51
|
Keppler M, Zegrocka O, Strekowski L, Fox KR. DNA triple helix stabilisation by a naphthylquinoline dimer. FEBS Lett 1999; 447:223-6. [PMID: 10214950 DOI: 10.1016/s0014-5793(99)00284-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have used DNase I footprinting to examine the effect of a novel naphthylquinoline dimer, designed as a triplex-specific bis-intercalator, on the stability of intermolecular DNA triplexes. We find that this compound efficiently promotes triplex formation between the 9-mer oligonucleotide 5'-TTTTTTCTT and its oligopurine duplex target at concentrations as low as 0.1 microM, enhancing the triplex stability by at least 1000-fold. This compound, which is the first reported example of a triplex bis-intercalator, is about 30 times more potent than the simple monofunctional ligand.
Collapse
Affiliation(s)
- M Keppler
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, UK
| | | | | | | |
Collapse
|
52
|
Asensio JL, Brown T, Lane AN. Solution conformation of a parallel DNA triple helix with 5' and 3' triplex-duplex junctions. Structure 1999; 7:1-11. [PMID: 10368268 DOI: 10.1016/s0969-2126(99)80004-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Polypurine x polypyrimidine sequences of DNA can form parallel triple helices via Hoogsteen hydrogen bonds with a third DNA strand that is complementary to the purine strand. The triplex prevents transcription and could therefore potentially be used to regulate specific genes. The determination of the structures of triplex-duplex junctions can help us to understand the structural basis of specificity, and aid in the design of optimal antigene oligonucleotides. RESULTS The solution structures of the junction triplexes d(GAGAGACGTA)-X-(TACGTCTCTC)-X-(CTCTCT) and d(CTCTCT)-X-(TCTCTCAGTC)-X-(GACTGAGAGA) (where X is bis(octylphosphate) and nucleotides in the triplex regions are underlined) have been solved using nuclear magnetic resonance (NMR) spectroscopy. The structure is characterised by significant changes in the conformation of the purine residues, asymmetry of the 5' and 3' junctions, and variations in groove widths associated with the positive charge of the protonated cytosine residues in the third strand. The thermodynamic stability of triplexes with either a 5' or a 3'CH+ is higher than those with a terminal thymidine. CONCLUSIONS The observed sequence dependence of the triplex structure, and the distortions of the DNA at the 5' and 3' termini has implications for the design of optimal triplex-forming sequences, both in terms of the terminal bases and the importance of including positive charges in the third strand. Thus, triplex-stabilising ligands might be designed that can discriminate between TA x T-rich and CG x C+-rich sequences that depend not only on charge, but also on local groove widths. This could improve the stabilisation and specificity of antigene triplex formation.
Collapse
Affiliation(s)
- J L Asensio
- Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | |
Collapse
|
53
|
|
54
|
Rothman JH, Richards WG. Novel Hoogsteen-like bases for configurational recognition of the T-A base pair by DNA triplex formation. Biopolymers 1998. [DOI: 10.1002/(sici)1097-0282(199612)39:6<795::aid-bip6>3.0.co;2-q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
55
|
Xodo LE, Manzini G, Quadrifoglio F. Formation of stable DNA triple helices within the human bcr promoter at a critical oligopurine target interrupted in the middle by two adjacent pyrimidines. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:477-88. [PMID: 9918112 DOI: 10.1089/oli.1.1998.8.477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antigene strategies based on the use of triplex-forming oligonucleotides (TFO) as artificial repressors are constrained by the need for genomic targets with a polypurine-polypyrimidine [poly (R.Y)] DNA motif. In this study, we demonstrate that both A/G and G/T motif oligonucleotides recognize and bind strongly to a critical polypurine sequence interrupted in the middle by two adjacent cytosines and located in the promoter of the human bcr gene at the transcription initiation. The interaction between the designed TFO and this irregular poly (R.Y) target has been studied using a number of techniques, including electrophoretic mobility shift assay (EMSA), circular dichroism (CD), DNase I, and dimethyl sulfate (DMS) footprinting. Although CD shows that the 24-mer TFO self-aggregate in solution, they bind to the bcr target at 37 degrees C, forming stable triplexes that do not dissociate during electrophoretic runs performed up to 50 degrees C in 50 mM Tris-acetate, pH 7.4, 10 mM MgCl2, 50 mM NaCl (buffer A). We used EMSA to determine the equilibrium dissociation constants (Kd) for the reaction T <==> D + TFO at 37 degrees C, either in buffer A or in 50 mM Tris-acetate, pH 7.4, 10 mM MgCl2, 5 mM NaCl (buffer B). The triplexes were found to be more stable in buffer B, a behavior that can be rationalized in terms of monovalent and divalent cation competition for binding to DNA. Footprinting experiments showed that the TFO interact with the irregular poly (R.Y) target in a highly sequence-specific way and that the A/G motif oligonucleotide, juxtaposing T to the double CG inversions of the target, formed the most stable triplex (e.g., 1 microM TFO promoted strong footprints at 37 degrees C). These triplexes, except the one containing two A.C.G mismatched triads, are not destabilized under near physiologic conditions, that is, in 50 mM Tris-acetate, pH 7.4, 80 mM KCl, 20 mM NaCl, 2 mM spermidine. Moreover, we found that guanine N7 in T.C.G and guanine N7 in A.C.G are both accessible to DMS and that the first is less reactive than the second. In conclusion, the results of this study indicate that a critical sequence in the human ber promoter may be used as a potential binding site for TFO designed to repress artificially the transcription of the fused bcr/abl gene expressed in leukemia cells.
Collapse
Affiliation(s)
- L E Xodo
- Department of Biomedical Sciences and Technologies, School of Medicine, University of Udine, Italy
| | | | | |
Collapse
|
56
|
Bhaumik SR, Chary KV, Govil G. Molecular mechanics calculations on a triple stranded DNA involving C+.G-T and T.A+-C mismatched base triples. J Biomol Struct Dyn 1998; 16:527-34. [PMID: 10052611 DOI: 10.1080/07391102.1998.10508267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have carried out molecular modeling of a triple stranded pyrimidine(Y). purine(R): pyrimidine(Y) (where ':' refers to Watson-Crick and '.' to Hoogsteen bonding) DNA, formed by a homopurine (d-TGAGGAAAGAAGGT) and homo-pyrimidine (d-CTCCTTTCTTCC). Molecular mechanics calculations using NMR constraints have provided a detailed three dimensional structure of the triplex. The entire stretches of purine and the pyrimidine nucleotides have a conformation close to B-DNA. The three strands are held by the canonical C+.G:C and T.A:T hydrogen bonds. The structure also contains two mismatch C+.G-T and T.A+-C base triples which have been characterized for the first time. In the A+-C base-pair of the T.A+-C triple, both hydrogen donors are situated on the purine (A+(1N) and A+(6N)). We observe a unique hydrogen bonding interaction scheme in case of C+.G-T where one acceptor, G(60), is bonded to three donors (C+(3NH), C+(4NH2) and T(3NH)). Though the C+.G-T base triple is less stable than C+.G:C, it is significantly more stable than T.A:T. On the other hand, T.A+-C is as stable as the T.A:T base triad.
Collapse
Affiliation(s)
- S R Bhaumik
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|
57
|
Gowers DM, Fox KR. Triple helix formation at (AT)n adjacent to an oligopurine tract. Nucleic Acids Res 1998; 26:3626-33. [PMID: 9685475 PMCID: PMC147756 DOI: 10.1093/nar/26.16.3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have used DNase I footprinting to investigate the recognition of (AT) n tracts in duplex DNA using GT-containing oligonucleotides designed to form alternating G.TA and T.AT triplets. Previous studies have shown that the formation of these complexes is facilitated by anchoring the triplex with a block of adjacent T.AT triplets, i.e. using T11(TG)6to recognize the target A11(AT)6. (AT)6T11. In the present study we have examined how the stability of these complexes is affected by the length of either the T.AT tract or the region of alternating G.TA and T.AT triplets, using oligonucleotides of type T x (TG) y to recognize the sequence A11(AT)11. We find that successful triplex formation at (AT)n (n = 3, 6 or 11) can be achieved with a stabilizing tail of 11xT.AT triplets. The affinity of the third strand increases with the length of the (GT) n tract, suggesting that the alternating G.TA and T.AT triplets are making a positive contribution to stability. These complexes are stabilized by the presence of manganese or a triplex-specific binding ligand. Shorter oligo-nucleotides, such as T7(TG)5, bind less tightly and require the addition of a triplex-binding ligand. T4(GT)5showed no binding under any conditions. Oligo-nucleotides forming a 3'-terminal T.AT are marginally more stable that those with a terminal G.TA. The stability of these complexes was further increased by replacing two of the T.AT triplets in the T n tail region with two C+.GC triplets.
Collapse
Affiliation(s)
- D M Gowers
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | |
Collapse
|
58
|
Asensio JL, Brown T, Lane AN. Comparison of the solution structures of intramolecular DNA triple helices containing adjacent and non-adjacent CG.C+ triplets. Nucleic Acids Res 1998; 26:3677-86. [PMID: 9685482 PMCID: PMC147772 DOI: 10.1093/nar/26.16.3677] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The solution conformations of the intramolecular triple helices d(AGAAGA-X-TCTTCT-X-TC+TTC+T) and d(AAGGAA-X-TTCCTT-X-TTC+C+TT) (X = non-nucleotide linker) have been determined by NMR.1H NMR spectra in H2O showed that the third strand cytosine residues are fully paired with the guanine residues, each using two Hoogsteen hydrogen bonds. Determination of the13C chemical shifts of the cytosine C6 and C5 and their one-bond coupling constants (1 J CH) conclusively showed that the Hoogsteen cytosine residues are protonated at N3. The global conformations of the two molecules determined with >19 restraints per residue are very similar (RMSD = 0.96 A). However, some differences in local conformation and dynamics were observed for the central two base triplets of the two molecules. The C N3H were less labile in adjacent CG.C+triplets than in non-adjacent ones, indicating that the adjacent charge does not kinetically destabilize these triplets. The sugar conformations of the two adjacent cytosine residues were different and the 5'-residue was atypical of protonated cytosine. Hence, there are subtle effects of the interaction between two adjacent cytosine residues. The central two purines in each sequence showed non-standard backbone conformations, averaging between gamma approximately 60 degrees and gamma approximately 180 degrees. This may be related to the difference in the dependence of the thermodynamic stability on pH observed for these two sequences.
Collapse
Affiliation(s)
- J L Asensio
- Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
59
|
Brown PM, Fox KR. DNA triple-helix formation on nucleosome-bound poly(dA).poly(dT) tracts. Biochem J 1998; 333 ( Pt 2):259-67. [PMID: 9657964 PMCID: PMC1219581 DOI: 10.1042/bj3330259] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have used DNase I and hydroxyl-radical footprinting to examine the formation of intermolecular DNA triple helices on nucleosome-bound DNA fragments containing An.Tn tracts. We found that it is possible to form triplexes on these nucleosome-bound DNAs, but the stability of the complexes depends on the orientation of the A tract with respect to the protein surface. Hydroxyl-radical cleavage of these complexes suggests that the DNA fragments are still associated with the nucleosome. However, the phased cleavage pattern is lost in the vicinity of the triplex, suggesting that the DNA has locally moved away from the protein surface.
Collapse
Affiliation(s)
- P M Brown
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, U.K
| | | |
Collapse
|
60
|
Shields GC, Laughton CA, Orozco M. Molecular Dynamics Simulation of a PNA·DNA·PNA Triple Helix in Aqueous Solution. J Am Chem Soc 1998. [DOI: 10.1021/ja9723444] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- George C. Shields
- Contribution from the Departament de Bioquímica i Biología Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, and Cancer Research Laboratories, Department of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Charles A. Laughton
- Contribution from the Departament de Bioquímica i Biología Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, and Cancer Research Laboratories, Department of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Modesto Orozco
- Contribution from the Departament de Bioquímica i Biología Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, and Cancer Research Laboratories, Department of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
61
|
Cassidy SA, Slickers P, Trent JO, Capaldi DC, Roselt PD, Reese CB, Neidle S, Fox KR. Recognition of GC base pairs by triplex forming oligonucleotides containing nucleosides derived from 2-aminopyridine. Nucleic Acids Res 1997; 25:4891-8. [PMID: 9396793 PMCID: PMC147136 DOI: 10.1093/nar/25.24.4891] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have attempted to alleviate the pH dependency of triplex recognition of guanine by using intermolecular triplexes containing 2-amino-5-(2-deoxy-d-ribofuranosyl)pyridine (AP) as an analogue of 2'-deoxycytidine (dC). We find that for the beta-anomer of AP, the complex between (AP)6T6and the target site G6A6*T6C6is stable, generating a clear DNase I footprint at oligonucleotide concentrations as low as 0.25 microM at pH 5.0, in contrast to 50 microM C6T6which has no effect on the cleavage pattern. This complex is still stable at pH 6.5 producing a footprint with 1 microM oligonucleotide. Oligonucleotides containing the alpha-anomer of AP are much less effective than the beta-anomer, though in some instances they are more stable than the unmodified oligonucleotides. The results of molecular dynamics studies on a range of AP-containing triplexes has rationalized the observed stability behaviour in terms of hydrogen-bonding behaviour.
Collapse
Affiliation(s)
- S A Cassidy
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Keppler MD, Fox KR. Relative stability of triplexes containing different numbers of T.AT and C+.GC triplets. Nucleic Acids Res 1997; 25:4644-9. [PMID: 9358177 PMCID: PMC147077 DOI: 10.1093/nar/25.22.4644] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have used DNase I footprinting to compare the stability of parallel triple helices containing different numbers of T.AT and C+. GC triplets. We have targeted a fragment containing the 17mer sequence 5'-AGGAAGAGAAAAAAGAA with the 9mer oligonucleotides 5'-TCCTTCTCT, 5'-TTCTCTTTT and 5'-TTTTTTCTT, which form triplexes at the 5'-end, centre and 3'-end of the target site respectively. Quantitative DNase I footprinting has shown that at pH 5.0 the dissociation constants of these oligonucleotides are 0.13, 4.7 and >30 microM respectively, revealing that increasing the proportion of C+.GC triplets increases triplex stability. The results suggest that the positive charge on the protonated cytosine contributes to triplex stability, either by a favourable interaction with the stacked pisystem or by screening the charge on the phosphate groups. In the presence of a naphthylquinoline triplex binding ligand all three oligonucleotides bind with similar affinities. At pH 6.0 these triplexes only form in the presence of the triplex binding ligand, while at pH 7.5 footprints are only seen with the oligonucleotide which generates the fewest number of C+.GC triplets (TTTTTTCTT) in the presence of the ligand.
Collapse
Affiliation(s)
- M D Keppler
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | |
Collapse
|
63
|
Gowers DM, Fox KR. DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines. Nucleic Acids Res 1997; 25:3787-94. [PMID: 9380499 PMCID: PMC146974 DOI: 10.1093/nar/25.19.3787] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have used DNase I footprinting to assess the formation of triple helices at 15mer oligopurine target sites which are interrupted by several (up to four) adjacent central pyrimidine residues. Third strand oligonucleotides were designed to generate complexes containing central (X.TA)nor (X.CG)n triplets (X = each base in turn) surrounded by C+.GC and T.AT triplets. It has previously been shown that G.TA and T.CG are the most stable triplets for recognition of single TA and CG interruptions. We show that these triplets are the most useful for recognizing consecutive pyrimidine interruptions and find that addition of each pyrimidine residue leads to a 30-fold decrease in third strand affinity. The addition of 10 microM naphthylquinoline triplex-binding ligand stabilizes each complex so that all the oligonucleotides produce footprints at similar concentrations (0.3 microM). Targets containing two pyrimidines are only bound by oligonucleotides generating (G.TA)2 and (T.CG)2 with a further 30-fold decrease in affinity. (G.TA)2 is slightly more stable than (T.CG)2. In the presence of the triplex-binding ligand the order of stability is (G.TA)2 > (C.TA)2 > (T.TA)2 > (A.TA)2 and (T.CG)2 > (C.CG)2 > (G.CG)2 = (A.CG)2. No oligonucleotide footprints are generated at target sites containing three consecutive pyrimidines, though addition of 10 microM triplex-binding ligand produces stable complexes with oligonucleotides generating (G.TA)3, (T.CG)3 and (C.CG)3, with a further 30-fold reduction in affinity. No footprints are generated at targets containing four Ts, though the ligand induces a weak interaction with the oligonucleotide generating (T.CG)4.
Collapse
Affiliation(s)
- D M Gowers
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | |
Collapse
|
64
|
Lavrovsky Y, Chen S, Roy AK. Therapeutic potential and mechanism of action of oligonucleotides and ribozymes. BIOCHEMICAL AND MOLECULAR MEDICINE 1997; 62:11-22. [PMID: 9367793 DOI: 10.1006/bmme.1997.2631] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Specific inactivation of gene expression is an attractive approach for rational drug design to combat degenerative diseases and infectious agents. Oligonucleotide-directed triple-helix formation at cis-acting elements of gene promoters, short oligonucleotides containing base sequences that are complementary to the messenger RNA (antisense oligos), and RNA enzymes (ribozymes) that specifically cleave messenger RNA molecules are currently being used both as experimental tools and as therapeutic agents. Mechanisms of action of various oligonucleotide-based drugs, recent developments in the drug-delivery approaches, and future potentials are discussed in this review.
Collapse
Affiliation(s)
- Y Lavrovsky
- Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78284-7762, USA
| | | | | |
Collapse
|
65
|
Abstract
We have used DNase I footprinting to examine the association kinetics of GA-, GT- and CT-containing oligonucleotides with the target sequence (GGA)5GG. (CCT)5CC. These reactions are slow yielding bimolecular association rate constants between 50 and 2000 M-1s-1. We find that GT-containing oligonucleotides bind much faster than GA- or CT-containing third strands. In each case the observed rate constants are faster at the centre than at the edges of the target site. Although several explanations can be offered for this observation, it is consistent with a model in which triplex formation at this repetitive site is achieved via intermediate complexes in which the third strand is not properly aligned with its target and which subsequently migrate to the correct position.
Collapse
Affiliation(s)
- H M Paes
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | |
Collapse
|
66
|
Chen YZ, Powell JW, Prohofsky EW. Vibrational normal modes and dynamical stability of DNA triplex poly(dA). 2poly(dT): S-type structure is more stable and in better agreement with observations in solution. Biophys J 1997; 72:1327-34. [PMID: 9138578 PMCID: PMC1184515 DOI: 10.1016/s0006-3495(97)78779-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A normal-mode and statistical mechanical calculation was carried out to determine the vibrational normal modes, contribution of internal fluctuations to the free energy, and hydrogen bond disruption of DNA triplex poly(dA).2poly(dT). The calculation was performed on both the x-ray fiber diffraction model with a N-type sugar conformation, and a newly proposed model with a S-type sugar conformation. Our calculated normal modes for the S-type structure are in better agreement with observed IR spectra for samples in D2O solution. We also find that the contribution of internal fluctuations to free energy, premelting hydrogen bond disruption probability, and hydrogen bond melting temperatures for the Hoogsteen and Watson-Crick hydrogen bonds all show that the S-type structure is dynamically more stable than the N-type structure in a nominal solution environment. Therefore our calculation supports experimental findings that the triplex d(T)n.d(A)nd(T)n most likely adopts a S-type sugar conformation in solution or at high humidity. Our calculations, however, do not preclude the possibility of an N-type conformation at lower humidities.
Collapse
Affiliation(s)
- Y Z Chen
- Department of Physics, Purdue University, West Lafayette, Indiana 47907-1396, USA.
| | | | | |
Collapse
|
67
|
Rothman JH, Richards WG. Novel Hoogsteen-like bases for configurational recognition of the T-A base pair by DNA triplex formation. Biopolymers 1996; 39:795-812. [PMID: 8946801 DOI: 10.1002/(sici)1097-0282(199612)39:6%3c795::aid-bip6%3e3.0.co;2-q] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Effective sequence-specific recognition of duplex DNA is possible by triplex formation with natural oligonucleotides via Hoogsteen H-bonding. However, triplex formation is in practice limited to pyrimidine oligonucleotides binding duplex A-T or G-C base-pair DNA sequences specifically at homopurine sites in the major groove as T-A-T and C+.G-C triplets. Here we report the successful modeling of novel unnatural nucleosides that recognize the T-A DNA base pair by Hoogsteen interaction. Since the DNA triplex can be considered to assume an A-type or B-type conformation, these novel Hoogsteen nucleotides are tested within model A-type and B-type conformation triplex structures. A triplet consisting of the T-A base pair and one of the novel Hoogsteen nucleotides replaces the central T.A-T triplet in the triplex using the same deoxyribose-phosphodiester and base-deoxyribose dihedral angle configuration. The entire triplex is energy minimized and the presence of any structural or energetic perturbations due to the central triplet is assessed with respect to the unmodified energy-minimized (T.A-T)11 proposed starting structures. Incorporation of these novel triplets into both A-type and B-type natural tiplex structures provokes minimal change in the configuration of the central and adjacent triplets. The plan is to produce a series of Hoogsteen-like bases that preferentially bind the T-A major groove in either an A-type or B-type conformation. Selective recognition of the T-A major groove with respect to the G-C major groove, which presents similar keto and amine placement, is also assessed with configurational preference. Evaluation of the triplex solution structure by using these unnatural bases as binding conformational probes is a prerequisite to the further design of triplet forming bases.
Collapse
Affiliation(s)
- J H Rothman
- Physical and Theoretical, Chemistry Laboratory Oxford University, UK
| | | |
Collapse
|
68
|
Cassidy SA, Strekowski L, Fox KR. DNA sequence specificity of a naphthylquinoline triple helix-binding ligand. Nucleic Acids Res 1996; 24:4133-8. [PMID: 8932362 PMCID: PMC146223 DOI: 10.1093/nar/24.21.4133] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have examined the effect of a naphthylquinoline triplex-binding ligand on the formation of intermolecular triplexes on DNA fragments containing the target sites A6G6xC6T6 and G6A6xT6C6. The ligand enhances the binding of T6C2, but not T2C6, to A6G6xC6T6 suggesting that it has a greater effect on TxAT than C+xGC triplets. The complex with T6C2 is only stable below pH 6.0, confirming the requirement for protonation of the third strand cytosines. Antiparallel triplexes with GT-containing oligonucleotides are also stabilised by the ligand. The complex between G5T5 and A6G6xC6T6 is stabilised by lower ligand concentrations than that between T5G5 and G6A6xC6T6. The ligand does not promote the interaction with GT-containing oligonucleotides which have been designed to bind in a parallel orientation. Although the formation of antiparallel triplexes is pH independent, we find that the ligand has a greater stabilising effect at lower pH, suggesting that the active species is protonated. The ligand does not promote the binding of antiparallel GA-containing oligonucleotides at pH 7.5 but induces the interaction between A5G5 and G6A6xT6C6 at pH 5.5. Ethidium bromide does not promote the formation of any of these triplexes and destabilises the interaction of acridine-linked pyrimidine-containing third strands with these target sites.
Collapse
Affiliation(s)
- S A Cassidy
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, UK
| | | | | |
Collapse
|
69
|
Liu K, Sasisekharan V, Miles HT, Raghunathan G. Structure of Py.Pu.Py DNA triple helices. Fourier transforms of fiber-type x-ray diffraction of single crystals. Biopolymers 1996; 39:573-89. [PMID: 8837521 DOI: 10.1002/(sici)1097-0282(199610)39:4<573::aid-bip8>3.0.co;2-u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Well-formed hexagonal crystals of oligomeric DNA triple helices exhibit fiber-type x-ray diffraction patterns [cf., Liu et al. (1994) Nature Struct. Biol. 1, 11], which can be interpreted in terms of Fourier transforms of these helices. Precession photographs of a triplex formed of dA and dT chains show that it has 13 residues per turn. In contrast, a sequence containing the four natural bases A, G, C, and T has 12 residues per turn. In this sense the triple helices exhibit a sequence-dependent polymorphism, though both have C2'-endo sugar pucker and B rather than A conformation. New models are constructed, using constraints from x-ray diffraction, and Fourier transforms of the models are calculated. Good agreement in the amplitudes and positions of the calculated and observed diffraction intensities confirms the structures for both triple helices. These are the first stereochemically satisfactory DNA triple helices for which coordinates based on adequate experimental data were provided. Sequences for crystallization are designed to achieve unique base alignments and are screened for the presence of sharp bands on gel electrophoresis to assure the absence of multiple species caused by strand slippage. Despite intensive efforts to observe normal crystal diffraction by varying sequences and conditions, all crystals exhibited only fiber-type diffraction. We suggest that this behavior may be an intrinsic property of triple helices and discuss possible reasons for the results. Spectroscopic and chemical experiments establish that the oligonucleotides exist in solution as triple helices under the conditions of crystallization.
Collapse
Affiliation(s)
- K Liu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
70
|
Rothman JH, Richards WG. Molecular Dynamics Simulations of Novel Hoogsteen-Like Bases That Recognize the T-A Base Pair by DNA Triplex Formation. MOLECULAR SIMULATION 1996. [DOI: 10.1080/08927029608022352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
71
|
Abstract
The present computational power and sophistication of theoretical approaches to nucleic acid structural investigation are sufficient for the realization of static and dynamic models that correlate accurately with current crystallographic, NMR and solution-probing structural data, and consequently are able to provide valuable insights and predictions for a variety of nucleic acid conformational families. In molecular dynamics simulations, the year 1995 was marked by the foray of fast Ewald methods, an accomplishment resulting from several years' work in the search for an adequate treatment of the electrostatic long-range forces so primordial in nucleic acid behavior. In very large systems, and particularly in the RNA-folding field, techniques originating from artificial intelligence research, like constraint satisfaction programming or genetic algorithms, have established their utility and potential.
Collapse
Affiliation(s)
- S Louise-May
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Modélisations et Simulations des Acides. Nucléiques, UPR 9002, Strasbourg, France
| | | | | |
Collapse
|
72
|
Lavrovsky Y, Stoltz RA, Vlassov VV, Abraham NG. c-fos protooncogene transcription can be modulated by oligonucleotide-mediated formation of triplex structures in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:582-90. [PMID: 8681975 DOI: 10.1111/j.1432-1033.1996.0582z.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A homopurine.homopyrimidine sequence of the c-fos promoter was chosen as a target for a triple helix oligonucleotide. Eight DNA oligonucleotides that ranged from 14 to 31 bp were shown to form a triple helix with three sequences within the c-fos promoter region. Reactive derivatives of homopyrimidine oligonucleotides bearing the 5'- or 3'-terminal DNA alkylation aromatic 2-chloroethylamino group were also synthesized. It was concluded, based on the physical properties of the DNA oligonucleotide complex, that the oligonucleotide forms a colinear triplex with the duplex binding sites. We investigated in detail, using electrophoretic mobility and footprinting protection, whether such oligonucleotide.DNA complexes are of benefit in designing high-affinity probes for a natural DNA sequence in the mouse c-fos gene. Our results demonstrate that four different DNA targets within the c-fos promoter region can form triplex structures with synthetic oligonucleotides in a sequence-specific manner. Moreover, in vitro modifications of the retinoblastoma-gene-product-binding site of the c-fos promoter at position -83 in front of the cAMP/cAMP-responsive element binding site and fos-binding site 3/activator-protein-2-like (FBS3/AP-2-like) site at position -431 by triple helix forming oligonucleotides cause dramatic suppression of fos-chloramphenicol acetyltransferase activity in endothelial cells. These results provide a basis for the development of a specific oligonucleotide target forming triplex-DNA complex, and emphasize the importance of a target forming triplex as a basis for control of gene expression and cell proliferation.
Collapse
|
73
|
Ji J, Hogan ME, Gao X. Solution structure of an antiparallel purine motif triplex containing a T.CG pyrimidine base triple. Structure 1996; 4:425-35. [PMID: 8740365 DOI: 10.1016/s0969-2126(96)00048-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Triplex formation is an approach of potential use in regulating and mapping of gene sequences. However, such applications have been limited to homogeneous sequences consisting of stretches of purines or pyrimidines. Understanding how heterogeneous duplexes are recognized by a third strand oligonucleotide at the atomic resolution level is an essential step toward broadening the application of triplex formation into biochemical and biomedical areas. RESULTS The solution structure of an antiparallel triplex (RRY6) containing a site of inversion (i.e. a T within a homopurine stretch, forming a T.CG base triple) has been determined using NMR-restrained computations in the presence of explicit water. The results reveal that within the RRY6 triplex the conformation of the duplex is mostly B-like and that of the third strand exhibits significant variations in interbase separations and backbone torsion angles. A major displacement of the inversion site T sugar in a 5'-direction, accompanied by the tilt of the T base in T.CG, was observed. The T.CG base triple contains a single hydrogen bond between T O4 and the exposed C amino proton and is stabilized by a number of interstrand and sequential van der Waal contacts. The structural comparisons of RRY6 with two related triplexes indicate localized perturbation at the non-classical base triple site. Various triplexes contain sugars in the C2'-endo family and the global features of their duplexes are similar. CONCLUSIONS This study provides valuable information concerning the molecular basis of the specific recognition of a Watson-Crick base paired C residue at the inversion sites in the antiparallel triplex and should lead to general rules for designing triplexes containing heterogeneous sequences.
Collapse
Affiliation(s)
- J Ji
- Department of Chemistry, University of Houston, TX 77204-5641, USA
| | | | | |
Collapse
|
74
|
Brown PM, Drabble A, Fox KR. Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment. Biochem J 1996; 314 ( Pt 2):427-32. [PMID: 8670052 PMCID: PMC1217067 DOI: 10.1042/bj3140427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have used DNase I footprinting to examine the effect of a triplex-binding ligand on the formation of parallel intermolecular DNA triple helices at a mixed sequence target site contained within a natural DNA fragment (tyrT). In the presence of 10 microM ligand (N-[2-(dimethylamino)ethyl]-2-(naphthyl)quinolin-4-ylamine), the binding of CTCTTTTTGCTT (12G) to the sequence GAGAAAAATGAA (generating a complex containing 8 x T x AT, 1 x G x TA and 3 x C+ x GC triplets) was enhanced 3-fold at pH 5.5. When the oligonucleotide CTCTTTTTTCTT (12T) was substituted for 12G (replacing G x TA with T x TA) there was a large reduction in affinity for the target sequence. However, this was stabilized by about 300-fold in the presence of the ligand, requiring a similar concentration to produce a footprint as 12G in the absence of the ligand. When the sequence of the target site was altered to GAGAAAAAAGAA, generating an uninterrupted run of purines [tyrT(46A)], the binding of 12T (generating a complex containing 9 x T x AT, and 3 x C+ x GC triplets) was enhanced 3-fold by 10 microM of the triplex-binding ligand. However, although the binding of 12G to this sequence generating a complex containing a G x AT triplet, was much weaker, this too was stabilized by about 30-fold by the ligand, requiring a similar concentration as the perfect matched oligonucleotide (12T) in the absence of the ligand. A secondary, less stable footprint was also observed in these fragments when using either 12T or 12G, which was evident only in the presence of the triplex-binding ligand. This site, which contained a number of triplet mismatches, appears to be realated to the formation of four or five central T x AT triplets. This reduction in the stringency of oligonucleotide binding by the triplex-binding ligand promotes the formation of complexes at non-targeted regions but may also have the potential for enabling recognition at sites that contain regions where there are no specific triplet matches.
Collapse
Affiliation(s)
- P M Brown
- Department of Physiology and Pharmacology, University of Southampton, U.K
| | | | | |
Collapse
|
75
|
Betts L, Josey JA, Veal JM, Jordan SR. A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex. Science 1995; 270:1838-41. [PMID: 8525381 DOI: 10.1126/science.270.5243.1838] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The crystal structure of a nucleic acid triplex reveals a helix, designated P-form, that differs from previously reported nucleic acid structures. The triplex consists of one polypurine DNA strand complexed to a polypyrimidine hairpin peptide nucleic acid (PNA) and was successfully designed to promote Watson-Crick and Hoogsteen base pairing. The P-form helix is underwound, with a base tilt similar to B-form DNA. The bases are displaced from the helix axis even more than in A-form DNA. Hydrogen bonds between the DNA backbone and the Hoogsteen PNA backbone explain the observation that polypyrimidine PNA sequences form highly stable 2:1 PNA-DNA complexes. This structure expands the number of known stable helical forms that nucleic acids can adopt.
Collapse
Affiliation(s)
- L Betts
- Glaxo Wellcome, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
76
|
Abstract
We have used DNase I footprinting to examine the formation of intermolecular triple helices at a fragment containing the target sequence A11(AT)6.(AT)6T11, using oligonucleotides designed to form parallel T.AT and G.TA triplets. We find that, although (TG)6 does not form a complex with (AT)6.(AT)6, T11(TG)6 forms a stable structure producing a clear footprint which includes the (AT)6 portion of the target site. This complex is not formed in the presence of magnesium, but can be stabilised by either manganese or a triplex-binding ligand.
Collapse
Affiliation(s)
- S P Chandler
- Department of Physiology & Pharmacology, University of Southampton, Bassett Crescent East, UK
| | | |
Collapse
|
77
|
Washbrook E, Fox KR. Comparison of antiparallel A.AT and T.AT triplets within an alternate strand DNA triple helix. Nucleic Acids Res 1994; 22:3977-82. [PMID: 7937120 PMCID: PMC308398 DOI: 10.1093/nar/22.19.3977] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have examined the formation of alternate strand triple-helices at the target sequence A11(TC)6.(GA)6T11 using the oligonucleotides T11(AG)6 and T11(TG)6, by DNase I footprinting. These third strands were designed so as to form parallel T.AT triplets together with antiparallel G.GC and A.AT or T.AT triplets. We find that, although both oligonucleotides yield clear footprints at similar concentrations (0.3 microM) in the presence of manganese, only T11(TG)6 forms a stable complex in magnesium-containing buffers, albeit at a higher concentration (10-30 microM). Examination of the interaction of (AG)6 and (TG)6 with half the target site confirmed that the complex containing A.AT triplets was only stable in the presence of manganese. In contrast no binding of (TG)6 was detected in the presence of either metal ion, suggesting that the reverse-Hoogsteen T.AT triplet is less stable that G.GC. We suggest that, within the context of G.GC triplets, the rank order of antiparallel triplet stability is A.AT (Mn2+) > T.AT (Mn2+) > T.AT (Mg2+) > A.AT (Mg2+). Third strands containing a single base substitution in the centre of either the parallel or antiparallel portion showed a (10-fold) weaker interaction in manganese-containing buffers, and no interaction in the presence of magnesium.
Collapse
Affiliation(s)
- E Washbrook
- Department of Physiology and Pharmacology, University of Southampton, UK
| | | |
Collapse
|
78
|
Radhakrishnan I, Patel DJ. Hydration sites in purine.purine.pyrimidine and pyrimidine.purine.pyrimidine DNA triplexes in aqueous solution. Structure 1994; 2:395-405. [PMID: 8081755 DOI: 10.1016/s0969-2126(00)00041-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND DNA triplexes are higher-order nucleic acid structures with potential roles in gene regulation and hence biochemical and therapeutic applications. The stabilizing influence exerted by water molecules on the conformation of the DNA duplex is well known. However, the role of water molecules in the DNA triple helix has not been investigated. We have previously determined the solution structures of the purine.purine.pyrimidine (R.RY) and pyrimidine.purine.pyrimidine (Y.RY) structural motifs in DNA triplexes and identified both the global helical parameters, as well as local helical distortions associated with non-standard base triple pairing alignments. RESULTS Here we have used homonuclear two-dimensional NMR spectroscopy to define the hydration sites in R.RY and Y.RY DNA triplexes in aqueous solution. Long-lived hydration sites with residence times exceeding 1 nanosecond have been identified in the new groove formed by the Hoogsteen paired strands in both triplexes. Distinctive patterns of hydration are displayed by each triplex in the remaining two grooves. CONCLUSION The role played by water molecules in DNA triplexes appears to be similar to that played in duplexes. By binding to specific sites, particularly in the narrow groove formed by the Hoogsteen paired strands whose phosphate groups are in close proximity, water molecules may stabilize the triplex by shielding it against unfavorable electrostatic interactions.
Collapse
Affiliation(s)
- I Radhakrishnan
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | |
Collapse
|