantigen (CDR34) gene associated with development of paraneoplastic cerebellar degeneration. 5. These results indicate that accumulation of PrPC in the cell caused aberrant regulation of a battery of the genes important for specific neuronal function. This represents a possible mechanism underlying PrPC-mediated selective neurodegeneration.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan.
| | | |
Collapse
|
56
|
Dauber JH, Gibson KF, Kaminski N. Interferon-gamma 1b in idiopathic pulmonary fibrosis: what we know and what must we learn. Am J Respir Crit Care Med 2004; 170:107-8. [PMID: 15242850 DOI: 10.1164/rccm.2405001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
57
|
Mix E, Ibrahim S, Pahnke J, Koczan D, Sina C, Böttcher T, Thiesen HJ, Rolfs A. Gene-expression profiling of the early stages of MOG-induced EAE proves EAE-resistance as an active process. J Neuroimmunol 2004; 151:158-70. [PMID: 15145614 DOI: 10.1016/j.jneuroim.2004.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 03/10/2004] [Accepted: 03/10/2004] [Indexed: 01/09/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein (MOG) is a well-established animal model of multiple sclerosis (MS) in rodents. It reflects the wide spectrum of disease pathology and serves as a valuable tool for studying the pathogenesis and for testing new therapies of MS. In order to identify genes responsible for resistance to and modulation of the disease, we compared the mRNA expression profile of more than 12,000 genes by DNA microarray technique in lymph nodes of the highly EAE-susceptible mouse strain C57Bl/6 (B6) and the resistant strain C57Bl/10.S (B10). The disease onset in B6 mice was day 15. We identified 84 genes that were up-regulated more than two-fold in B10 mice compared to vehicle-treated controls, whereas only two genes were up-regulated in B6 mice after 7 and 15 days post-immunization (p.i.), respectively. We were able to match five up-regulated genes in B10 mice to known quantitative trait loci (QTLs), which control for EAE susceptibility. Only 17, respectively 5, genes were down-regulated at both time points in B10 and B6 mice. Tests for immunoreactivity to MOG (T cell proliferation and interferon-gamma (IFN-gamma) secretion) revealed no stronger immune response in B6 compared to B10 mice supporting the hypothesis of an immunosuppressive effect as a target to prevent EAE in the B10 mice. We conclude that resistance to EAE (and possibly to MS) is an active process mediated by multiple genes up-regulated in peripheral lymphatic organs of resistant animals. Thus, monitoring of the expression of these new candidate genes may serve as a tool for the disease progression and the pharmaceutical treatment.
Collapse
Affiliation(s)
- Eilhard Mix
- Department of Neurology, University of Rostock, Gehlsheimer Str. 20, Rostock D-18055, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Affiliation(s)
- Christopher B Lock
- Department of Neurology, Palo Alto Medical Clinic, Palo Alto, CA 94301, USA
| | | |
Collapse
|
59
|
Hong J, Zang YCQ, Hutton G, Rivera VM, Zhang JZ. Gene expression profiling of relevant biomarkers for treatment evaluation in multiple sclerosis. J Neuroimmunol 2004; 152:126-39. [PMID: 15223245 DOI: 10.1016/j.jneuroim.2004.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 02/27/2004] [Accepted: 03/03/2004] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is thought to correlate with an array of clinically relevant biomarkers produced during inflammatory process. In this study, a novel gene expression profiling technology was developed and characterized to quantitatively measure the expression profiles of 34 genes selected based on their role in inflammation and their susceptibility to regulation by current MS treatment agents, beta-interferon (IFN) and glatiramer acetate (GA). Potential clinical applications of the technology were evaluated by in vitro and ex vivo analyses in peripheral blood mononuclear cells (PBMC) obtained from MS patients and controls. Interferon-inducible genes were universally up-regulated after in vitro treatment with beta-IFN while the expression of other selected genes encoding cytokines and molecules related to T cell trafficking, activation and apoptosis was variably affected. Beta-IFN and GA exhibited distinctive and characteristic regulatory effects on the expression of the selected genes. Similar regulatory properties of beta-IFN and GA were seen by ex vivo analysis of PBMC specimens in a self-paired study by comparing specific changes induced by beta-IFN or GA treatment in the same patients as well as in a group study by measuring specific profiles in treatment groups compared with an untreated group. Furthermore, the technology served as a simple and sensitive assay for detection of beta-IFN neutralizing antibody based on the blocking effect of serum antibodies on the known regulatory properties of beta-IFN on PBMC. The findings provide important information on the immunoregulatory properties of beta-IFN and GA and support potential clinical applications of this technology in detection of neutralizing antibody (NAB) and evaluation of treatment responses in MS patients.
Collapse
Affiliation(s)
- Jian Hong
- Department of Neurology and Baylor-Methodist Multiple Sclerosis Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
60
|
Tajouri L, Mellick AS, Ashton KJ, Tannenberg AEG, Nagra RM, Tourtellotte WW, Griffiths LR. Quantitative and qualitative changes in gene expression patterns characterize the activity of plaques in multiple sclerosis. ACTA ACUST UNITED AC 2004; 119:170-83. [PMID: 14625084 DOI: 10.1016/j.molbrainres.2003.09.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS with both genetic and environmental contributing factors. Clinical symptoms are broadly characterized by initial onset, and progressive debilitating neurological impairment. In this study, RNA from MS chronic active and MS acute lesions was extracted, and compared with patient matched normal white matter by fluorescent cDNA microarray hybridization analysis. This resulted in the identification of 139 genes that were differentially regulated in MS plaque tissue compared to normal tissue. Of these, 69 genes showed a common pattern of expression in the chronic active and acute plaque tissues investigated (Pvalue<0.0001, rho=0.73, by Spearman's rho analysis); while 70 transcripts were uniquely differentially expressed (> or = 1.5-fold) in either acute or chronic active tissues. These results included known markers of MS such as the myelin basic protein (MBP) and glutathione S-transferase (GST) M1, nerve growth factors, such as nerve injury-induced protein 1 (NINJ1), X-ray and excision DNA repair factors (XRCC9 and ERCC5) and X-linked genes such as the ribosomal protein, RPS4X. Primers were then designed for seven array-selected genes, including transferrin (TF), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), GSTP1, crystallin, alpha-B (CRYAB), phosphomannomutase 1 (PMM1) and tubulin beta-5 (TBB5), and real time quantitative (Q)-PCR analysis was performed. The results of comparative Q-PCR analysis correlated significantly with those obtained by array analysis (r=0.75, Pvalue<0.01, by Pearson's bivariate correlation). Both chronic active and acute plaques shared the majority of factors identified suggesting that quantitative, rather than gross qualitative differences in gene expression pattern may define the progression from acute to chronic active plaques in MS.
Collapse
Affiliation(s)
- Lotti Tajouri
- School of Health Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| | | | | | | | | | | | | |
Collapse
|
61
|
Opdenakker G, Nelissen I, Van Damme J. Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis. Lancet Neurol 2003; 2:747-56. [PMID: 14636780 DOI: 10.1016/s1474-4422(03)00587-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the CNS of unknown cause. Pathogenetic mechanisms, such as chemotaxis, subsequent activation of autoreactive lymphocytes, and skewing of the extracellular proteinase balance, are targets for new therapies. Matrix metalloproteinase gelatinase B (MMP-9) is upregulated in MS and was recently shown to degrade interferon beta, one of the drugs used to treat MS. Consequently, the effect of endogenously produced interferon beta or parenterally given interferon beta may be increased by gelatinase B inhibitors. Blockage of chemotaxis or cell adhesion molecule engagement, and inhibition of hydroxymethyl-glutaryl-coenzyme-A reductase to lower expression of gelatinase B, may become effective treatments of MS, alone or in combination with interferon beta. This may allow interferon beta to be used at lower doses and prevent side-effects.
Collapse
|