51
|
Abstract
Pharmacogenomics requires the integration and analysis of genomic, molecular, cellular, and clinical data, and it thus offers a remarkable set of challenges to biomedical informatics. These include infrastructural challenges such as the creation of data models and databases for storing these data, the integration of these data with external databases, the extraction of information from natural language text, and the protection of databases with sensitive information. There are also scientific challenges in creating tools to support gene expression analysis, three-dimensional structural analysis, and comparative genomic analysis. In this review, we summarize the current uses of informatics within pharmacogenomics and show how the technical challenges that remain for biomedical informatics are typical of those that will be confronted in the postgenomic era.
Collapse
Affiliation(s)
- Russ B Altman
- Stanford Medical Informatics, Stanford, California 94305-5479, USA.
| | | |
Collapse
|
52
|
Abstract
The advent of whole-genome data resources--not only sequence but also other genome-scale data collections such as gene expression, protein interaction, and genetic variation--is having two marked, complementary effects on the relatively new discipline of bioinformatics. First, the veritable flood of data is creating a need and demand for new tools for dealing adequately with the deluge, and, second, the unprecedented extent, diversity, and impending completeness of the data sets are creating opportunities for new approaches to discovery based on computational methods.
Collapse
Affiliation(s)
- D B Searls
- Bioinformatics Department, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| |
Collapse
|
53
|
Schvartz I, Kreizman T, Brumfeld V, Gechtman Z, Seger D, Shaltiel S. The PKA phosphorylation of vitronectin: effect on conformation and function. Arch Biochem Biophys 2002; 397:246-52. [PMID: 11795878 DOI: 10.1006/abbi.2001.2699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitronectin (Vn) stabilizes the inhibitory form of plasminogen activator inhibitor-1 (PAI-1), an important modulator of fibrinolysis. We have previously reported that Vn is specifically phosphorylated by PKA (at Ser378), a kinase we have shown to be released from platelets upon their physiological activation. Here we describe the molecular consequences of this phosphorylation and show (by circular dichroism, and by phosphorylation with casein kinase II) that it acts by modulating the conformation of Vn. The PKA phosphorylation of Vn is enhanced in the presence of either PAI-1, or heparin, or both. This enhanced phosphorylation occurs exclusively on Ser378 as shown with the Vn mutants Ser378Ala and Ser378Glu. The binding of PKA phosphorylated Vn to immobilized PAI-1 and to immobilized plasminogen is shown to be lower than that of Vn. The evidence compiled here suggests that this phosphorylation of Vn can modulate plasminogen activation and consequently control fibrinolysis.
Collapse
Affiliation(s)
- Iris Schvartz
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
54
|
Krupa A, Srinivasan N. The repertoire of protein kinases encoded in the draft version of the human genome: atypical variations and uncommon domain combinations. Genome Biol 2002; 3:RESEARCH0066. [PMID: 12537555 PMCID: PMC151168 DOI: 10.1186/gb-2002-3-12-research0066] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Revised: 09/25/2002] [Accepted: 10/11/2002] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Phosphorylation by protein kinases is central to cellular signal transduction. Abnormal functioning of kinases has been implicated in developmental disorders and malignancies. Their activity is regulated by second messengers and by the binding of associated domains, which are also influential in translocating the catalytic component to their substrate sites, in mediating interaction with other proteins and carrying out their biological roles. RESULT Using sensitive profile-search methods and manual analysis, the human genome has been surveyed for protein kinases. A set of 448 sequences, which show significant similarity to protein kinases and contain the critical residues essential for kinase function, have been selected for an analysis of domain combinations after classifying the kinase domains into subfamilies. The unusual domain combinations in particular kinases suggest their involvement in ubiquitination pathways and alternative modes of regulation for mitogen-activated protein kinase kinases (MAPKKs) and cyclin-dependent kinase (CDK)-like kinases. Previously unexplored kinases have been implicated in osteoblast differentiation and embryonic development on the basis of homology with kinases of known functions from other organisms. Kinases potentially unique to vertebrates are involved in highly evolved processes such as apoptosis, protein translation and tyrosine kinase signaling. In addition to coevolution with the kinase domain, duplication and recruitment of non-catalytic domains is apparent in signaling domains such as the PH, DAG-PE, SH2 and SH3 domains. CONCLUSIONS Expansion of the functional repertoire and possible existence of alternative modes of regulation of certain kinases is suggested by their uncommon domain combinations. Experimental verification of the predicted implications of these kinases could enhance our understanding of their biological roles.
Collapse
Affiliation(s)
- A Krupa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - N Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
55
|
Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D. BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci 2002; 27:54-6. [PMID: 11796225 DOI: 10.1016/s0968-0004(01)02027-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BRENDA (BRaunschweig ENzyme DAtabase), founded in 1987 by Dietmar Schomburg, is a comprehensive protein function database, containing enzymatic and metabolic information extracted from the primary literature. Presently, the database holds data on more than 40 000 enzymes and 4460 different organisms, and includes information about enzyme-ligand relationships with numerous chemical compounds. The collection of molecular and biochemical information in BRENDA provides a fundamental resource for research in biotechnology, pharmacology, medicinal diagnostics, enzyme mechanics, and metabolism. BRENDA is accessible free of charge to the academic community at http://www.brenda.uni-koeln.de/; commercial users need a license available from http://www.science-factory.com/
Collapse
Affiliation(s)
- Ida Schomburg
- University of Cologne, Institute of Biochemistry, Zülpicher Strasse 47, 50674, Köln, Germany
| | | | | | | | | | | |
Collapse
|
56
|
Evans DB, Traxler P, García-Echeverría C. Molecular approaches to receptors as targets for drug discovery. EXS 2001; 89:123-39. [PMID: 10997286 DOI: 10.1007/978-3-0348-8393-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Many receptors have been selected as viable drug discovery targets. One particular class of receptors that have received much interest and so far relatively good success are the receptor protein tyrosine kinases (RPTKs). Typically, RPTKs are activated following the binding of the peptide growth factor ligand to its receptor. The RPTKs play crucial roles in signal transduction pathways that regulate a number of cellular functions, such as cell differentiation and proliferation, both under normal physiological conditions as well as in a variety of pathological disorders. A variety of different tumour types have been shown to have dysfunctional RPTKs, either as a result of excess production of the growth factor, the receptor or both, or via mutations in the RPTKs structure. Irrespective of the cause, this leads to the over-activity of the particular RPTK system and in turn to the aberrant and inappropriate cellular signalling within the tumour cell. RPTKs are attractive targets in the search for therapeutic agents, not only against cancers but also against many other disease indications. Although an ever-increasing number of RPTKs have been selected as viable molecular targets for drug discovery programmes, four examples will be covered in this article. These are the epidermal growth factor receptor (EGF-R), platelet-derived growth factor receptor (PDGF-R), fibroblast growth factor receptor (FGR-R) and vascular endothelial growth factor receptor (VEGF-R), with the main emphasis of interest being on their role in oncology.
Collapse
Affiliation(s)
- D B Evans
- Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
57
|
Hannenhalli SS, Russell RB. Analysis and prediction of functional sub-types from protein sequence alignments. J Mol Biol 2000; 303:61-76. [PMID: 11021970 DOI: 10.1006/jmbi.2000.4036] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increasing number and diversity of protein sequence families requires new methods to define and predict details regarding function. Here, we present a method for analysis and prediction of functional sub-types from multiple protein sequence alignments. Given an alignment and set of proteins grouped into sub-types according to some definition of function, such as enzymatic specificity, the method identifies positions that are indicative of functional differences by comparison of sub-type specific sequence profiles, and analysis of positional entropy in the alignment. Alignment positions with significantly high positional relative entropy correlate with those known to be involved in defining sub-types for nucleotidyl cyclases, protein kinases, lactate/malate dehydrogenases and trypsin-like serine proteases. We highlight new positions for these proteins that suggest additional experiments to elucidate the basis of specificity. The method is also able to predict sub-type for unclassified sequences. We assess several variations on a prediction method, and compare them to simple sequence comparisons. For assessment, we remove close homologues to the sequence for which a prediction is to be made (by a sequence identity above a threshold). This simulates situations where a protein is known to belong to a protein family, but is not a close relative of another protein of known sub-type. Considering the four families above, and a sequence identity threshold of 30 %, our best method gives an accuracy of 96 % compared to 80 % obtained for sequence similarity and 74 % for BLAST. We describe the derivation of a set of sub-type groupings derived from an automated parsing of alignments from PFAM and the SWISSPROT database, and use this to perform a large-scale assessment. The best method gives an average accuracy of 94 % compared to 68 % for sequence similarity and 79 % for BLAST. We discuss implications for experimental design, genome annotation and the prediction of protein function and protein intra-residue distances.
Collapse
Affiliation(s)
- S S Hannenhalli
- Bioinformatics Research Group, SmithKline Beecham Pharmaceuticals Research & Development, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | | |
Collapse
|
58
|
Hammond RW, Zhao Y. Characterization of a tomato protein kinase gene induced by infection by Potato spindle tuber viroid. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:903-10. [PMID: 10975647 DOI: 10.1094/mpmi.2000.13.9.903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Viroids--covalently closed, circular RNA molecules in the size range of 250 to 450 nucleotides-are the smallest known infectious agents and cause a number of diseases of crop plants. Viroids do not encode proteins and replicate within the nucleus without a helper virus. In many cases, viroid infection results in symptoms of stunting, epinasty, and vein clearing. In our study of the molecular basis of the response of tomato cv. Rutgers to infection by Potato spindle tuber viroid (PSTVd), we have identified a specific protein kinase gene, pkv, that is transcriptionally activated in plants infected with either the intermediate or severe strain of PSTVd, at a lower level in plants inoculated with a mild strain, and not detectable in mock-inoculated plants. A full-length copy of the gene encoding the 55-kDa PKV (protein kinase viroid)-induced protein has been isolated and sequence analysis revealed significant homologies to cyclic nucleotide-dependent protein kinases. Although the sequence motifs in the catalytic domain suggest that it is a serine/threonine protein kinase, the recombinant PKV protein autophosphorylates in vitro on serine and tyrosine residues, suggesting that it is a putative member of the class of dual-specificity protein kinases.
Collapse
Affiliation(s)
- R W Hammond
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| | | |
Collapse
|
59
|
Rikke BA, Murakami S, Johnson TE. Paralogy and orthology of tyrosine kinases that can extend the life span of Caenorhabditis elegans. Mol Biol Evol 2000; 17:671-83. [PMID: 10779528 DOI: 10.1093/oxfordjournals.molbev.a026346] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Modification of any one of three transmembrane protein tyrosine kinase (PTK) genes, old-1, old-2 (formerly tkr-1 and tkr-2, respectively), and daf-2 can extend the mean and maximum life span of the nematode Caenorhabditis elegans. To identify paralogs and orthologs, we delineated relationships between these three PTKs and all known transmembrane PTKs and all known mammalian nontransmembrane PTKs using molecular phylogenetics. The tree includes a number of invertebrate receptor PTKs and a novel mammalian receptor PTK (inferred from the expressed-sequence tag database) that have not previously been analyzed. old-1 and old-2 were found to be members of a surprisingly large C. elegans PTK family having 16 members. Interestingly, only four members of this transmembrane family appeared to have receptor domains (immunoglobulin-like in each case). The C-terminal domain of this family was found to have a unique sequence motif that could be important for downstream signaling. Among mammalian PTKs, the old-1/old-2 family appeared to be most closely related to the Pdgfr, Fgfr, Ret, and Tie/Tek families. However, these families appeared to have split too early from the old-1/old-2 family to be orthologs, suggesting that a mammalian ortholog could yet be discovered. An extensive search of the expressed-sequence tag database suggested no additional candidate orthologs. In contrast to old-1 and old-2, daf-2 had no C. elegans paralogs. Although daf-2 was most closely related to the mammalian insulin receptor family, a hydra insulin receptor-like sequence suggested that daf-2 might not be an ortholog of the insulin receptor family. Among PTKs, the old-1/old-2 family and daf-2 were not particularly closely related, raising the possibility that other PTK families might extend life span. On a more general note, our survey of the expressed-sequence tag database suggested that few, if any, additional mammalian PTK families are likely to be discovered. The one novel family that was discovered could represent a novel oncogene family, given the prevalence of oncogenes among PTKs. Finally, the PTK tree was consistent with nematodes and fruit flies being as divergent as nematodes and mammals, suggesting that life extension mechanisms shared by nematodes and fruit flies would be reasonable candidates for extending mammalian life spans.
Collapse
Affiliation(s)
- B A Rikke
- Institute for Behavioral Genetics, University of Colorado, Boulder 80309-0447, USA.
| | | | | |
Collapse
|
60
|
Bridge DM, Stover NA, Steele RE. Expression of a novel receptor tyrosine kinase gene and a paired-like homeobox gene provides evidence of differences in patterning at the oral and aboral ends of hydra. Dev Biol 2000; 220:253-62. [PMID: 10753514 DOI: 10.1006/dbio.2000.9653] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axial patterning of the aboral end of the hydra body column was examined using expression data from two genes. One, shin guard, is a novel receptor protein-tyrosine kinase gene expressed in the ectoderm of the peduncle, the end of the body column adjacent to the basal disk. The other gene, manacle, is a paired-like homeobox gene expressed in differentiating basal disk ectoderm. During regeneration of the aboral end, expression of manacle precedes that of shin guard. This result is consistent with a requirement for induction of peduncle tissue by basal disk tissue. Our data contrast with data on regeneration of the oral end. During oral end regeneration, markers for tissue of the tentacles, which lie below the extreme oral end (the hypostome), are detected first. Later, markers for the hypostome itself appear at the regenerating tip, with tentacle markers displaced to the region below. Additional evidence that tissue can form basal disk without passing through a stage as peduncle tissue comes from LiCl-induced formation of patches of ectopic basal disk tissue. While manacle is ectopically expressed during formation of basal disk patches, shin guard is not. The genes examined also provide new information on development of the aboral end in buds. Although adult hydra are radially symmetrical, expression of both genes in the bud's aboral end is initially asymmetrical, appearing first on the side of the bud closest to the parent's basal disk. The asymmetry can be explained by differences in positional information in the body column tissue that evaginates to form a bud. As predicted by this hypothesis, grafts reversing the orientation of evaginating body column tissue also reverse the orientation of asymmetrical gene expression.
Collapse
Affiliation(s)
- D M Bridge
- Department of Biological Chemistry and Developmental Biology Center, University of California, Irvine, California 92697-1700, USA.
| | | | | |
Collapse
|
61
|
Chaillot D, Declerck N, Niefind K, Schomburg D, Chardot T, Meunier JC. Mutation of recombinant catalytic subunit alpha of the protein kinase CK2 that affects catalytic efficiency and specificity. PROTEIN ENGINEERING 2000; 13:291-8. [PMID: 10810161 DOI: 10.1093/protein/13.4.291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In order to understand better the structural and functional relations between protein kinase CK2 catalytic subunit, the triphosphate moiety of ATP, the catalytic metal and the peptidic substrate, we built a structural model of Yarrowia lipolytica protein kinase CK2 catalytic subunit using the recently solved three-dimensional structure of the maize enzyme and the structure of cAMP-dependent protein kinase peptidic inhibitor (1CDK) as templates. The overall structure of the catalytic subunit is close to the structure solved by Niefind et al. It comprises two lobes, which move relative to each other. The peptide used as substrate is tightly bound to the enzyme, at specific locations. Molecular dynamic calculations in combination with the study of the structural model led us to identify amino acid residues close to the triphosphate moiety of ATP and a residue sufficiently far from the peptide that could be mutated so as to modify the specificity of the enzyme. Site-directed mutagenesis was used to replace by charged residues both glycine-48, a residue located within the glycine-rich loop, involved in binding of ATP phosphate moiety, and glycine-177, a residue close to the active site. Kinetic properties of purified wild-type and mutated subunits were studied with respect to ATP, MgCl(2) and protein kinase CK2 specific peptide substrates. The catalytic efficiency of the G48D mutant increased by factors of 4 for ATP and 17.5 for the RRRADDSDDDDD peptide. The mutant G48K had a low activity with ATP and no detectable activity with peptide substrates and was also inhibited by magnesium. An increased velocity of ADP release by G48D and the building of an electrostatic barrier between ATP and the peptidic substrate in G48K could explain these results. The kinetic properties of the mutant G177K with ATP were not affected, but the catalytic efficiency for the RRRADDSDDDDD substrate increased sixfold. Lysine 177 could interact with the lysine-rich cluster involved in the specificity of protein kinase CK2 towards acidic substrate, thereby increasing its activity.
Collapse
Affiliation(s)
- D Chaillot
- Laboratoire de Chimie Biologique INRA INA-PG, Centre de Biotechnologie Agro-Industrielle, F-78850 Thiverval-Grignon, France
| | | | | | | | | | | |
Collapse
|
62
|
Kroiher M, Reidling JC, Steele RE. A gene whose major transcript encodes only the substrate-binding domain of a protein-tyrosine kinase. Gene 2000; 241:317-24. [PMID: 10675044 DOI: 10.1016/s0378-1119(99)00474-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have identified a novel protein-tyrosine kinase gene family in the simple multicellular animal Hydra vulgaris that consists of at least three members. Two of the genes encode receptor protein-tyrosine kinases. The third member of the family is unusual in that in non-sexual animals, the only transcripts that it produces encode polypeptides lacking all or nearly all of the ATP-binding lobe. Characterization of multiple cDNA clones and hybridization mapping of genomic DNA indicate that the gene, which we have termed Hinterteil (Hint), undergoes alternative cis-splicing, alternative trans-splicing, and alternative polyadenylation. In-situ hybridization analysis shows that expression of the gene is upregulated during spermatogenesis. Sexual males also produce an additional Hint transcript that is larger than the transcript seen in non-sexual animals, but still not large enough to encode a receptor.
Collapse
Affiliation(s)
- M Kroiher
- Zoologisches Institut, Universität zu Köln, Cologne, Germany
| | | | | |
Collapse
|
63
|
Abstract
ooTFD (object-oriented Transcription Factors Database) is an object-oriented successor to TFD. This database is aimed at capturing information regarding the polypeptide interactions which comprise and define the properties of transcription factors. ooTFD contains information about transcription factor binding sites, as well as composite relationships within transcription factors, which frequently occur as multisubunit proteins that form a complex interface to cellular processes outside the transcription machinery through protein-protein interactions. In the past year, a few additions and changes were made to this database and associated tools, which are accessible through the IFTI-MIRAGE web site at http://www.ifti.org/
Collapse
Affiliation(s)
- D Ghosh
- Institute for Transcriptional Informatics, PO Box 2556, Pittsburgh, PA 15230, USA.
| |
Collapse
|
64
|
Abstract
Several tyrosine and serine/threonine protein kinases have emerged in the last few years as attractive targets in the search for new therapeutic agents being applicable in many different disease indications. Initially, inhibition of these protein kinases by ATP site-directed inhibitors was considered less prone to success, but medicinal chemists from both academia and industry have been able to impart potency and selectivity to a limited number of scaffolds by modulating and fine-tuning the interactions of the modified template with the ATP binding site of the selected kinase. The chemical templates that have been used in the synthesis of ATP site-directed protein kinase inhibitors are reviewed with emphasis on the kinase inhibitors that have entered or are about to enter clinical trials. Examples have been selected to illustrate how structure-based design approaches and new methods to increase compound diversity have had an impact on this area of research.
Collapse
|
65
|
Smith CM. The protein kinase resource and other bioinformation resources. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:525-33. [PMID: 10354712 DOI: 10.1016/s0079-6107(98)00046-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Internet, especially the World Wide Web has transformed how today's researchers communicate, share information, and analyze their data. Unfortunately, the vast number of online databases, information resources and analytical tools, some of them masked by unfamiliar titles and Internet addresses, has hindered their universal and effective use by the research community. To overcome these hurdles, subject- and function-specific compendiums are now available which organize information and online tolls in a manner familiar to the biological researcher. The Protein Kinase Resource and the CMS Molecular Biology Resource are two excellent examples of web compendia.
Collapse
Affiliation(s)
- C M Smith
- San Diego Supercomputer Center, University of California 92093-0505, USA
| |
Collapse
|
66
|
Abstract
The Kinase Inhibitor Database is a small specialized database dedicated to the gathering of information on protein kinase inhibitors. The database is accessible through the World Wide Web system and gives access to structural and bibliographic information on protein kinase inhibitors. The data in the database will be collected and submitted by researchers working in the kinase inhibitor field. The submitted data will be checked by the curator of the database before entry.
Collapse
Affiliation(s)
- O Collin
- Station Biologique de Roscoff, CNRS UPR 9042, Roscoff, Bretagne, France
| | | |
Collapse
|
67
|
Schenk PW, Snaar-Jagalska BE. Signal perception and transduction: the role of protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:1-24. [PMID: 10076047 DOI: 10.1016/s0167-4889(98)00178-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells can react to environmental changes by transduction of extracellular signals, to produce intracellular responses. Membrane-impermeable signal molecules are recognized by receptors, which are localized on the plasma membrane of the cell. Binding of a ligand can result in the stimulation of an intrinsic enzymatic activity of its receptor or the modulation of a transducing protein. The modulation of one or more intracellular transducing proteins can finally lead to the activation or inhibition of a so-called 'effector protein'. In many instances, this also results in altered gene expression. Phosphorylation by protein kinases is one of the most common and important regulatory mechanisms in signal transmission. This review discusses the non-channel transmembrane receptors and their downstream signaling, with special focus on the role of protein kinases.
Collapse
Affiliation(s)
- P W Schenk
- Section of Cell Biology, Institute of Molecular Plant Sciences, Leiden University, P.O. Box 9505, 2300 RA, Leiden, Netherlands
| | | |
Collapse
|
68
|
Cole LA, Zirngibl R, Craig AW, Jia Z, Greer P. Mutation of a highly conserved aspartate residue in subdomain IX abolishes Fer protein-tyrosine kinase activity. PROTEIN ENGINEERING 1999; 12:155-62. [PMID: 10195287 DOI: 10.1093/protein/12.2.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Before the structure of cAMP-dependent protein kinase had been solved, sequence alignments had already suggested that several highly conserved peptide motifs described as kinase subdomains I through XI might play some functional role in catalysis. Crystal structures of several members of the protein kinase superfamily have suggested that the nearly invariant aspartate residue within subdomain IX contributes to the conformational stability of the catalytic loop by forming hydrogen bonds with backbone amides within subdomain VI. However, substitution of this aspartate with alanine or threonine in some protein kinases have indicated that these interactions are not essential for activity. In contrast, we show here that conversion of this aspartate to arginine abolished the catalytic activity of the Fer protein-tyrosine kinase when expressed either in mammalian cells or in bacteria. Structural modeling predicted that the catalytic loop of the FerD743R mutant was disrupted by van der Waal's repulsion between the side chains of the substituted arginine residue in subdomain IX and histidine-683 in subdomain VI. The FerD743R mutant model predicted a shift in the peptide backbone of the catalytic loop, and an outward rotation of histidine-683 and arginine-684 side chains. However, the position and orientation of the presumptive catalytic base, aspartate-685, was not substantially changed. The proposed model explains how substitutions of some, but not all residues could be tolerated at this nearly invariant aspartate in kinase subdomain IX.
Collapse
Affiliation(s)
- L A Cole
- Cancer Research Laboratories, Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
69
|
Leonard CJ, Aravind L, Koonin EV. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. Genome Res 1998; 8:1038-47. [PMID: 9799791 DOI: 10.1101/gr.8.10.1038] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The central role of serine/threonine and tyrosine protein kinases in signal transduction and cellular regulation in eukaryotes is well established and widely documented. Considerably less is known about the prevalence and role of these protein kinases in bacteria and archaea. In order to examine the evolutionary origins of the eukaryotic-type protein kinase (ePK) superfamily, we conducted an extensive analysis of the proteins encoded by the completely sequenced bacterial and archaeal genomes. We detected five distinct families of known and predicted putative protein kinases with representatives in bacteria and archaea that share a common ancestry with the eukaryotic protein kinases. Four of these protein families have not been identified previously as protein kinases. From the phylogenetic distribution of these families, we infer the existence of an ancestral protein kinase(s) prior to the divergence of eukaryotes, bacteria, and archaea.
Collapse
Affiliation(s)
- C J Leonard
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 USA
| | | | | |
Collapse
|