51
|
Dietel AK, Kaltenpoth M, Kost C. Convergent Evolution in Intracellular Elements: Plasmids as Model Endosymbionts. Trends Microbiol 2018; 26:755-768. [PMID: 29650391 DOI: 10.1016/j.tim.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 11/29/2022]
Abstract
Endosymbionts are organisms that live inside the cells of other species. This lifestyle is ubiquitous across the tree of life and is featured by unicellular eukaryotes, prokaryotes, and by extrachromosomal genetic elements such as plasmids. Given that all of these elements dwell in the cytoplasm of their host cell, they should be subject to similar selection pressures. Here we show that strikingly similar features have evolved in both bacterial endosymbionts and plasmids. Since host and endosymbiont are often metabolically tightly intertwined, they are difficult to disentangle experimentally. We propose that using plasmids as tractable model systems can help to solve this problem, thus allowing fundamental questions to be experimentally addressed about the ecology and evolution of endosymbiotic interactions.
Collapse
Affiliation(s)
- Anne-Kathrin Dietel
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Current address: Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| |
Collapse
|
52
|
Palmer M, Steenkamp ET, Coetzee MPA, Avontuur JR, Chan WY, van Zyl E, Blom J, Venter SN. Mixta gen. nov., a new genus in the Erwiniaceae. Int J Syst Evol Microbiol 2018; 68:1396-1407. [DOI: 10.1099/ijsem.0.002540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P. A. Coetzee
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Juanita R. Avontuur
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Biotechnology Platform (BTP), Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort, South Africa
| | - Elritha van Zyl
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephanus N. Venter
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
53
|
Raina JB, Eme L, Pollock FJ, Spang A, Archibald JM, Williams TA. Symbiosis in the microbial world: from ecology to genome evolution. Biol Open 2018; 7:7/2/bio032524. [PMID: 29472284 PMCID: PMC5861367 DOI: 10.1242/bio.032524] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The concept of symbiosis – defined in 1879 by de Bary as ‘the living together of unlike organisms’ – has a rich and convoluted history in biology. In part, because it questioned the concept of the individual, symbiosis fell largely outside mainstream science and has traditionally received less attention than other research disciplines. This is gradually changing. In nature organisms do not live in isolation but rather interact with, and are impacted by, diverse beings throughout their life histories. Symbiosis is now recognized as a central driver of evolution across the entire tree of life, including, for example, bacterial endosymbionts that provide insects with vital nutrients and the mitochondria that power our own cells. Symbioses between microbes and their multicellular hosts also underpin the ecological success of some of the most productive ecosystems on the planet, including hydrothermal vents and coral reefs. In November 2017, scientists working in fields spanning the life sciences came together at a Company of Biologists’ workshop to discuss the origin, maintenance, and long-term implications of symbiosis from the complementary perspectives of cell biology, ecology, evolution and genomics, taking into account both model and non-model organisms. Here, we provide a brief synthesis of the fruitful discussions that transpired. Summary: At a recent Company of Biologists workshop, evolutionary biologists discussed the major outstanding questions in symbiosis research.
Collapse
Affiliation(s)
- Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - F Joseph Pollock
- Eberly College of Science, Department of Biology, Pennsylvania State University, University Park, PA 16801, USA
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden.,NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TH, UK
| |
Collapse
|
54
|
Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. ISME JOURNAL 2018; 12:1658-1667. [PMID: 29463893 DOI: 10.1038/s41396-018-0076-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/09/2022]
Abstract
Ecologists have long studied primary succession, the changes that occur in biological communities after initial colonization of an environment. Most of this work has focused on succession in plant communities, laying the conceptual foundation for much of what we currently know about community assembly patterns over time. Because of their prevalence and importance in ecosystems, an increasing number of studies have focused on microbial community dynamics during succession. Here, we conducted a meta-analysis of bacterial primary succession patterns across a range of distinct habitats, including the infant gut, plant surfaces, soil chronosequences, and aquatic environments, to determine whether consistent changes in bacterial diversity, community composition, and functional traits are evident over the course of succession. Although these distinct habitats harbor unique bacterial communities, we were able to identify patterns in community assembly that were shared across habitat types. We found an increase in taxonomic and functional diversity with time while the taxonomic composition and functional profiles of communities became less variable (lower beta diversity) in late successional stages. In addition, we found consistent decreases in the rRNA operon copy number and in the high-efficient phosphate assimilation process (Pst system) suggesting that reductions in resource availability during succession select for taxa adapted to low-resource conditions. Together, these results highlight that, like many plant communities, microbial communities also exhibit predictable patterns during primary succession.
Collapse
|
55
|
Lavy A, Keren R, Yu K, Thomas BC, Alvarez-Cohen L, Banfield JF, Ilan M. A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol 2018; 20:800-814. [PMID: 29194919 PMCID: PMC5812793 DOI: 10.1111/1462-2920.14013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 01/09/2023]
Abstract
Sponges are benthic filter feeders that play pivotal roles in coupling benthic-pelagic processes in the oceans that involve transformation of dissolved and particulate organic carbon and nitrogen into biomass. While the contribution of sponge holobionts to the nitrogen cycle has been recognized in past years, their importance in the sulfur cycle, both oceanic and physiological, has only recently gained attention. Sponges in general, and Theonella swinhoei in particular, harbour a multitude of associated microorganisms that could affect sulfur cycling within the holobiont. We reconstructed the genome of a Chromatiales (class Gammaproteobacteria) bacterium from a metagenomic sequence dataset of a T. swinhoei-associated microbial community. This relatively abundant bacterium has the metabolic capability to oxidize sulfide yet displays reduced metabolic potential suggestive of its lifestyle as an obligatory symbiont. This bacterium was detected in multiple sponge orders, according to similarities in key genes such as 16S rRNA and polyketide synthase genes. Due to its sulfide oxidation metabolism and occurrence in many members of the Porifera phylum, we suggest naming the newly described taxon Candidatus Porisulfidus.
Collapse
Affiliation(s)
- Adi Lavy
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Israel
- Earth and Planetary Science, 369 McCone Hall, University of California, Berkeley, USA
| | - Ray Keren
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Israel
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| | - Ke Yu
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| | - Brian C. Thomas
- Earth and Planetary Science, 369 McCone Hall, University of California, Berkeley, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| | - Jillian F. Banfield
- Earth and Planetary Science, 369 McCone Hall, University of California, Berkeley, USA
| | - Micha Ilan
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Israel
| |
Collapse
|
56
|
Hauck S, Maiden MCJ. Clonally Evolving Pathogenic Bacteria. MOLECULAR MECHANISMS OF MICROBIAL EVOLUTION 2018. [DOI: 10.1007/978-3-319-69078-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
57
|
Otti O, Deines P, Hammerschmidt K, Reinhardt K. Regular Wounding in a Natural System: Bacteria Associated With Reproductive Organs of Bedbugs and Their Quorum Sensing Abilities. Front Immunol 2017; 8:1855. [PMID: 29326722 PMCID: PMC5741697 DOI: 10.3389/fimmu.2017.01855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
During wounding, tissues are disrupted so that bacteria can easily enter the host and trigger a host response. Both the host response and bacterial communication can occur through quorum sensing (QS) and quorum sensing inhibition (QSI). Here, we characterize the effect of wounding on the host-associated bacterial community of the bed bug. This is a model system where the male is wounding the female during every mating. Whereas several aspects of the microbial involvement during wounding have been previously examined, it is not clear to what extent QS and QSI play a role. We find that the microbiome differs depending on mating and feeding status of female bedbugs and is specific to the location of isolation. Most organs of bedbugs harbor bacteria, which are capable of both QS and QSI signaling. By focusing on the prokaryotic quorum communication system, we provide a baseline for future research in this unique system. We advocate the bedbug system as suitable for studying the effects of bacteria on reproduction and for addressing prokaryote and eukaryote communication during wounding.
Collapse
Affiliation(s)
- Oliver Otti
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Animal Population Ecology, Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | - Peter Deines
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Zoological Institute, Christian Albrechts University Kiel, Kiel, Germany
| | - Katrin Hammerschmidt
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Institute of Microbiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Klaus Reinhardt
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Applied Zoology, Department of Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
58
|
Mueller UG, Ishak HD, Bruschi SM, Smith CC, Herman JJ, Solomon SE, Mikheyev AS, Rabeling C, Scott JJ, Cooper M, Rodrigues A, Ortiz A, Brandão CRF, Lattke JE, Pagnocca FC, Rehner SA, Schultz TR, Vasconcelos HL, Adams RMM, Bollazzi M, Clark RM, Himler AG, LaPolla JS, Leal IR, Johnson RA, Roces F, Sosa-Calvo J, Wirth R, Bacci M. Biogeography of mutualistic fungi cultivated by leafcutter ants. Mol Ecol 2017; 26:6921-6937. [PMID: 29134724 DOI: 10.1111/mec.14431] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
Abstract
Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the United States, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA sequence and microsatellite-marker analyses of 474 cultivars collected across the leafcutter range. Fungal cultivars belong to two clades (Clade-A and Clade-B). The dominant and widespread Clade-A cultivars form three genotype clusters, with their relative prevalence corresponding to southern South America, northern South America, Central and North America. Admixture between Clade-A populations supports genetic exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter species that cut grass as fungicultural substrate are specialized to cultivate Clade-B fungi, whereas leafcutters preferring dicot plants appear specialized on Clade-A fungi. Cultivar sharing between sympatric leafcutter species occurs frequently such that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters specialized on Clade-B fungi occur only in South America. Diversity of Clade-A fungi is greatest in South America, but minimal in Central and North America. Maximum cultivar diversity in South America is predicted by the Kusnezov-Fowler hypothesis that leafcutter ants originated in subtropical South America and only dicot-specialized leafcutter ants migrated out of South America, but the cultivar diversity becomes also compatible with a recently proposed hypothesis of a Central American origin by postulating that leafcutter ants acquired novel cultivars many times from other nonleafcutter fungus-growing ants during their migrations from Central America across South America. We evaluate these biogeographic hypotheses in the light of estimated dates for the origins of leafcutter ants and their cultivars.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Heather D Ishak
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Sofia M Bruschi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Chad C Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jacob J Herman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Scott E Solomon
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil.,Department of Ecology & Evolutionary Biology, Rice University, Houston, TX, USA
| | - Alexander S Mikheyev
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Okinawa Institute of Science & Technology, Kunigami, Okinawa, Japan
| | - Christian Rabeling
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jarrod J Scott
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael Cooper
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Andre Rodrigues
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Adriana Ortiz
- Universidad Nacional de Colombia, Medellin, Colombia
| | | | - John E Lattke
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Fernando C Pagnocca
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Stephen A Rehner
- Mycology and Nematology Genomic Diversity and Biology Laboratory, Beltsville, MD, USA
| | - Ted R Schultz
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Rachelle M M Adams
- Department of Evolution, Ecology & Organismal Biology, Museum of Biological Diversity, Columbus, OH, USA
| | - Martin Bollazzi
- Section of Entomology, Universidad de la República, Montevideo, Uruguay
| | - Rebecca M Clark
- Integrative Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Anna G Himler
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Biology, College of Idaho, Caldwell, ID, USA
| | - John S LaPolla
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Inara R Leal
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Robert A Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| | | | - Rainer Wirth
- Department of Plant Ecology and Systematics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| |
Collapse
|
59
|
Evolving Ecosystems: Inheritance and Selection in the Light of the Microbiome. Arch Med Res 2017; 48:780-789. [DOI: 10.1016/j.arcmed.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
|
60
|
Chen R, Wang Z, Chen J, Jiang LY, Qiao GX. Insect-bacteria parallel evolution in multiple-co-obligate-aphid association: a case in Lachninae (Hemiptera: Aphididae). Sci Rep 2017; 7:10204. [PMID: 28860659 PMCID: PMC5579299 DOI: 10.1038/s41598-017-10761-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022] Open
Abstract
Parallel phylogenies between aphid and its obligate symbiont Buchnera are hot topics which always focused on aphid lower taxonomic levels. Symbionts in the subfamily Lachninae are special. Buchnera in many lachnine species has undergone functional and genome size reduction that was replaced by other co-obligate symbionts. In this study, we constructed the phylogenetic relationships of Lachninae with a combined dataset of five genes sequenced from Buchnera to estimate the effects of a dual symbiotic system in the aphid-Buchnera cospeciation association. The phylogeny of Buchnera in Lachninae was well-resolved in the combined dataset. Each of the genera formed strongly supported monophyletic groups, with the exception of the genus Cinara. The phylogeny based on sequences from Buchnera was divided into five tribes according to the clades of the Lachninae hosts tree, with the phylogenies of Buchnera and Lachninae being generally congruent. These results first provided evidence of parallel evolution at the aphid subfamily level comprehensively and supported the view that topological congruence between the phylogenies of Buchnera and Lachninae would not be interfered with the other co-obligate symbionts, such as Sarretia, in aphid-entosymbiont association. These results also provided new insight in understanding host-plant coevolution in lachnine lineages.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhe Wang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Li-Yun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ge-Xia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
61
|
Veller C, Hayward LK, Hilbe C, Nowak MA. The Red Queen and King in finite populations. Proc Natl Acad Sci U S A 2017; 114:E5396-E5405. [PMID: 28630336 PMCID: PMC5502615 DOI: 10.1073/pnas.1702020114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In antagonistic symbioses, such as host-parasite interactions, one population's success is the other's loss. In mutualistic symbioses, such as division of labor, both parties can gain, but they might have different preferences over the possible mutualistic arrangements. The rates of evolution of the two populations in a symbiosis are important determinants of which population will be more successful: Faster evolution is thought to be favored in antagonistic symbioses (the "Red Queen effect"), but disfavored in certain mutualistic symbioses (the "Red King effect"). However, it remains unclear which biological parameters drive these effects. Here, we analyze the effects of the various determinants of evolutionary rate: generation time, mutation rate, population size, and the intensity of natural selection. Our main results hold for the case where mutation is infrequent. Slower evolution causes a long-term advantage in an important class of mutualistic interactions. Surprisingly, less intense selection is the strongest driver of this Red King effect, whereas relative mutation rates and generation times have little effect. In antagonistic interactions, faster evolution by any means is beneficial. Our results provide insight into the demographic evolution of symbionts.
Collapse
Affiliation(s)
- Carl Veller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
| | - Laura K Hayward
- Department of Mathematics, Columbia University, New York, NY 10027
| | - Christian Hilbe
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Martin A Nowak
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
- Department of Mathematics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
62
|
Cobo-Simón M, Tamames J. Relating genomic characteristics to environmental preferences and ubiquity in different microbial taxa. BMC Genomics 2017; 18:499. [PMID: 28662636 PMCID: PMC5492924 DOI: 10.1186/s12864-017-3888-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background Despite the important role that microorganisms play in environmental processes, the low percentage of cultured microbes (5%) has limited, until now, our knowledge of their ecological strategies. However, the development of high-throughput sequencing has generated a huge amount of genomic and metagenomic data without the need of culturing that can be used to study ecological questions. This study aims to estimate the functional capabilities, genomic sizes and 16S copy number of different taxa in relation to their ubiquity and their environmental preferences. Results To achieve this goal, we compiled data regarding the presence of each prokaryotic genera in diverse environments. Then, genomic characteristics such as genome size, 16S rRNA gene copy number, and functional content of the genomes were related to their ubiquity and different environmental preferences of the corresponding taxa. The results showed clear correlations between genomic characteristics and environmental conditions. Conclusions Ubiquity and adaptation were linked to genome size, while 16S copy number was not directly related to ubiquity. We observed that different combinations of these two characteristics delineate the different environments. Besides, the analysis of functional classes showed some clear signatures linked to particular environments. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3888-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Cobo-Simón
- Systems Biology Programme, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain
| | - Javier Tamames
- Systems Biology Programme, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
63
|
Hays JP. Why is scientific research on 'data-poor' microorganisms being ignored? Future Microbiol 2017; 12:645-650. [PMID: 28541792 DOI: 10.2217/fmb-2017-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- John P Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| |
Collapse
|
64
|
Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina. Appl Environ Microbiol 2016; 82:7063-7073. [PMID: 27694231 DOI: 10.1128/aem.02385-16] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/22/2016] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus crispatus and Lactobacillus iners are common inhabitants of the healthy human vagina. These two species are closely related and are thought to perform similar ecological functions in the vaginal environment. Temporal data on the vaginal microbiome have shown that nontransient instances of cooccurrence are uncommon, while transitions from an L. iners-dominated community to one dominated by L. crispatus, and vice versa, occur often. This suggests that there is substantial overlap in the fundamental niches of these species. Given this apparent niche overlap, it is unclear how they have been maintained as common inhabitants of the human vagina. In this study, we characterized and compared the genomes of L. iners and L. crispatus to gain insight into possible mechanisms driving the maintenance of this species diversity. Our results highlight differences in the genomes of these two species that may facilitate the partitioning of their shared niche space. Many of the identified differences may impact the protective benefits provided to the host by these two species. IMPORTANCE The microbial communities that inhabit the human vagina play a critical role in the maintenance of vaginal health through the production of lactic acid and lowering the environmental pH. This precludes the growth of nonindigenous organisms and protects against infectious disease. The two most common types of vaginal communities are dominated by either Lactobacillus iners or Lactobacillus crispatus, while some communities alternate between the two over time. We combined ecological theory with state-of-the-art genome analyses to characterize how these two species might partition their shared niche space in the vagina. We show that the genomes of L. iners and L. crispatus differ in many respects, several of which may drive differences in their competitive abilities in the vagina. Our results provide insight into factors that drive the complicated temporal dynamics of the vaginal microbiome and demonstrate how closely related microbial species partition shared fundamental niche space.
Collapse
|
65
|
Intraspecific genetic variation in hosts affects regulation of obligate heritable symbionts. Proc Natl Acad Sci U S A 2016; 113:13114-13119. [PMID: 27799532 DOI: 10.1073/pnas.1610749113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symbiotic relationships promote biological diversification by unlocking new ecological niches. Over evolutionary time, hosts and symbionts often enter intimate and permanent relationships, which must be maintained and regulated for both lineages to persist. Many insect species harbor obligate, heritable symbiotic bacteria that provision essential nutrients and enable hosts to exploit niches that would otherwise be unavailable. Hosts must regulate symbiont population sizes, but optimal regulation may be affected by the need to respond to the ongoing evolution of symbionts, which experience high levels of genetic drift and potential selection for selfish traits. We address the extent of intraspecific variation in the regulation of a mutually obligate symbiosis, between the pea aphid (Acyrthosiphon pisum) and its maternally transmitted symbiont, Buchnera aphidicola Using experimental crosses to identify effects of host genotypes, we measured symbiont titer, as the ratio of genomic copy numbers of symbiont and host, as well as developmental time and fecundity of hosts. We find a large (>10-fold) range in symbiont titer among genetically distinct aphid lines harboring the same Buchnera haplotype. Aphid clones also vary in fitness, measured as developmental time and fecundity, and genetically based variation in titer is correlated with host fitness, with higher titers corresponding to lower reproductive rates of hosts. Our work shows that obligate symbiosis is not static but instead is subject to short-term evolutionary dynamics, potentially reflecting coevolutionary interactions between host and symbiont.
Collapse
|
66
|
Latorre A, Manzano-Marín A. Dissecting genome reduction and trait loss in insect endosymbionts. Ann N Y Acad Sci 2016; 1389:52-75. [DOI: 10.1111/nyas.13222] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Amparo Latorre
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva; Universitat de Valencia; C/Catedrático José Beltrán Paterna Valencia Spain
- Área de Genómica y Salud de la Fundación para el fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública; València Spain
| | - Alejandro Manzano-Marín
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva; Universitat de Valencia; C/Catedrático José Beltrán Paterna Valencia Spain
| |
Collapse
|
67
|
Hoang KL, Morran LT, Gerardo NM. Experimental Evolution as an Underutilized Tool for Studying Beneficial Animal-Microbe Interactions. Front Microbiol 2016; 7:1444. [PMID: 27679620 PMCID: PMC5020044 DOI: 10.3389/fmicb.2016.01444] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022] Open
Abstract
Microorganisms play a significant role in the evolution and functioning of the eukaryotes with which they interact. Much of our understanding of beneficial host–microbe interactions stems from studying already established associations; we often infer the genotypic and environmental conditions that led to the existing host–microbe relationships. However, several outstanding questions remain, including understanding how host and microbial (internal) traits, and ecological and evolutionary (external) processes, influence the origin of beneficial host–microbe associations. Experimental evolution has helped address a range of evolutionary and ecological questions across different model systems; however, it has been greatly underutilized as a tool to study beneficial host–microbe associations. In this review, we suggest ways in which experimental evolution can further our understanding of the proximate and ultimate mechanisms shaping mutualistic interactions between eukaryotic hosts and microbes. By tracking beneficial interactions under defined conditions or evolving novel associations among hosts and microbes with little prior evolutionary interaction, we can link specific genotypes to phenotypes that can be directly measured. Moreover, this approach will help address existing puzzles in beneficial symbiosis research: how symbioses evolve, how symbioses are maintained, and how both host and microbe influence their partner’s evolutionary trajectories. By bridging theoretical predictions and empirical tests, experimental evolution provides us with another approach to test hypotheses regarding the evolution of beneficial host–microbe associations.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| | - Levi T Morran
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| | - Nicole M Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| |
Collapse
|
68
|
Ote M, Ueyama M, Yamamoto D. Wolbachia Protein TomO Targets nanos mRNA and Restores Germ Stem Cells in Drosophila Sex-lethal Mutants. Curr Biol 2016; 26:2223-32. [PMID: 27498563 DOI: 10.1016/j.cub.2016.06.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 05/16/2016] [Accepted: 06/22/2016] [Indexed: 11/27/2022]
Abstract
Wolbachia, endosymbiotic bacteria prevalent in invertebrates, manipulate their hosts in a variety of ways: they induce cytoplasmic incompatibility, male lethality, male-to-female transformation, and parthenogenesis. However, little is known about the molecular basis for host manipulation by these bacteria. In Drosophila melanogaster, Wolbachia infection makes otherwise sterile Sex-lethal (Sxl) mutant females capable of producing mature eggs. Through a functional genomic screen for Wolbachia genes with growth-inhibitory effects when expressed in cultured Drosophila cells, we identified the gene WD1278 encoding a novel protein we call toxic manipulator of oogenesis (TomO), which phenocopies some of the Wolbachia effects in Sxl mutant D. melanogaster females. We demonstrate that TomO enhances the maintenance of germ stem cells (GSCs) by elevating Nanos (Nos) expression via its interaction with nos mRNA, ultimately leading to the restoration of germ cell production in Sxl mutant females that are otherwise without GSCs.
Collapse
Affiliation(s)
- Manabu Ote
- Department of Developmental Biology and Neurosciences, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Morio Ueyama
- Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Daisuke Yamamoto
- Department of Developmental Biology and Neurosciences, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.
| |
Collapse
|
69
|
Abstract
In most animals, digestive tracts harbor the greatest number of bacteria in the animal that contribute to its health: by aiding in the digestion of nutrients, provisioning essential nutrients and protecting against colonization by pathogens. Invertebrates have been used to enhance our understanding of metabolic processes and microbe-host interactions owing to experimental advantages. This review describes how advances in DNA sequencing technologies have dramatically altered how researchers investigate microbe-host interactions, including 16S rRNA gene surveys, metagenome experiments, and metatranscriptome studies. Advantages and challenges of each of these approaches are described herein. Hypotheses generated through omics studies can be directly tested using site-directed mutagenesis, and findings from transposon studies and site-directed experiments are presented. Finally, unique structural aspects of invertebrate digestive tracts that contribute to symbiont specificity are presented. The combination of omics approaches with genetics and microscopy allows researchers to move beyond correlations to identify conserved mechanisms of microbe-host interactions.
Collapse
Affiliation(s)
- Joerg Graf
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269;
| |
Collapse
|
70
|
Martínez-García Á, Martín-Vivaldi M, Ruiz-Rodríguez M, Martínez-Bueno M, Arco L, Rodríguez-Ruano SM, Peralta-Sánchez JM, Soler JJ. The Microbiome of the Uropygial Secretion in Hoopoes Is Shaped Along the Nesting Phase. MICROBIAL ECOLOGY 2016; 72:252-261. [PMID: 27075655 DOI: 10.1007/s00248-016-0765-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Microbial symbiont acquisition by hosts may determine the effectiveness of the mutualistic relationships. A mix of vertical and horizontal transmission may be advantageous for hosts by allowing plastic changes of microbial communities depending on environmental conditions. Plasticity is well known for gut microbiota but is poorly understood for other symbionts of wild animals. We here explore the importance of environmental conditions experienced by nestling hoopoes (Upupa epops) during the late nesting phase determining microbiota in their uropygial gland. In cross-fostering experiments of 8 days old nestlings, "sibling-sibling" and "mother-offspring" comparisons were used to explore whether the bacterial community naturally established in the uropygial gland of nestlings could change depending on experimental environmental conditions (i.e., new nest environment). We found that the final microbiome of nestlings was mainly explained by nest of origin. Moreover, cross-fostered nestlings were more similar to their siblings and mothers than to their stepsiblings and stepmothers. We also detected a significant effect of nest of rearing, suggesting that nestling hoopoes acquire most bacterial symbionts during the first days of life but that the microbiome is dynamic and can be modified along the nestling period depending on environmental conditions. Estimated effects of nest of rearing, but also most of those of nest of origin are associated to environmental characteristics of nests, which are extended phenotypes of parents. Thus, natural selection may favor the acquisition of appropriated microbial symbionts for particular environmental conditions found in nests.
Collapse
Affiliation(s)
| | | | | | | | - Laura Arco
- Departamento de Zoología Universidad de Granada, E-18071, Granada, Spain
| | | | | | - Juan José Soler
- Estación Experimental de Zonas Áridas (CSIC), E-04120, Almería, Spain.
| |
Collapse
|
71
|
Overlapping genes: A significant genomic correlate of prokaryotic growth rates. Gene 2016; 582:143-7. [DOI: 10.1016/j.gene.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/03/2016] [Indexed: 11/19/2022]
|
72
|
Clayton AL, Jackson DG, Weiss RB, Dale C. Adaptation by Deletogenic Replication Slippage in a Nascent Symbiont. Mol Biol Evol 2016; 33:1957-66. [PMID: 27189544 PMCID: PMC4948707 DOI: 10.1093/molbev/msw071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As a consequence of population level constraints in the obligate, host-associated lifestyle, intracellular symbiotic bacteria typically exhibit high rates of molecular sequence evolution and extensive genome degeneration over the course of their host association. While the rationale for genome degeneration is well understood, little is known about the molecular mechanisms driving this change. To understand these mechanisms we compared the genome of Sodalis praecaptivus, a nonhost associated bacterium that is closely related to members of the Sodalis-allied clade of insect endosymbionts, with the very recently derived insect symbiont Candidatus Sodalis pierantonius. The characterization of indel mutations in the genome of Ca. Sodalis pierantonius shows that the replication system in this organism is highly prone to deletions resulting from polymerase slippage events in regions encoding G+C-rich repetitive sequences. This slippage-prone phenotype is mechanistically associated with the loss of certain components of the bacterial DNA recombination machinery at an early stage in symbiotic life and is expected to facilitate rapid adaptation to the novel host environment. This is analogous to the emergence of mutator strains in both natural and laboratory populations of bacteria, which tend to reach high frequencies in clonal populations due to linkage between the mutator allele and the resulting adaptive mutations.
Collapse
Affiliation(s)
| | | | | | - Colin Dale
- Department of Biology, University of Utah
| |
Collapse
|
73
|
Poelchau MF, Coates BS, Childers CP, Peréz de León AA, Evans JD, Hackett K, Shoemaker D. Agricultural applications of insect ecological genomics. CURRENT OPINION IN INSECT SCIENCE 2016; 13:61-69. [PMID: 27436554 DOI: 10.1016/j.cois.2015.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/07/2015] [Accepted: 12/13/2015] [Indexed: 06/06/2023]
Abstract
Agricultural entomology is poised to benefit from the application of ecological genomics, particularly the fields of biofuels generation and pest control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and livestock pests, and transcriptomic approaches reveal molecular bases behind wood-digesting capabilities of these insects, leading to potential mechanisms for biofuel generation. Genome sequences are being exploited to develop new pest control methods, identify candidate antigens to vaccinate livestock, and discover RNAi target sequences and potential non-target effects in other insects. Gene content analyses of pest genome sequences and their endosymbionts suggest metabolic interdependencies between organisms, exposing potential gene targets for insect control. Finally, genome-wide association studies and genotyping by high-throughput sequencing promise to improve management of pesticide resistance.
Collapse
Affiliation(s)
- Monica F Poelchau
- USDA-ARS, National Agricultural Library, Beltsville, MD 20705, United States.
| | - Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA 50011, United States
| | | | - Adalberto A Peréz de León
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, United States
| | - Jay D Evans
- USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, United States
| | - Kevin Hackett
- USDA-ARS, Office of National Programs, Crop Production and Protection, Beltsville, MD 20705, United States
| | - DeWayne Shoemaker
- USDA-ARS, Imported Fire Ant and Household Insects Research Unit, Gainesville, FL 32608, United States.
| |
Collapse
|
74
|
Diverse Bacteriophage Roles in an Aphid-Bacterial Defensive Mutualism. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
75
|
Garg D, Skouloubris S, Briffotaux J, Myllykallio H, Wade RC. Conservation and Role of Electrostatics in Thymidylate Synthase. Sci Rep 2015; 5:17356. [PMID: 26612036 PMCID: PMC4661567 DOI: 10.1038/srep17356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.
Collapse
Affiliation(s)
- Divita Garg
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.,Munich Center for Integrated Protein Science, Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Stephane Skouloubris
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645, INSERM U1182, Université Paris-Saclay, 91128, Palaiseau, France.,Université Paris-Sud, 91405, Orsay, France
| | - Julien Briffotaux
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645, INSERM U1182, Université Paris-Saclay, 91128, Palaiseau, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645, INSERM U1182, Université Paris-Saclay, 91128, Palaiseau, France
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
76
|
Salem H, Florez L, Gerardo N, Kaltenpoth M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc Biol Sci 2015; 282:20142957. [PMID: 25740892 DOI: 10.1098/rspb.2014.2957] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Across animals and plants, numerous metabolic and defensive adaptations are a direct consequence of symbiotic associations with beneficial microbes. Explaining how these partnerships are maintained through evolutionary time remains one of the central challenges within the field of symbiosis research. While genome erosion and co-cladogenesis with the host are well-established features of symbionts exhibiting intracellular localization and transmission, the ecological and evolutionary consequences of an extracellular lifestyle have received little attention, despite a demonstrated prevalence and functional importance across many host taxa. Using insect-bacteria symbioses as a model, we highlight the diverse routes of extracellular symbiont transfer. Extracellular transmission routes are unified by the common ability of the bacterial partners to survive outside their hosts, thereby imposing different genomic, metabolic and morphological constraints than would be expected from a strictly intracellular lifestyle. We emphasize that the evolutionary implications of symbiont transmission routes (intracellular versus extracellular) do not necessarily correspond to those of the transmission mode (vertical versus horizontal), a distinction of vital significance when addressing the genomic and physiological consequences for both host and symbiont.
Collapse
Affiliation(s)
- Hassan Salem
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura Florez
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole Gerardo
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
77
|
Birch M, Bolker BM. Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model. Bull Math Biol 2015; 77:1985-2003. [PMID: 26507879 DOI: 10.1007/s11538-015-0112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission-virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is a mutation rate threshold above which the pathogen cannot invade a wholly susceptible population. The evolutionarily stable (ESS) mutation rate is the one which drives the lowest average density, over the course of one forcing period, of susceptible individuals at steady state. In contrast with earlier eco-evolutionary models in which higher mutation rates allow for better evolutionary tracking of a dynamic environment, numerical calculations suggest that in our model the minimum average susceptible population, and hence the ESS, is achieved by a pathogen strain with zero mutation. We discuss how this result arises within our model and how the model might be modified to obtain a nonzero optimum.
Collapse
Affiliation(s)
- Michael Birch
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Benjamin M Bolker
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
78
|
Abstract
SUMMARY Members of the Roseobacter clade are equipped with a tremendous diversity of metabolic capabilities, which in part explains their success in so many different marine habitats. Ideas on how this diversity evolved and is maintained are reviewed, focusing on recent evolutionary studies exploring the timing and mechanisms of Roseobacter ecological diversification.
Collapse
|
79
|
Ninio C, Plantard O, Serra V, Pollera C, Ferrari N, Cafiso A, Sassera D, Bazzocchi C. Antibiotic treatment of the hard tick Ixodes ricinus: Influence on Midichloria mitochondrii load following blood meal. Ticks Tick Borne Dis 2015; 6:653-7. [DOI: 10.1016/j.ttbdis.2015.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 11/30/2022]
|
80
|
Lee CK, Haque MA, Choi BR, Lee HY, Hwang CE, Ahn MJ, Cho KM. Molecular diversity of endobacterial communities in edible part of King oyster mushroom (Pleurotus eryngii) based on 16S rRNA. ACTA ACUST UNITED AC 2015. [DOI: 10.7845/kjm.2015.4086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
81
|
Luo H, Moran MA. How do divergent ecological strategies emerge among marine bacterioplankton lineages? Trends Microbiol 2015; 23:577-84. [PMID: 26051014 DOI: 10.1016/j.tim.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
Abstract
Heterotrophic bacteria in pelagic marine environments are frequently categorized into two canonical ecological groups: patch-associated and free-living. This framework provides a conceptual basis for understanding bacterial utilization of oceanic organic matter. Some patch-associated bacteria are ecologically linked with eukaryotic phytoplankton, and this observation fits with predicted coincidence of their genome expansion with marine phytoplankton diversification. By contrast, free-living bacteria in today's oceans typically live singly with streamlined metabolic and regulatory functions that allow them to grow in nutrient-poor seawater. Recent analyses of marine Alphaproteobacteria suggest that some free-living bacterioplankton lineages evolved from patch-associated ancestors up to several hundred million years ago. While evolutionary analyses agree with the hypothesis that natural selection has maintained these distinct ecological strategies and genomic traits in present-day populations, they do not rule out a major role for genetic drift in driving ancient ecological switches. These two evolutionary forces may have acted on ocean bacteria at different geological time scales and under different geochemical constraints, with possible implications for future adaptations to a changing ocean. New evolutionary models and genomic data are leading to a more comprehensive understanding of marine bacterioplankton evolutionary history.
Collapse
Affiliation(s)
- Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
82
|
Li P, Kwok AHY, Jiang J, Ran T, Xu D, Wang W, Leung FC. Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential. PLoS One 2015; 10:e0123061. [PMID: 25856195 PMCID: PMC4391916 DOI: 10.1371/journal.pone.0123061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/16/2015] [Indexed: 11/19/2022] Open
Abstract
S. marcescens FS14 was isolated from an Atractylodes macrocephala Koidz plant that was infected by Fusarium oxysporum and showed symptoms of root rot. With the completion of the genome sequence of FS14, the first comprehensive comparative-genomic analysis of the Serratia genus was performed. Pan-genome and COG analyses showed that the majority of the conserved core genes are involved in basic cellular functions, while genomic factors such as prophages contribute considerably to genome diversity. Additionally, a Type I restriction-modification system, a Type III secretion system and tellurium resistance genes are found in only some Serratia species. Comparative analysis further identified that S. marcescens FS14 possesses multiple mechanisms for antagonism against other microorganisms, including the production of prodigiosin, bacteriocins, and multi-antibiotic resistant determinants as well as chitinases. The presence of two evolutionarily distinct Type VI secretion systems (T6SSs) in FS14 may provide further competitive advantages for FS14 against other microbes. To our knowledge, this is the first report of comparative analysis on T6SSs in the genus, which identifies four types of T6SSs in Serratia spp.. Competition bioassays of FS14 against the vital plant pathogenic bacterium Ralstonia solanacearum and fungi Fusarium oxysporum and Sclerotinia sclerotiorum were performed to support our genomic analyses, in which FS14 demonstrated high antagonistic activities against both bacterial and fungal phytopathogens.
Collapse
Affiliation(s)
- Pengpeng Li
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Amy H. Y. Kwok
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Jingwei Jiang
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
- School of Biological Sciences, University of Hong Kong, Hong Kong Special Administration Region, China
| | - Tingting Ran
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dongqing Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weiwu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Frederick C. Leung
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
- School of Biological Sciences, University of Hong Kong, Hong Kong Special Administration Region, China
- * E-mail:
| |
Collapse
|
83
|
Luef B, Frischkorn KR, Wrighton KC, Holman HYN, Birarda G, Thomas BC, Singh A, Williams KH, Siegerist CE, Tringe SG, Downing KH, Comolli LR, Banfield JF. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun 2015; 6:6372. [DOI: 10.1038/ncomms7372] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/23/2015] [Indexed: 02/04/2023] Open
|
84
|
Mullins DE. Physiology of environmental adaptations and resource acquisition in cockroaches. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:473-492. [PMID: 25564743 DOI: 10.1146/annurev-ento-011613-162036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cockroaches are a group of insects that evolved early in geological time. Because of their antiquity, they for the most part display generalized behavior and physiology and accordingly have frequently been used as model insects to examine physiological and biochemical mechanisms involved with water balance, nutrition, reproduction, genetics, and insecticide resistance. As a result, a considerable amount of information on these topics is available. However, there is much more to be learned by employing new protocols, microchemical analytical techniques, and molecular biology tools to explore many unanswered questions.
Collapse
Affiliation(s)
- Donald E Mullins
- Department of Entomology, Virginia Tech, Blacksburg, Virginia 24061;
| |
Collapse
|
85
|
Novel Endosymbioses as a Catalyst of Fast Speciation. INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [DOI: 10.1007/978-3-319-16345-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
86
|
Pasquier C, Clément M, Dombrovsky A, Penaud S, Da Rocha M, Rancurel C, Ledger N, Capovilla M, Robichon A. Environmentally selected aphid variants in clonality context display differential patterns of methylation in the genome. PLoS One 2014; 9:e115022. [PMID: 25551225 PMCID: PMC4281257 DOI: 10.1371/journal.pone.0115022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022] Open
Abstract
Heritability of acquired phenotypic traits is an adaptive evolutionary process that appears more complex than the basic allele selection guided by environmental pressure. In insects, the trans-generational transmission of epigenetic marks in clonal and/or sexual species is poorly documented. Aphids were used as a model to explore this feature because their asexual phase generates a stochastic and/or environment-oriented repertoire of variants. The a priori unchanged genome in clonal individuals prompts us to hypothesize whether covalent methyl DNA marks might be associated to the phenotypic variability and fitness selection. The full differential transcriptome between two environmentally selected clonal variants that originated from the same founder mother was mapped on the entire genomic scaffolds, in parallel with the methyl cytosine distribution. Data suggest that the assortments of heavily methylated DNA sites are distinct in these two clonal phenotypes. This might constitute an epigenetic mechanism that confers the robust adaptation of insect species to various environments involving clonal reproduction.
Collapse
Affiliation(s)
- Claude Pasquier
- Institute of Developmental Biology and Cancer, CNRS, University Nice Sophia Antipolis, Sophia Antipolis, France
| | - Mathilde Clément
- Institute Sophia Agrobiotech, INRA/CNRS/UNS, University Nice Sophia Antipolis, Sophia Antipolis, France
| | - Aviv Dombrovsky
- Institute Sophia Agrobiotech, INRA/CNRS/UNS, University Nice Sophia Antipolis, Sophia Antipolis, France
- Institute of Plant Protection, Volcani Center, Rehovot, Israel
| | | | - Martine Da Rocha
- Institute Sophia Agrobiotech, INRA/CNRS/UNS, University Nice Sophia Antipolis, Sophia Antipolis, France
| | - Corinne Rancurel
- Institute Sophia Agrobiotech, INRA/CNRS/UNS, University Nice Sophia Antipolis, Sophia Antipolis, France
| | - Neil Ledger
- Institute Sophia Agrobiotech, INRA/CNRS/UNS, University Nice Sophia Antipolis, Sophia Antipolis, France
| | - Maria Capovilla
- Institute Sophia Agrobiotech, INRA/CNRS/UNS, University Nice Sophia Antipolis, Sophia Antipolis, France
| | - Alain Robichon
- Institute Sophia Agrobiotech, INRA/CNRS/UNS, University Nice Sophia Antipolis, Sophia Antipolis, France
- * E-mail:
| |
Collapse
|
87
|
Reingold V, Luria N, Robichon A, Dombrovsky A. Adenine methylation may contribute to endosymbiont selection in a clonal aphid population. BMC Genomics 2014; 15:999. [PMID: 25406741 PMCID: PMC4246565 DOI: 10.1186/1471-2164-15-999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pea aphid Acyrthosiphon pisum has two modes of reproduction: parthenogenetic during the spring and summer and sexual in autumn. This ability to alternate between reproductive modes and the emergence of clonal populations under favorable conditions make this organism an interesting model for genetic and epigenetic studies. The pea aphid hosts different types of endosymbiotic bacteria within bacteriocytes which help the aphids survive and adapt to new environmental conditions and habitats. The obligate endosymbiont Buchnera aphidicola has a drastically reduced and stable genome, whereas facultative endosymbionts such as Regiella insecticola have large and dynamic genomes due to phages, mobile elements and high levels of genetic recombination. In previous work, selection toward cold adaptation resulted in the appearance of parthenogenetic A. pisum individuals characterized by heavier weights and remarkable green pigmentation. RESULTS Six adenine-methylated DNA fragments were isolated from genomic DNA (gDNA) extracted from the cold-induced green variant of A. pisum using deoxyadenosine methylase (Dam) by digesting the gDNA with the restriction enzymes DpnI and DpnII, which recognize the methylated and unmethylated GATC sites, respectively. The six resultant fragments did not match any sequence in the A. pisum or Buchnera genomes, implying that they came from facultative endosymbionts. The A1 fragment encoding a putative transposase and the A6 fragment encoding a putative helicase were selected for further comparison between the two A. pisum variants (green and orange) based on Dam analysis followed by PCR amplification. An association between adenine methylation and the two A. pisum variants was demonstrated by higher adenine methylation levels on both genes in the green variant as compared to the orange one. CONCLUSION Temperature selection may affect the secondary endosymbiont and the sensitive Dam involved in the survival and adaptation of aphids to cold temperatures. There is a high degree of adenine methylation at the GATC sites of the endosymbiont genes at 8°C, an effect that disappears at 22°C. We suggest that endosymbionts can be modified or selected to increase host fitness under unfavorable climatic conditions, and that the phenotype of the newly adapted aphids can be inherited.
Collapse
Affiliation(s)
| | | | | | - Aviv Dombrovsky
- INRA/CNRS/UNSA University Nice Sophia Antipolis, 400 routes de Chappes, BP 167, Sophia Antipolis 06903, France.
| |
Collapse
|
88
|
Poisot T, Bever JD, Thrall PH, Hochberg ME. Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists. Ecol Evol 2014; 4:3841-50. [PMID: 25614798 PMCID: PMC4301050 DOI: 10.1002/ece3.1151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Protective mutualisms, where a symbiont reduces the negative effects of another species on a shared host, represent a common type of species interaction in natural communities, yet it is still unclear what ecological conditions might favor their emergence. Studies suggest that the initial evolution of protective mutualists might involve closely related pathogenic variants with similar life histories, but different competitive abilities and impacts on host fitness. We derive a model to evaluate this hypothesis and show that, in general, a protective variant cannot spread from rarity or exclude a more pathogenic strain. While the conditions allowing mutualist invasion are more likely with increased environmental productivity, they still depend on initial densities in the invaded patch exceeding a threshold, highlighting the likely importance of spatial structure and demographic stochasticity. Using a numerical simulation approach, we show that regional coexistence is in fact possible in an explicitly spatial system and that, under some circumstances, the mutualist population can exclude the enemy. More broadly, the establishment of protective mutualists may be favored when there are other life-history differences from more pathogenic symbionts, such as vertical transmission or additional direct benefits to hosts.
Collapse
Affiliation(s)
- Timothée Poisot
- Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France
- Département de Biologie, Université du Québec à Rimouski300 Allée des Ursulines, Rimouski, Quebec, G5L 3A1, Canada
- Québec Centre for Biodiversity SciencesMontréal (QC), Canada
- School of Biological Sciences, University of CanterburyPrivate Bag, 4800, Christchurch, 8140, New Zealand
| | - James D Bever
- Department of Biology, Indiana UniversityBloomington, Indiana, 47405
| | - Peter H Thrall
- CSIRO Plant IndustryGPO Box 1600, Canberra, Australian Capital Territory, 2601, Australia
| | - Michael E Hochberg
- Université Montpellier II, Institut des Sciences de l'Evolution, UMR 5554Place Eugène Bataillon, 34095, Montpellier, CEDEX 05, France
- Santa Fe InstituteSanta Fe, New Mexico, 87501
- Wissenschaftskolleg zu BerlinBerlin, 14193, Germany
| |
Collapse
|
89
|
General trends in selectively driven codon usage biases in the domain archaea. J Mol Evol 2014; 79:105-10. [PMID: 25239794 DOI: 10.1007/s00239-014-9647-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Since the advent of rapid techniques for sequencing DNA in the mid 70's, it became clear that all codons coding for the same amino acid are not used according to neutral expectations. In the last 30 years, several theories were proposed for explaining this fact. However, the most important concepts were the result of analyses carried out in Bacteria, and unicellular and multicellular eukaryotes like mammals (in other words, in two of the three Domains of life). In this communication, we study the main forces that shape codon usage in Archaeae under an evolutionary perspective. This is important because, as known, the orthologous genes related with the informational system in this Domain (replication, transcription and translation) are more similar to eukaryotes than to Bacteria. Our results show that the effect of selection acting at the level of translation is present in the Domain but mainly restricted to only a phylum (Euryarchaeota) and therefore is not as extended as in Bacteria. Besides, we describe the phylogenetic distribution of translational optimal codons and estimate the effect of selection acting at the level of accuracy. Finally, we discuss these results under some peculiarities that characterize this Domain.
Collapse
|
90
|
Environmental factors shape the community of symbionts in the hoopoe uropygial gland more than genetic factors. Appl Environ Microbiol 2014; 80:6714-23. [PMID: 25172851 DOI: 10.1128/aem.02242-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Exploring processes of coevolution of microorganisms and their hosts is a new imperative for life sciences. If bacteria protect hosts against pathogens, mechanisms facilitating the intergenerational transmission of such bacteria will be strongly selected by evolution. By disentangling the diversity of bacterial strains from the uropygium of hoopoes (Upupa epops) due to genetic relatedness or to a common environment, we explored the importance of horizontal (from the environment) and vertical (from parents) acquisition of antimicrobial-producing symbionts in this species. For this purpose, we compared bacterial communities among individuals in nonmanipulated nests; we also performed a cross-fostering experiment using recently hatched nestlings before uropygial gland development and some nestlings that were reared outside hoopoe nests. The capacity of individuals to acquire microbial symbionts horizontally during their development was supported by our results, since cross-fostered nestlings share bacterial strains with foster siblings and nestlings that were not in contact with hoopoe adults or nests also developed the symbiosis. Moreover, nestlings could change some bacterial strains over the course of their stay in the nest, and adult females changed their bacterial community in different years. However, a low rate of vertical transmission was inferred, since genetic siblings reared in different nests shared more bacterial strains than they shared with unrelated nestlings raised in different nests. In conclusion, hoopoes are able to incorporate new symbionts from the environment during the development of the uropygium, which could be a selective advantage if strains with higher antimicrobial capacity are incorporated into the gland and could aid hosts in fighting against pathogenic and disease-causing microbes.
Collapse
|
91
|
Mayola A, Irazoki O, Martínez IA, Petrov D, Menolascina F, Stocker R, Reyes-Darias JA, Krell T, Barbé J, Campoy S. RecA protein plays a role in the chemotactic response and chemoreceptor clustering of Salmonella enterica. PLoS One 2014; 9:e105578. [PMID: 25147953 PMCID: PMC4141790 DOI: 10.1371/journal.pone.0105578] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 01/17/2023] Open
Abstract
The RecA protein is the main bacterial recombinase and the activator of the SOS system. In Escherichia coli and Salmonella enterica sv. Typhimurium, RecA is also essential for swarming, a flagellar-driven surface translocation mechanism widespread among bacteria. In this work, the direct interaction between RecA and the CheW coupling protein was confirmed, and the motility and chemotactic phenotype of a S. Typhimurium ΔrecA mutant was characterized through microfluidics, optical trapping, and quantitative capillary assays. The results demonstrate the tight association of RecA with the chemotaxis pathway and also its involvement in polar chemoreceptor cluster formation. RecA is therefore necessary for standard flagellar rotation switching, implying its essential role not only in swarming motility but also in the normal chemotactic response of S. Typhimurium.
Collapse
Affiliation(s)
- Albert Mayola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Oihane Irazoki
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | | | - Dmitri Petrov
- ICFO-Institut de Ciències Fotòniques, Castelldefels, Spain
| | - Filippo Menolascina
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roman Stocker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - José A. Reyes-Darias
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- * E-mail:
| |
Collapse
|
92
|
Youssef NH, Rinke C, Stepanauskas R, Farag I, Woyke T, Elshahed MS. Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum 'Diapherotrites'. ISME JOURNAL 2014; 9:447-60. [PMID: 25083931 DOI: 10.1038/ismej.2014.141] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/22/2014] [Accepted: 07/01/2014] [Indexed: 11/09/2022]
Abstract
The archaeal phylum 'Diapherotrites' was recently proposed based on phylogenomic analysis of genomes recovered from an underground water seep in an abandoned gold mine (Homestake mine in Lead, SD, USA). Here we present a detailed analysis of the metabolic capabilities and genomic features of three single amplified genomes (SAGs) belonging to the 'Diapherotrites'. The most complete of the SAGs, Candidatus 'Iainarchaeum andersonii' (Cand. IA), had a small genome (∼1.24 Mb), short average gene length (822 bp), one ribosomal RNA operon, high coding density (∼90.4%), high percentage of overlapping genes (27.6%) and low incidence of gene duplication (2.16%). Cand. IA genome possesses limited catabolic capacities that, nevertheless, could theoretically support a free-living lifestyle by channeling a narrow range of substrates such as ribose, polyhydroxybutyrate and several amino acids to acetyl-coenzyme A. On the other hand, Cand. IA possesses relatively well-developed anabolic capabilities, although it remains auxotrophic for several amino acids and cofactors. Phylogenetic analysis suggests that the majority of Cand. IA anabolic genes were acquired from bacterial donors via horizontal gene transfer. We thus propose that members of the 'Diapherotrites' have evolved from an obligate symbiotic ancestor by acquiring anabolic genes from bacteria that enabled independent biosynthesis of biological molecules previously acquired from symbiotic hosts. 'Diapherotrites' 16S rRNA genes exhibit multiple mismatches with the majority of archaeal 16S rRNA primers, a fact that could be responsible for their observed rarity in amplicon-generated data sets. The limited substrate range, complex growth requirements and slow growth rate predicted could be responsible for its refraction to isolation.
Collapse
Affiliation(s)
- Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | | | | | - Ibrahim Farag
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
93
|
Russell JA, Dubilier N, Rudgers JA. Nature's microbiome: introduction. Mol Ecol 2014; 23:1225-1237. [PMID: 24628935 DOI: 10.1111/mec.12676] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 01/18/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
94
|
Barve A, Hosseini SR, Martin OC, Wagner A. Historical contingency and the gradual evolution of metabolic properties in central carbon and genome-scale metabolisms. BMC SYSTEMS BIOLOGY 2014; 8:48. [PMID: 24758311 PMCID: PMC4022055 DOI: 10.1186/1752-0509-8-48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/15/2014] [Indexed: 11/13/2022]
Abstract
BACKGROUND A metabolism can evolve through changes in its biochemical reactions that are caused by processes such as horizontal gene transfer and gene deletion. While such changes need to preserve an organism's viability in its environment, they can modify other important properties, such as a metabolism's maximal biomass synthesis rate and its robustness to genetic and environmental change. Whether such properties can be modulated in evolution depends on whether all or most viable metabolisms - those that can synthesize all essential biomass precursors - are connected in a space of all possible metabolisms. Connectedness means that any two viable metabolisms can be converted into one another through a sequence of single reaction changes that leave viability intact. If the set of viable metabolisms is disconnected and highly fragmented, then historical contingency becomes important and restricts the alteration of metabolic properties, as well as the number of novel metabolic phenotypes accessible in evolution. RESULTS We here computationally explore two vast spaces of possible metabolisms to ask whether viable metabolisms are connected. We find that for all but the simplest metabolisms, most viable metabolisms can be transformed into one another by single viability-preserving reaction changes. Where this is not the case, alternative essential metabolic pathways consisting of multiple reactions are responsible, but such pathways are not common. CONCLUSIONS Metabolism is thus highly evolvable, in the sense that its properties could be fine-tuned by successively altering individual reactions. Historical contingency does not strongly restrict the origin of novel metabolic phenotypes.
Collapse
Affiliation(s)
- Aditya Barve
- Institute of Evolutionary Biology and Environmental Sciences, University of Zurich, Bldg. Y27, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Bioinformatics, Quartier Sorge, Batiment Genopode, 1015 Lausanne, Switzerland
| | - Sayed-Rzgar Hosseini
- Institute of Evolutionary Biology and Environmental Sciences, University of Zurich, Bldg. Y27, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Bioinformatics, Quartier Sorge, Batiment Genopode, 1015 Lausanne, Switzerland
- Computational Biology and Bioinformatics Master’s Program, Department of Computer Science, ETH Zurich, Universitätsstrasse. 6, CH-8092 Zurich, Switzerland
| | - Olivier C Martin
- INRA, UMR 0320/UMR 8120 Génétique Végétale, Univ Paris-Sud, F-91190 Gif-sur-Yvette, France
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Sciences, University of Zurich, Bldg. Y27, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Bioinformatics, Quartier Sorge, Batiment Genopode, 1015 Lausanne, Switzerland
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
95
|
Fukui S. Evolution of symbiosis with resource allocation from fecundity to survival. Naturwissenschaften 2014; 101:437-46. [PMID: 24744057 PMCID: PMC4012156 DOI: 10.1007/s00114-014-1175-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/05/2014] [Accepted: 04/06/2014] [Indexed: 11/30/2022]
Abstract
Symbiosis is one of the most fundamental relationships between or among organisms and includes parasitism (which has negative effects on the fitness of the interacting partner), commensalism (no effect), and mutualism (positive effects). The effects of these interactions are usually assumed to influence a single component of a species’ fitness, either survival or fecundity, even though in reality the interaction can simultaneously affect both of these components. I used a dual lattice model to investigate the process of evolution of mutualistic symbiosis in the presence of interactive effects on both survival and fecundity. I demonstrate that a positive effect on survival and a negative effect on fecundity are key to the establishment of mutualism. Furthermore, both the parasitic and the mutualistic behaviour must carry large costs for mutualism to evolve. This helps develop a new understanding of symbiosis as a function of resource allocation, in which resources are shifted from fecundity to survival. The simultaneous establishment of mutualism from parasitism never occurs in two species, but can do so in one of the species as long as the partner still behaves parasitically. This suggests that one of the altruistic behaviours in a mutualistic unit consisting of two species must originate as a parasitic behaviour.
Collapse
Affiliation(s)
- Shin Fukui
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan,
| |
Collapse
|
96
|
Novikova O, Topilina N, Belfort M. Enigmatic distribution, evolution, and function of inteins. J Biol Chem 2014; 289:14490-7. [PMID: 24695741 DOI: 10.1074/jbc.r114.548255] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inteins are mobile genetic elements capable of self-splicing post-translationally. They exist in all three domains of life including in viruses and bacteriophage, where they have a sporadic distribution even among very closely related species. In this review, we address this anomalous distribution from the point of view of the evolution of the host species as well as the intrinsic features of the inteins that contribute to their genetic mobility. We also discuss the incidence of inteins in functionally important sites of their host proteins. Finally, we describe instances of conditional protein splicing. These latter observations lead us to the hypothesis that some inteins have adapted to become sensors that play regulatory roles within their host protein, to the advantage of the organism in which they reside.
Collapse
Affiliation(s)
- Olga Novikova
- From the Department of Biological Sciences and RNA Institute, University at Albany, The State University of New York, Albany, New York 12222
| | - Natalya Topilina
- From the Department of Biological Sciences and RNA Institute, University at Albany, The State University of New York, Albany, New York 12222
| | - Marlene Belfort
- From the Department of Biological Sciences and RNA Institute, University at Albany, The State University of New York, Albany, New York 12222
| |
Collapse
|
97
|
Zug R, Hammerstein P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev Camb Philos Soc 2014; 90:89-111. [PMID: 24618033 DOI: 10.1111/brv.12098] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
Abstract
Wolbachia are the most abundant bacterial endosymbionts among arthropods. Although maternally inherited, they do not conform to the widespread view that vertical transmission inevitably selects for beneficial symbionts. Instead, Wolbachia are notorious for their reproductive parasitism which, although lowering host fitness, ensures their spread. However, even for reproductive parasites it can pay to enhance host fitness. Indeed, there is a recent upsurge of reports on Wolbachia-associated fitness benefits. Therefore, the question arises how such instances of mutualism are related to the phenotypes of reproductive parasitism. Here, we review the evidence of Wolbachia mutualisms in arthropods, including both facultative and obligate relationships, and critically assess their biological relevance. Although many studies report anti-pathogenic effects of Wolbachia, few actually prove these effects to be relevant to field conditions. We further show that Wolbachia frequently have beneficial and detrimental effects at the same time, and that reproductive manipulations and obligate mutualisms may share common mechanisms. These findings undermine the idea of a clear-cut distinction between Wolbachia mutualism and parasitism. In general, both facultative and obligate mutualisms can have a strong, and sometimes unforeseen, impact on the ecology and evolution of Wolbachia and their arthropod hosts. Acknowledging this mutualistic potential might be the key to a better understanding of some unresolved issues in the study of Wolbachia-host interactions.
Collapse
Affiliation(s)
- Roman Zug
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115, Berlin, Germany
| | | |
Collapse
|
98
|
Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC, Gibbs RA, Moran NA. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol 2014; 31:857-71. [PMID: 24398322 DOI: 10.1093/molbev/msu004] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bacteria confined to intracellular environments experience extensive genome reduction. In extreme cases, insect endosymbionts have evolved genomes that are so gene-poor that they blur the distinction between bacteria and endosymbiotically derived organelles such as mitochondria and plastids. To understand the host's role in this extreme gene loss, we analyzed gene content and expression in the nuclear genome of the psyllid Pachypsylla venusta, a sap-feeding insect that harbors an ancient endosymbiont (Carsonella) with one of the most reduced bacterial genomes ever identified. Carsonella retains many genes required for synthesis of essential amino acids that are scarce in plant sap, but most of these biosynthetic pathways have been disrupted by gene loss. Host genes that are upregulated in psyllid cells housing Carsonella appear to compensate for endosymbiont gene losses, resulting in highly integrated metabolic pathways that mirror those observed in other sap-feeding insects. The host contribution to these pathways is mediated by a combination of native eukaryotic genes and bacterial genes that were horizontally transferred from multiple donor lineages early in the evolution of psyllids, including one gene that appears to have been directly acquired from Carsonella. By comparing the psyllid genome to a recent analysis of mealybugs, we found that a remarkably similar set of functional pathways have been shaped by independent transfers of bacterial genes to the two hosts. These results show that horizontal gene transfer is an important and recurring mechanism driving coevolution between insects and their bacterial endosymbionts and highlight interesting similarities and contrasts with the evolutionary history of mitochondria and plastids.
Collapse
|
99
|
Frequent gene fissions associated with human pathogenic bacteria. Genomics 2014; 103:65-75. [DOI: 10.1016/j.ygeno.2014.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/21/2014] [Accepted: 02/01/2014] [Indexed: 01/05/2023]
|
100
|
Sabath N, Ferrada E, Barve A, Wagner A. Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biol Evol 2013; 5:966-77. [PMID: 23563968 PMCID: PMC3673621 DOI: 10.1093/gbe/evt050] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prokaryotic genomes are small and compact. Either this feature is caused by neutral evolution or by natural selection favoring small genomes—genome streamlining. Three separate prior lines of evidence argue against streamlining for most prokaryotes. We find that the same three lines of evidence argue for streamlining in the genomes of thermophile bacteria. Specifically, with increasing habitat temperature and decreasing genome size, the proportion of genomic DNA in intergenic regions decreases. Furthermore, with increasing habitat temperature, generation time decreases. Genome-wide selective constraints do not decrease as in the reduced genomes of host-associated species. Reduced habitat variability is not a likely explanation for the smaller genomes of thermophiles. Genome size may be an indirect target of selection due to its association with cell volume. We use metabolic modeling to demonstrate that known changes in cell structure and physiology at high temperature can provide a selective advantage to reduce cell volume at high temperatures.
Collapse
Affiliation(s)
- Niv Sabath
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|