51
|
Korolev S, Koroleva O, Petterson K, Gu M, Collart F, Dementieva I, Joachimiak A. Autotracing of Escherichia coli acetate CoA-transferase alpha-subunit structure using 3.4 A MAD and 1.9 A native data. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2002; 58:2116-21. [PMID: 12454473 PMCID: PMC2792021 DOI: 10.1107/s0907444902017055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2002] [Accepted: 09/19/2002] [Indexed: 11/10/2022]
Abstract
The automation of protein structure determination is an essential component for high-throughput structural analysis in protein X-ray crystallography and is a key element in structural genomics. This highly challenging undertaking relies at present on the availability of high-quality native and derivatized protein crystals diffracting to high or moderate resolution, respectively. Obtaining such crystals often requires significant effort. The present study demonstrates that phases obtained at low resolution (>3.0 A) from crystals of SeMet-labeled protein can be successfully used for automated structure determination. The crystal structure of acetate CoA-transferase alpha-subunit was solved using 3.4 A multi-wavelength anomalous dispersion data collected from a crystal containing SeMet-substituted protein and 1.9 A data collected from a native protein crystal.
Collapse
Affiliation(s)
- S. Korolev
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - O. Koroleva
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - K. Petterson
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - M. Gu
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - F. Collart
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - I. Dementieva
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - A. Joachimiak
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
52
|
Rangarajan ES, Sivaraman J, Matte A, Cygler M. Crystal structure of D-ribose-5-phosphate isomerase (RpiA) from Escherichia coli. Proteins 2002; 48:737-40. [PMID: 12211039 DOI: 10.1002/prot.10203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
53
|
Thoden JB, Holden HM, Zhuang Z, Dunaway-Mariano D. X-ray crystallographic analyses of inhibitor and substrate complexes of wild-type and mutant 4-hydroxybenzoyl-CoA thioesterase. J Biol Chem 2002; 277:27468-76. [PMID: 11997398 DOI: 10.1074/jbc.m203904200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabolic pathway by which 4-chlorobenzoate is degraded to 4-hydroxybenzoate in the soil-dwelling microbe Pseudomonas sp. strain CBS-3 consists of three enzymes including 4-hydroxybenzoyl-CoA thioesterase. The structure of the unbound form of this thioesterase has been shown to contain the so-called "hot dog" fold with a large helix packed against a five-stranded anti-parallel beta-sheet. To address the manner in which the enzyme accommodates the substrate within the active site, two inhibitors have been synthesized, namely 4-hydroxyphenacyl-CoA and 4-hydroxybenzyl-CoA. Here we describe the structural analyses of the enzyme complexed with these two inhibitors determined and refined to 1.5 and 1.8 A resolution, respectively. These studies indicate that only one protein side chain, Ser(91), participates directly in ligand binding. All of the other interactions between the protein and the inhibitors are mediated through backbone peptidic NH groups, carbonyl oxygens, and/or solvents. The structures of the enzyme-inhibitor complexes suggest that both a hydrogen bond and the positive end of a helix dipole moment serve to polarize the electrons away from the carbonyl carbon of the acyl group, thereby making it more susceptible to nucleophilic attack. Additionally, these studies demonstrate that the carboxylate group of Asp(17) is approximately 3.2 A from the carbonyl carbon of the acyl group. To address the role of Asp(17), the structure of the site-directed mutant protein D17N with bound substrate has also been determined. Taken together, these investigations suggest that the reaction mechanism may proceed through an acyl enzyme intermediate.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | | | | | | |
Collapse
|
54
|
Hao T, Biran D, Velicer GJ, Kroos L. Identification of the Omega4514 regulatory region, a developmental promoter of Myxococcus xanthus that is transcribed in vitro by the major vegetative RNA polymerase. J Bacteriol 2002; 184:3348-59. [PMID: 12029052 PMCID: PMC135106 DOI: 10.1128/jb.184.12.3348-3359.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Accepted: 03/29/2002] [Indexed: 11/20/2022] Open
Abstract
Omega4514 is the site of a Tn5 lac insertion in the Myxococcus xanthus genome that fuses lacZ expression to a developmentally regulated promoter. DNA upstream of the insertion site was cloned, and the promoter was localized. The promoter resembles vegetative promoters in sequence, and sigma(A) RNA polymerase, the major form of RNA polymerase in growing M. xanthus, initiated transcription from this promoter in vitro. Two complete open reading frames were identified downstream of the promoter and before the Omega4514 insertion. The first gene product (ORF1) has a putative helix-turn-helix DNA-binding motif and shows sequence similarity to transcriptional regulators. ORF2 is most similar to subunit A of glutaconate coenzyme A (CoA) transferase, which is involved in glutamate fermentation. Tn5 lac Omega4514 is inserted in the third codon of ORF3, which is similar to subunit B of glutaconate CoA-transferase. An orf1 disruption mutant exhibited a mild sporulation defect, whereas neither a disruption of orf2 nor insertion Omega4514 in orf3 caused a defect. Based on DNA sequence analysis, the three genes are likely to be cotranscribed with a fourth gene whose product is similar to alcohol dehydrogenases. ORF1 delays and reduces expression of the operon during development, but relief from this negative autoregulation does not fully explain the regulation of the operon, because expression from a small promoter-containing fragment is strongly induced during development of an orf1 mutant. Also, multiple upstream DNA elements are necessary for full developmental expression. These results suggest that transcriptional activation also regulates the operon. Omega4514 is the first example of a developmentally regulated M. xanthus operon that is transcribed by the major vegetative RNA polymerase, and its regulation appears to involve both negative autoregulation by ORF1 and positive regulation by one or more transcriptional activators.
Collapse
Affiliation(s)
- Tong Hao
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
55
|
Dickert S, Pierik AJ, Buckel W. Molecular characterization of phenyllactate dehydratase and its initiator from Clostridium sporogenes. Mol Microbiol 2002; 44:49-60. [PMID: 11967068 DOI: 10.1046/j.1365-2958.2002.02867.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heterotrimeric phenyllactate dehydratase from Clostridium sporogenes, FldABC, catalyses the reversible dehydration of (R)-phenyllactate to (E)-cinnamate in two steps: (i) CoA-transfer from the cofactor cinnamoyl-CoA to phenyllactate to yield phenyllactyl-CoA and the product cinnamate mediated by FldA, a (R)-phenyllactate CoA-transferase; followed by (ii) dehydration of phenyllactyl-CoA to cinnamoyl-CoA mediated by heterodimeric FldBC, a phenyllactyl-CoA dehydratase. Phenyllactate dehydratase requires initiation by ATP, MgCl2 and a reducing agent such as dithionite mediated by an extremely oxygen-sensitive initiator protein (FldI) present in the cell-free extract. All four genes coding for these proteins were cloned and shown to be clustered in the order fldAIBC, which shares over 95% sequence identity of nucleotide and protein levels with a gene cluster detected in the genome of the closely related Clostridium botulinum Hall strain A. FldA shows sequence similarities to a new family of CoA-transferases, which apparently do not form covalent enzyme CoA-ester intermediates. An N-terminal Strep II-Tag containing enzymatically active FldI was overproduced and purified from Escherichia coli. FldI was characterized as a homodimeric protein, which contains one [4Fe-4S]1+/2+ cluster with an electron spin S = 3/2 in the reduced form. The amino acid sequence as well as the chemical and EPR-properties of the pure protein are very similar to those of component A of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans (HgdC), which was able to replace FldI in the activation of phenyllactate dehydratase. Only in the oxidized state, FldI and component A exhibit significant ATPase activity, which appears to be essential for unidirectional electron transfer. Both subunits of phenyllactyl-CoA dehydratase (FldBC) show significant sequence similarities to both subunits of 2-hydroxyglutaryl-CoA dehydratase (HgdAB). The fldAIBC gene cluster resembles the hadAIBC gene cluster in the genome of Clostridium difficile and the hadABC,I genes in C. botulinum. The four subunits of these deduced 2-hydroxyacid dehydratases (65-81% amino acid sequence identity between the had genes) probably code for a 2-hydroxyisocaproate dehydratase involved in leucine fermentation. This enzyme could be the target for metronidazole in the treatment of pseudomembranous enterocolitis caused by C. difficile.
Collapse
Affiliation(s)
- Sandra Dickert
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| | | | | |
Collapse
|
56
|
Selmer T, Willanzheimer A, Hetzel M. Propionate CoA-transferase from Clostridium propionicum. Cloning of gene and identification of glutamate 324 at the active site. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:372-80. [PMID: 11784332 DOI: 10.1046/j.0014-2956.2001.02659.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Propionate CoA-transferase from Clostridium propionicum has been purified and the gene encoding the enzyme has been cloned and sequenced. The enzyme was rapidly and irreversibly inactivated by sodium borohydride or hydroxylamine in the presence of propionyl-CoA. The reduction of the thiol ester between a catalytic site glutamate and CoA with borohydride and the cleavage by hydroxylamine were used to introduce a site-specific label, which was followed by MALDI-TOF-MS. This allowed the identification of glutamate 324 at the active site. Propionate CoA-transferase and similar proteins deduced from the genomes of Escherichia coli, Staphylococcus aureus, Bacillus halodurans and Aeropyrum pernix are proposed to form a novel subclass of CoA-transferases. Secondary structure element predictions were generated and compared to known crystal structures in the databases. A high degree of structural similarity was observed between the arrangement of secondary structure elements in these proteins and glutaconate CoA-transferase from Acidaminococcus fermentans.
Collapse
|
57
|
Abstract
CoA-transferases are found in organisms from all lines of descent. Most of these enzymes belong to two well-known enzyme families, but recent work on unusual biochemical pathways of anaerobic bacteria has revealed the existence of a third family of CoA-transferases. The members of this enzyme family differ in sequence and reaction mechanism from CoA-transferases of the other families. Currently known enzymes of the new family are a formyl-CoA: oxalate CoA-transferase, a succinyl-CoA: (R)-benzylsuccinate CoA-transferase, an (E)-cinnamoyl-CoA: (R)-phenyllactate CoA-transferase, and a butyrobetainyl-CoA: (R)-carnitine CoA-transferase. In addition, a large number of proteins of unknown or differently annotated function from Bacteria, Archaea and Eukarya apparently belong to this enzyme family. Properties and reaction mechanisms of the CoA-transferases of family III are described and compared to those of the previously known CoA-transferases.
Collapse
Affiliation(s)
- J Heider
- Mikrobiologie, Institut für Biologie II, Universität Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
58
|
Horinouchi M, Yamamoto T, Taguchi K, Arai H, Kudo T. Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3367-75. [PMID: 11739769 DOI: 10.1099/00221287-147-12-3367] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Comamonas testosteroni metabolizes testosterone as the sole carbon source via a meta-cleavage reaction. A meta-cleavage enzyme gene, tesB, was cloned from C. testosteroni TA441. The deduced N-terminal amino acid sequence of tesB matched that of the purified meta-cleavage enzyme which is induced in TA441 during growth on testosterone as the sole carbon source. The tesB-disrupted mutant did not show growth on testosterone, suggesting that tesB is necessary for TA441 to grow on testosterone. Downstream from tesB, three putative ORFs which encode products also necessary for growth of TA441 on testosterone were identified. The usual substrate of TesB is probably 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione. Although this compound was not identified in the gene disrupted mutants, accumulation of upstream metabolites of testosterone degradation, 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione, was shown by TLC analysis.
Collapse
Affiliation(s)
- M Horinouchi
- RIKEN, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
59
|
Leutwein C, Heider J. Succinyl-CoA:(R)-benzylsuccinate CoA-transferase: an enzyme of the anaerobic toluene catabolic pathway in denitrifying bacteria. J Bacteriol 2001; 183:4288-95. [PMID: 11418570 PMCID: PMC95319 DOI: 10.1128/jb.183.14.4288-4295.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Accepted: 04/30/2001] [Indexed: 11/20/2022] Open
Abstract
Anaerobic microbial toluene catabolism is initiated by addition of fumarate to the methyl group of toluene, yielding (R)-benzylsuccinate as first intermediate, which is further metabolized via beta-oxidation to benzoyl-coenzyme A (CoA) and succinyl-CoA. A specific succinyl-CoA:(R)-benzylsuccinate CoA-transferase activating (R)-benzylsuccinate to the CoA-thioester was purified and characterized from Thauera aromatica. The enzyme is fully reversible and forms exclusively the 2-(R)-benzylsuccinyl-CoA isomer. Only some close chemical analogs of the substrates are accepted by the enzyme: succinate was partially replaced by maleate or methylsuccinate, and (R)-benzylsuccinate was replaced by methylsuccinate, benzylmalonate, or phenylsuccinate. In contrast to all other known CoA-transferases, the enzyme consists of two subunits of similar amino acid sequences and similar sizes (44 and 45 kDa) in an alpha(2)beta(2) conformation. Identity of the subunits with the products of the previously identified toluene-induced bbsEF genes was confirmed by determination of the exact masses via electrospray-mass spectrometry. The deduced amino acid sequences resemble those of only two other characterized CoA-transferases, oxalyl-CoA:formate CoA-transferase and (E)-cinnamoyl-CoA:(R)-phenyllactate CoA-transferase, which represent a new family of CoA-transferases. As suggested by kinetic analysis, the reaction mechanism of enzymes of this family apparently involves formation of a ternary complex between the enzyme and the two substrates.
Collapse
Affiliation(s)
- C Leutwein
- Mikrobiologie, Institut für Biologie II, Universität Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
60
|
Abstract
Our current knowledge of the pathways and genes involved in the biosynthesis of the methanogenic coenzymes methanopterin, coenzyme B, methanofuran, coenzyme F420, and coenzyme M is presented. Proposed reaction mechanisms for several of the novel reactions involved in the pathways are presented.
Collapse
Affiliation(s)
- R H White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
61
|
Holm M, Hardtke CS, Gaudet R, Deng XW. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J 2001; 20:118-27. [PMID: 11226162 PMCID: PMC140188 DOI: 10.1093/emboj/20.1.118] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arabidopsis COP1 is a photomorphogenesis repressor capable of directly interacting with the photomorphogenesis-promoting factor HY5. This interaction between HY5 and COP1 results in targeted deg radation of HY5 by the 26S proteasome. Here we characterized the WD40 repeat domain-mediated interactions of COP1 with HY5 and two new proteins. Mutational analysis of those interactive partners revealed a conserved motif responsible for the interaction with the WD40 domain. This novel motif, with the core sequence V-P-E/D-φ-G (φ = hydrophobic residue) in conjunction with an upstream stretch of 4-5 negatively charged residues, interacts with a defined surface area of the ss-propeller assembly of the COP1 WD40 repeat domain through both hydrophobic and ionic interactions. Several residues in the COP1 WD40 domain that are critical for the interaction with this motif have been revealed. The fact that point mutations either in the COP1 WD40 domain or in the HY5 motif that abolish the interaction between COP1 and HY5 in yeast result in a dramatic reduction of HY5 degradation in transgenic plants validates the biological significance of this defined interaction.
Collapse
Affiliation(s)
| | | | - Rachelle Gaudet
- Department of Molecular, Cellular and Developmental Biology, Yale University, OML 354, Yale University, PO Box 20-8104, 165 Prospect Street, New Haven, CT 06520-8104 and
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA Corresponding author e-mail:
| | - Xing-Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, OML 354, Yale University, PO Box 20-8104, 165 Prospect Street, New Haven, CT 06520-8104 and
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA Corresponding author e-mail:
| |
Collapse
|
62
|
Fukao T, Mitchell GA, Song XQ, Nakamura H, Kassovska-Bratinova S, Orii KE, Wraith JE, Besley G, Wanders RJ, Niezen-Koning KE, Berry GT, Palmieri M, Kondo N. Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations. Genomics 2000; 68:144-51. [PMID: 10964512 DOI: 10.1006/geno.2000.6282] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of succinyl-CoA:3-ketoacid CoA transferase (SCOT; locus symbol OXCT; EC 2.8.3.5) is the main determinant of the ketolytic capacity of tissues. Hereditary SCOT deficiency causes episodic ketoacidosis. Here we describe the human SCOT gene, which spans more than 100 kb and contains 17 exons, on chromosome 5p13. We report pathogenic missense mutations in three SCOT-deficient patients designated GS04, 05, and 06. GS04 is a G219E/G324E compound; GS05 is a V221M homozygote, and GS06 is a G324E homozygote. We constructed a tertiary structural model of human SCOT by homology modeling based on the known structure of Acidaminococcus fermentans glutaconate CoA transferase. The model predicts that V221 and G219 are on the dimerizing surface, whereas G324 is near the active site. SCOT activity was reduced to a comparable degree in all three patients, but in a transient expression assay in SCOT-deficient fibroblasts, cDNAs containing G219E and G324E produced no detectable activity, whereas V221M constructs yielded approximately 10% of the control peptide level and detectable specific activity. Interestingly, GS05 had the mildest clinical course reported to date and detectable levels of SCOT protein in fibroblasts.
Collapse
Affiliation(s)
- T Fukao
- Department of Pediatrics, Gifu University School of Medicine, Gifu, Gifu, 500-8076, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
McKean AL, Ke J, Song J, Che P, Achenbach S, Nikolau BJ, Wurtele ES. Molecular characterization of the non-biotin-containing subunit of 3-methylcrotonyl-CoA carboxylase. J Biol Chem 2000; 275:5582-90. [PMID: 10681539 DOI: 10.1074/jbc.275.8.5582] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biotin enzyme, 3-methylcrotonyl-CoA carboxylase (MCCase) (3-methylcrotonyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1. 4), catalyzes a pivotal reaction required for both leucine catabolism and isoprenoid metabolism. MCCase is a heteromeric enzyme composed of biotin-containing (MCC-A) and non-biotin-containing (MCC-B) subunits. Although the sequence of the MCC-A subunit was previously determined, the primary structure of the MCC-B subunit is unknown. Based upon sequences of biotin enzymes that use substrates structurally related to 3-methylcrotonyl-CoA, we isolated the MCC-B cDNA and gene of Arabidopsis. Antibodies directed against the bacterially produced recombinant protein encoded by the MCC-B cDNA react solely with the MCC-B subunit of the purified MCCase and inhibit MCCase activity. The primary structure of the MCC-B subunit shows the highest similarity to carboxyltransferase domains of biotin enzymes that use methyl-branched thiol esters as substrate or products. The single copy MCC-B gene of Arabidopsis is interrupted by nine introns. MCC-A and MCC-B mRNAs accumulate in all cell types and organs, with the highest accumulation occurring in rapidly growing and metabolically active tissues. In addition, these two mRNAs accumulate coordinately in an approximately equal molar ratio, and they each account for between 0.01 and 0.1 mol % of cellular mRNA. The sequence of the Arabidopsis MCC-B gene has enabled the identification of animal paralogous MCC-B cDNAs and genes, which may have an impact on the molecular understanding of the lethal inherited metabolic disorder methylcrotonylglyciuria.
Collapse
Affiliation(s)
- A L McKean
- Department of Biochemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Selmer T, Buckel W. Oxygen exchange between acetate and the catalytic glutamate residue in glutaconate CoA-transferase from Acidaminococcus fermentans. Implications for the mechanism of CoA-ester hydrolysis. J Biol Chem 1999; 274:20772-8. [PMID: 10409616 DOI: 10.1074/jbc.274.30.20772] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exchange of oxygen atoms between acetate, glutaryl-CoA, and the catalytic glutamate residue in glutaconate CoA-transferase from Acidaminococcus fermentans was analyzed using [(18)O(2)]acetate together with matrix-assisted laser desorption/ionization time of flight mass spectrometry of an appropriate undecapeptide. The exchange reaction was shown to be site-specific, reversible, and required both glutaryl-CoA and [(18)O(2)]acetate. The observed exchange is in agreement with the formation of a mixed anhydride intermediate between the enzyme and acetate. In contrast, with a mutant enzyme, which was converted to a thiol ester hydrolyase by replacement of the catalytic glutamate residue by aspartate, no (18)O uptake from H(2)(18)O into the carboxylate was detectable. This result is in accord with a mechanism in which the carboxylate of aspartate acts as a general base in activating a water molecule for hydrolysis of the thiol ester intermediate. This mechanism is further supported by the finding of a significant hydrolyase activity of the wild-type enzyme using acetyl-CoA as substrate, whereas glutaryl-CoA is not hydrolyzed. The small acetate molecule in the substrate binding pocket may activate a water molecule for hydrolysis of the nearby enzyme-CoA thiol ester.
Collapse
Affiliation(s)
- T Selmer
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, D-35032 Marburg, Germany.
| | | |
Collapse
|
65
|
Braune A, Bendrat K, Rospert S, Buckel W. The sodium ion translocating glutaconyl-CoA decarboxylase from Acidaminococcus fermentans: cloning and function of the genes forming a second operon. Mol Microbiol 1999; 31:473-87. [PMID: 10027965 DOI: 10.1046/j.1365-2958.1999.01189.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutaconyl-CoA decarboxylase from Acidaminococcus fermentans (clostridal cluster IX), a strict anaerobic inhabitant of animal intestines, uses the free energy of decarboxylation (delta G(o) approximately -30 kJ mol-1) in order to translocate Na+ from the inside through the cytoplasmic membrane. The proton, which is required for decarboxylation, most probably comes from the outside. The enzyme consists of four different subunits. The largest subunit, alpha or GcdA (65 kDa), catalyses the transfer of CO2 from glutaconyl-CoA to biotin covalently attached to the gamma-subunit, GcdC. The beta-subunit, GcdB, is responsible for the decarboxylation of carboxybiotin, which drives the Na+ translocation (approximate K(m) for Na+ 1 mM), whereas the function of the smallest subunit, delta or GcdD, is unclear. The gene gcdA is part of the 'hydroxyglutarate operon', which does not contain genes coding for the other three subunits. This paper describes that the genes, gcdDCB, are transcribed in this order from a distinct operon. The delta-subunit (GcdD, 12 kDa), with one potential transmembrane helix, probably serves as an anchor for GcdA. The biotin carrier (GcdC, 14 kDa) contains a flexible stretch of 50 amino acid residues (A26-A75), which consists of 34 alanines, 14 prolines, one valine and one lysine. The beta-subunit (GcdB, 39 kDa) comprising 11 putative transmembrane helices shares high amino acid sequence identities with corresponding deduced gene products from Veillonella parvula (80%, clostridial cluster IX), Archaeoglobus fulgidus (61%, Euryarchaeota), Propionigenium modestum (60%, clostridial cluster XIX), Salmonella typhimurium (51%, enterobacteria) and Klebsiella pneumoniae (50%, enterobacteria). Directly upstream of the promoter region of the gcdDCB operon, the 3' end of gctM was detected. It encodes a protein fragment with 73% sequence identity to the C-terminus of the alpha-subunit of methylmalonyl-CoA decarboxylase from V. parvula (MmdA). Hence, it appears that A. fermentans should be able to synthesize this enzyme by expression of gctM together with gdcDCB, but methylmalonyl-CoA decarboxylase activity could not be detected in cell-free extracts. Earlier observations of a second, lower affinity binding site for Na+ of glutaconyl-CoA decarboxylase (apparent K(m) 30 mM) were confirmed by identification of the cysteine residue 243 of GcdB between the putative hellces VII and VIII, which could be specifically protected from alkylation by Na+. The alpha-subunit was purified from an overproducing Escherichia coli strain and was characterized as a putative homotrimer able to catalyse the carboxylation of free biotin.
Collapse
Affiliation(s)
- A Braune
- Laboratorium für Mikrobiologie, Philipps-Universität, Marburg, Germany
| | | | | | | |
Collapse
|
66
|
Abstract
Computational biology exploits the evolutionary connectivity between proteins and protein families to predict structural and functional properties of uncharacterized gene products. In the past year, conceptual and statistical refinements have substantially improved algorithms for the detection of remote homologues. In conjunction with the rapid growth of biological databases, the global organization of proteins into sequence families, functional families and structural families has become both pertinent and feasible.
Collapse
Affiliation(s)
- L Holm
- European Molecular Biology Laboratory-European Bio-informatics Institute, Cambridge, UK
| |
Collapse
|
67
|
Liddington R, Frederick C. Paper Alert. Structure 1997. [DOI: 10.1016/s0969-2126(97)00226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|