51
|
Leulliot N, Quevillon-Cheruel S, Sorel I, Graille M, Meyer P, Liger D, Blondeau K, Janin J, van Tilbeurgh H. Crystal Structure of Yeast Allantoicase Reveals a Repeated Jelly Roll Motif. J Biol Chem 2004; 279:23447-52. [PMID: 15020593 DOI: 10.1074/jbc.m401336200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allantoicase (EC 3.5.3.4) catalyzes the conversion of allantoate into ureidoglycolate and urea, one of the final steps in the degradation of purines to urea. The mechanism of most enzymes involved in this pathway, which has been known for a long time, is unknown. In this paper we describe the three-dimensional crystal structure of the yeast allantoicase determined at a resolution of 2.6 A by single anomalous diffraction. This constitutes the first structure for an enzyme of this pathway. The structure reveals a repeated jelly roll beta-sheet motif, also present in proteins of unrelated biochemical function. Allantoicase has a hexameric arrangement in the crystal (dimer of trimers). Analysis of the protein sequence against the structural data reveals the presence of two totally conserved surface patches, one on each jelly roll motif. The hexameric packing concentrates these patches into conserved pockets that probably constitute the active site.
Collapse
Affiliation(s)
- Nicolas Leulliot
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire (CNRS-Unité Mixte de Recherche 8619), Université Paris-Sud, Bâtiment 430, 91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Hanson BL, Harp JM, Bunick GJ. The well-tempered protein crystal: annealing macromolecular crystals. Methods Enzymol 2004; 368:217-35. [PMID: 14674276 DOI: 10.1016/s0076-6879(03)68012-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- B Leif Hanson
- University of Tennessee Oak Ridge, Graduate School of Genome Science and Technology, Life Sciences Division, Oak Ridge National Laboratory, PO Box 2009, MS 8080, Oak Ridge, Tennessee 37831, USA
| | | | | |
Collapse
|
53
|
McIninch JK, McIninch JD, May SW. Catalysis, stereochemistry, and inhibition of ureidoglycolate lyase. J Biol Chem 2003; 278:50091-100. [PMID: 14506266 DOI: 10.1074/jbc.m303828200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ureidoglycolate lyase (UGL, EC 4.3.2.3) catalyzes the breakdown of ureidoglycolate to glyoxylate and urea, which is the final step in the catabolic pathway leading from purines to urea. Although the sequence of enzymatic steps was worked out nearly 40 years ago, the stereochemistry of the uric acid degradation pathway and the catalytic properties of UGL have remained very poorly described. We now report the first direct investigation of the absolute stereochemistry of UGL catalysis. Using chiral chromatographic analyses with substrate enantiomers, we demonstrate that UGL catalysis is stereospecific for substrates with the (S)-hydroxyglycine configuration. The first potent competitive inhibitors for UGL are reported here. These inhibitors are compounds which contain a 2,4-dioxocarboxylate moiety, designed to mimic transient species produced during lyase catalysis. The most potent inhibitor, 2,4-dioxo-4-phenylbutanoic acid, exhibits a KI value of 2.2 nM and is therefore among the most potent competitive inhibitors ever reported for a lyase enzyme. New synthetic alternate substrates for UGL, which are acyl-alpha-hydroxyglycine compounds, are described. Based on these alternate substrates, we introduce the first assay method for monitoring UGL activity directly. Finally, we report the first putative primary nucleotide and derived peptide sequence for UGL. This sequence exhibits a high level of similarity to the fumarylacetoacetate hydrolase family of proteins. Close mechanistic similarities can be visualized between the chemistries of ureidoglycolate lyase and fumarylacetoacetate hydrolase catalysis.
Collapse
Affiliation(s)
- Jane K McIninch
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | | | |
Collapse
|
54
|
Hamelryck T. Efficient identification of side-chain patterns using a multidimensional index tree. Proteins 2003; 51:96-108. [PMID: 12596267 DOI: 10.1002/prot.10338] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Convergent evolution often produces similar functional sites in nonhomologous proteins. The identification of these sites can make it possible to infer function from structure, to pinpoint the location of a functional site, to identify enzymes with similar enzymatic mechanisms, or to discover putative functional sites. In this article, a novel method is presented that (a) queries a database of protein structures for the occurrence of a given side chain pattern and (b) identifies interesting side-chain patterns in a given structure. For efficiency and to make a robust statistical evaluation of the significance of a similarity possible, patterns of three residues (or triads) are considered. Each triad is encoded as a high-dimensional vector and stored in an SR (Sphere/Rectangle) tree, an efficient multidimensional index tree. Identifying similar triads can then be reformulated as identifying neighboring vectors. The method deals with many features that otherwise complicate the identification of meaningful patterns: shifted backbone positions, conservative substitutions, various atom label ambiguities and mirror imaged geometries. The combined treatment of these features leads to the identification of previously unidentified patterns. In particular, the identification of mirror imaged side-chain patterns is unique to the here-described method. Interesting triads in a given structure can be identified by extracting all triads and comparing them with a database of triads involved in ligand binding. The approach was tested by an all-against-all comparison of unique representatives of all SCOP superfamilies. New findings include mirror imaged metal binding and active sites, and a putative active site in bacterial luciferase.
Collapse
Affiliation(s)
- Thomas Hamelryck
- ULTR Department, Vrije Universiteit Brussel (VUB), Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Brussel, Belgium.
| |
Collapse
|
55
|
|
56
|
Abstract
This study reports the development of a mutation screening strategy for tyrosinaemia type I, and the identification of six novel mutations in the FAA gene.
Collapse
Affiliation(s)
- S K Heath
- Clinical Chemistry Department, Birmingham Children's Hospital, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
57
|
Arranz JA, Piñol F, Kozak L, Pérez-Cerdá C, Cormand B, Ugarte M, Riudor E. Splicing mutations, mainly IVS6-1(G>T), account for 70% of fumarylacetoacetate hydrolase (FAH) gene alterations, including 7 novel mutations, in a survey of 29 tyrosinemia type I patients. Hum Mutat 2002; 20:180-8. [PMID: 12203990 DOI: 10.1002/humu.10084] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hereditary tyrosinemia type I (HTI) is an autosomal recessive disease characterized by a deficiency in fumarylacetoacetate hydrolase (FAH) activity. In this work, the FAH genotype was established in a group of 29 HTI patients, most of them from the Mediterranean area. We identified seven novel mutations-IVS8-1(G>A, IVS10-2(A>T), 938delC, E6/I6del26, W78X, Q328X, and G343W-and two previously described mutations-IVS6-1(G>T) and IVS12+5(G>A). Fully 92.8% of the patients were carriers of at least one splice site mutation, with IVS6-1(G>T) accounting for 58.9% of the total number of alleles. The splice mutation group of patients showed heterogeneous phenotypic patterns ranging from acute forms with severe liver malfunction to chronic forms with renal manifestations and slow progressive hepatic alterations. Qualitative FAH cDNA expression was the same in all IVS6-1(G>T) homozygous patients regardless of their clinical picture. One patient with a heterozygous combination of a nonsense (Q328X) and a frameshift (938delC) mutation showed an atypical clinical picture of hypotonia and repeated infections. Despite the high prevalence of IVS12+5(G>A) in the northwestern European population, we found only two patients with this mutation in our group.
Collapse
Affiliation(s)
- J A Arranz
- Unitat de Malalties Neurometabòliques, Hospital Materno-Infantil Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
58
|
Johnson GR, Jain RK, Spain JC. Origins of the 2,4-dinitrotoluene pathway. J Bacteriol 2002; 184:4219-32. [PMID: 12107140 PMCID: PMC135200 DOI: 10.1128/jb.184.15.4219-4232.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 05/06/2002] [Indexed: 11/20/2022] Open
Abstract
The degradation of synthetic compounds requires bacteria to recruit and adapt enzymes from pathways for naturally occurring compounds. Previous work defined the steps in 2,4-dinitrotoluene (2,4-DNT) metabolism through the ring fission reaction. The results presented here characterize subsequent steps in the pathway that yield the central metabolic intermediates pyruvate and propionyl coenzyme A (CoA). The genes encoding the degradative pathway were identified within a 27-kb region of DNA cloned from Burkholderia cepacia R34, a strain that grows using 2,4-DNT as a sole carbon, energy, and nitrogen source. Genes for the lower pathway in 2,4-DNT degradation were found downstream from dntD, the gene encoding the extradiol ring fission enzyme of the pathway. The region includes genes encoding a CoA-dependent methylmalonate semialdehyde dehydrogenase (dntE), a putative NADH-dependent dehydrogenase (ORF13), and a bifunctional isomerase/hydrolase (dntG). Results from analysis of the gene sequence, reverse transcriptase PCR, and enzyme assays indicated that dntD dntE ORF13 dntG composes an operon that encodes the lower pathway. Additional genes that were uncovered encode the 2,4-DNT dioxygenase (dntAaAbAcAd), methylnitrocatechol monooxygenase (dntB), a putative LysR-type transcriptional (ORF12) regulator, an intradiol ring cleavage enzyme (ORF3), a maleylacetate reductase (ORF10), a complete ABC transport complex (ORF5 to ORF8), a putative methyl-accepting chemoreceptor protein (ORF11), and remnants from two transposable elements. Some of the additional gene products might play as-yet-undefined roles in 2,4-DNT degradation; others appear to remain from recruitment of the neighboring genes. The presence of the transposon remnants and vestigial genes suggests that the pathway for 2,4-DNT degradation evolved relatively recently because the extraneous elements have not been eliminated from the region.
Collapse
Affiliation(s)
- Glenn R Johnson
- Air Force Research Laboratory, U.S. Air Force, Tyndall Air Force Base, Florida 32403, USA
| | | | | |
Collapse
|
59
|
Dreumont N, Poudrier JA, Bergeron A, Levy HL, Baklouti F, Tanguay RM. A missense mutation (Q279R) in the fumarylacetoacetate hydrolase gene, responsible for hereditary tyrosinemia, acts as a splicing mutation. BMC Genet 2001; 2:9. [PMID: 11476670 PMCID: PMC35353 DOI: 10.1186/1471-2156-2-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2001] [Accepted: 06/29/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tyrosinemia type I, the most severe disease of the tyrosine catabolic pathway is caused by a deficiency in fumarylacetoacetate hydrolase (FAH). A patient showing few of the symptoms associated with the disease, was found to be a compound heterozygote for a splice mutation, IVS6-1g->t, and a putative missense mutation, Q279R. Analysis of FAH expression in liver sections obtained after resection for hepatocellular carcinoma revealed a mosaic pattern of expression. No FAH was found in tumor regions while a healthy region contained enzyme-expressing nodules. RESULTS Analysis of DNA from a FAH expressing region showed that the expression of the protein was due to correction of the Q279R mutation. RT-PCR was used to assess if Q279R RNA was produced in the liver cells and in fibroblasts from the patient. Normal mRNA was found in the liver region where the mutation had reverted while splicing intermediates were found in non-expressing regions suggesting that the Q279R mutation acted as a splicing mutation in vivo. Sequence of transcripts showed skipping of exon 8 alone or together with exon 9. Using minigenes in transfection assays, the Q279R mutation was shown to induce skipping of exon 9 when placed in a constitutive splicing environment. CONCLUSION These data suggest that the putative missense mutation Q279R in the FAH gene acts as a splicing mutation in vivo. Moreover FAH expression can be partially restored in certain liver cells as a result of a reversion of the Q279R mutation and expansion of the corrected cells.
Collapse
Affiliation(s)
- Natacha Dreumont
- Laboratory of Cellular and Developmental Genetics, Dept Medicine, Pavillon Marchand, Université Laval, and Centre de Recherche du CHUQ (Pav CHUL), Ste-Foy, Québec, Canada
| | - Jacques A Poudrier
- Laboratory of Cellular and Developmental Genetics, Dept Medicine, Pavillon Marchand, Université Laval, and Centre de Recherche du CHUQ (Pav CHUL), Ste-Foy, Québec, Canada
| | - Anne Bergeron
- Laboratory of Cellular and Developmental Genetics, Dept Medicine, Pavillon Marchand, Université Laval, and Centre de Recherche du CHUQ (Pav CHUL), Ste-Foy, Québec, Canada
| | - Harvey L Levy
- Div Genetics, Children's Hospital, and Dept Pediatrics, Harvard Medical School, Boston, Mass 02115, USA
| | - Faouzi Baklouti
- CNRS UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Université Lyon 1, Villeurbanne 69622, France
| | - Robert M Tanguay
- Laboratory of Cellular and Developmental Genetics, Dept Medicine, Pavillon Marchand, Université Laval, and Centre de Recherche du CHUQ (Pav CHUL), Ste-Foy, Québec, Canada
| |
Collapse
|
60
|
Nandhagopal N, Yamada A, Hatta T, Masai E, Fukuda M, Mitsui Y, Senda T. Crystal structure of 2-hydroxyl-6-oxo-6-phenylhexa-2,4-dienoic acid (HPDA) hydrolase (BphD enzyme) from the Rhodococcus sp. strain RHA1 of the PCB degradation pathway. J Mol Biol 2001; 309:1139-51. [PMID: 11399084 DOI: 10.1006/jmbi.2001.4737] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2-Hydroxyl-6-oxo-6-phenylhexa-2,4-dienoic acid (HPDA) hydrolase (the BphD enzyme) hydrolyzes a ring-cleavage product of an aromatic compound generated in a biphenyl/polychlorinated biphenyl (PCB) degradation pathway of bacteria. The crystal structure of the BphD enzyme has been determined at 2.4 A resolution by the multiple isomorphous replacement method. The final refined model of the BphD enzyme yields an R-factor of 17.5 % at 2.4 A resolution with reasonable geometry. The BphD enzyme is an octameric enzyme with a 422 point-group symmetry. The subunit can be divided into core and lid domains. The active site of the enzyme is situated in the substrate-binding pocket, which is located between the two domains. The substrate-binding pocket can be divided into hydrophobic and hydrophilic regions. This feature of the pocket seems to be necessary for substrate binding, as the substrate is composed of hydrophilic and hydrophobic parts. The proposed orientation of the substrate seems to be consistent with the general catalytic mechanism of alpha/beta-hydrolases.
Collapse
Affiliation(s)
- N Nandhagopal
- Division of Protein Engineering, Nagaoka University of Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Bateman RL, Bhanumoorthy P, Witte JF, McClard RW, Grompe M, Timm DE. Mechanistic inferences from the crystal structure of fumarylacetoacetate hydrolase with a bound phosphorus-based inhibitor. J Biol Chem 2001; 276:15284-91. [PMID: 11154690 DOI: 10.1074/jbc.m007621200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) catalyzes the hydrolytic cleavage of a carbon-carbon bond in fumarylacetoacetate to yield fumarate and acetoacetate as the final step of Phe and Tyr degradation. This unusual reaction is an essential human metabolic function, with loss of FAH activity causing the fatal metabolic disease hereditary tyrosinemia type I (HT1). An enzymatic mechanism involving a catalytic metal ion, a Glu/His catalytic dyad, and a charged oxyanion hole was previously proposed based on recently determined FAH crystal structures. Here we report the development and characterization of an FAH inhibitor, 4-(hydroxymethylphosphinoyl)-3-oxo-butanoic acid (HMPOBA), that competes with the physiological substrate with a K(i) of 85 microM. The crystal structure of FAH complexed with HMPOBA refined at 1.3-A resolution reveals the molecular basis for the competitive inhibition, supports the proposed formation of a tetrahedral alkoxy transition state intermediate during the FAH catalyzed reaction, and reveals a Mg(2+) bound in the enzyme's active site. The analysis of FAH structures corresponding to different catalytic states reveals significant active site side-chain motions that may also be related to catalytic function. Thus, these results advance the understanding of an essential catabolic reaction associated with a fatal metabolic disease and provide insight into the structure-based development of FAH inhibitors.
Collapse
Affiliation(s)
- R L Bateman
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, and the Department of Chemistry, Reed College, Portland, Oregon, USA
| | | | | | | | | | | |
Collapse
|
62
|
Bergeron A, D'Astous M, Timm DE, Tanguay RM. Structural and functional analysis of missense mutations in fumarylacetoacetate hydrolase, the gene deficient in hereditary tyrosinemia type 1. J Biol Chem 2001; 276:15225-31. [PMID: 11278491 DOI: 10.1074/jbc.m009341200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disease caused by a deficiency of the enzyme involved in the last step of tyrosine degradation, fumarylacetoacetate hydrolase (FAH). Thus far, 34 mutations in the FAH gene have been reported in various HT1 patients. Site-directed mutagenesis of the FAH cDNA was used to investigate the effects of eight missense mutations found in HTI patients on the structure and activity of FAH. Mutated FAH proteins were expressed in Escherichia coli and in mammalian CV-1 cells. Mutations N16I, F62C, A134D, C193R, D233V, and W234G lead to enzymatically inactive FAH proteins. Two mutations (R341W, associated with the pseudo-deficiency phenotype, and Q279R) produced proteins with a level of activity comparable to the wild-type enzyme. The N16I, F62C, C193R, and W234G variants were enriched in an insoluble cellular fraction, suggesting that these amino acid substitutions interfere with the proper folding of the enzyme. Based on the tertiary structure of FAH, on circular dichroism data, and on solubility measurements, we propose that the studied missense mutations cause three types of structural effects on the enzyme: 1) gross structural perturbations, 2) limited conformational changes in the active site, and 3) conformational modifications with no significant effect on enzymatic activity.
Collapse
Affiliation(s)
- A Bergeron
- Laboratory of Cell and Developmental Genetics, Department of Medicine, Pavillon C.-E. Marchand, Université Laval, Ste-Foy, Québec G1K 7P4, Canada
| | | | | | | |
Collapse
|
63
|
Grogan G, Roberts GA, Bougioukou D, Turner NJ, Flitsch SL. The desymmetrization of bicyclic beta -diketones by an enzymatic retro-Claisen reaction. A new reaction of the crotonase superfamily. J Biol Chem 2001; 276:12565-72. [PMID: 11278926 DOI: 10.1074/jbc.m011538200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme 6-oxocamphor hydrolase, which catalyzes the desymmetrization of 6-oxocamphor to yield (2R,4S)-alpha-campholinic acid, has been purified with a factor of 35.7 from a wild type strain of Rhodococcus sp. NCIMB 9784 grown on (1R)-(+)-camphor as the sole carbon source. The enzyme has a subunit molecular mass of 28,488 Da by electrospray mass spectrometry and a native molecular mass of approximately 83,000 Da indicating that the active protein is trimeric. The specific activity was determined to be 357.5 units mg(-)1, and the K(m) was determined to be 0.05 mm for the natural substrate. The N-terminal amino acid sequence was obtained from the purified protein, and using this information, the gene encoding the enzyme was cloned. The translation of the gene was found to bear significant homology to the crotonase superfamily of enzymes. The gene is closely associated with an open reading frame encoding a ferredoxin reductase that may be involved in the initial step in the biodegradation of camphor. A mechanism for 6-oxocamphor hydrolase based on sequence homology and the known mechanism of the crotonase enzymes is proposed.
Collapse
Affiliation(s)
- G Grogan
- Edinburgh Centre for Protein Technology, Department of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom
| | | | | | | | | |
Collapse
|
64
|
Abstract
In only a few years, multiple wavelength anomalous diffraction (MAD) phasing has advanced from an esoteric technique used in only a few favorable cases to the method of choice for solving new macromolecular structures. Before 1994, MAD phasing had been used for fewer than a dozen new structure determinations. In 1999 alone, well over 100 new structures were determined by MAD phasing. The meteoric rise in MAD applications resulted from the availability of new synchrotron beamlines, equipped with low bandpass optics, fast readout detectors, cryogenic cooling and user-friendly interfaces. The power of MAD phasing has been amplified by the availability of new computer programs for locating the positions of the anomalous scattering atoms and for calculating phases from the experimental data. Phasing by anomalous scattering techniques has been applied to structures as large as 640 kDa and 120 selenium atoms in the asymmetric unit. The practical size limitation for application of MAD phasing techniques has not yet been encountered.
Collapse
Affiliation(s)
- S E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
65
|
Paper Alert. Structure 1999. [DOI: 10.1016/s0969-2126(00)80034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|