51
|
Easley CJ, Karlinsey JM, Landers JP. On-chip pressure injection for integration of infrared-mediated DNA amplification with electrophoretic separation. LAB ON A CHIP 2006; 6:601-10. [PMID: 16652175 DOI: 10.1039/b600039h] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) membrane valves were utilized for diaphragm pumping on a PDMS-glass hybrid microdevice in order to couple infrared-mediated DNA amplification with electrophoretic separation of the products in a single device. Specific amplification products created during non-contact, infrared (IR) mediated polymerase chain reaction (PCR) were injected via chip-based diaphragm pumping into an electrophoretic separation channel. Channel dimensions were designed for injection plug shaping via preferential flow paths, which aided in minimizing the plug widths. Unbiased injection of sample could be achieved in as little as 190 ms, decreasing the time required with electrokinetic injection by two orders of magnitude. Additionally, sample stacking was promoted using laminar or biased-laminar loading to co-inject either water or low ionic strength DNA marker solution along with the PCR-amplified sample. Complete baseline resolution (Res = 2.11) of the 80- and 102-bp fragments of pUC-18 DNA marker solution was achieved, with partially resolved 257- and 267-bp fragments (Res = 0.56), in a separation channel having an effective length of only 3.0 cm. This resolution was deemed adequate for many PCR amplicon separations, with the added advantage of short separation time-typically complete in <120 s. Decreasing the amount of glass surrounding the PCR chamber reduced the DNA amplification time, yielding a further enhancement in analysis speed, with heating and cooling rates as high as 13.4 and -6.4 degrees C s(-1), respectively. With the time requirements greatly reduced for each step, it was possible to seamlessly couple IR-mediated amplification, sample injection, and separation/detection of a 278-bp fragment from the invA gene of <1000 starting copies of Salmonella typhimurium DNA in approximately 12 min on a single device, representing the fastest PCR-ME integration achieved to date.
Collapse
Affiliation(s)
- Christopher J Easley
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
52
|
Giordano BC, Horsman KM, Burgi DS, Ferrance JP, Landers JP. Method for determining intracapillary solution temperatures: Application to sample zone heating for enhanced fluorescent labeling of proteins. Electrophoresis 2006; 27:1355-62. [PMID: 16518780 DOI: 10.1002/elps.200500633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fundamental premise in CE relies heavily on the assumption that temperature within the capillary is accurately known and controlled. Theoretical calculations for sample zone and BGE temperature during voltage application are presented. We propose that transient elevation of the sample zone temperature allowed for denaturing and renaturing of proteins in the presence of a fluorescent dynamic labeling reagent. Comparison with the extent of labeling possible with standard on-column dynamic labeling in the absence of elevated temperatures showed order-of-magnitude increases in the fluorescence detection sensitivity of proteins with low surface hydrophobicity. As a result, this represents an example where excess heating in the sample zone during electrophoresis can be exploited advantageously.
Collapse
Affiliation(s)
- Braden C Giordano
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | | |
Collapse
|
53
|
Legendre LA, Bienvenue JM, Roper MG, Ferrance JP, Landers JP. A Simple, Valveless Microfluidic Sample Preparation Device for Extraction and Amplification of DNA from Nanoliter-Volume Samples. Anal Chem 2006; 78:1444-51. [PMID: 16503592 DOI: 10.1021/ac0516988] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A glass microdevice has been constructed for the on-line integration of solid-phase extraction (SPE) of DNA and polymerase chain reaction (PCR) on a single chip. The chromatography required for SPE in the microfluidic sample preparation device (muSPD) was carried out in a silica bead/sol-gel SPE bed, where the purified DNA was eluted directly into a downstream chamber where conventional thermocycling allowed for PCR amplification of specific DNA target sequences. Through rapid, simple passivation of the PCR chamber with a silanizing reagent, reproducible DNA extraction and amplification was demonstrated from complex biological matrixes in a manner amenable to any research laboratory, using only a syringe pump and a conventional thermocycler. The muSPD allowed for SPE concentration of DNA from 600 nL of blood coupled to subsequent on-chip amplification that yielded a detectable amplicon; this simple device can be applied to a variety of routine genetic analyses without the need for sophisticated instrumentation. In addition, the applicability of these developments to nonconventional thermocycling was demonstrated through the use of noncontact, IR-mediated heating. This was exemplified with the isolation of DNA from an anthrax spore-spiked nasal swab and the subsequent on-chip amplification of target DNA sequences in a total processing time of only 25 min.
Collapse
Affiliation(s)
- Lindsay A Legendre
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | |
Collapse
|
54
|
Zhang C, Xu J, Ma W, Zheng W. PCR microfluidic devices for DNA amplification. Biotechnol Adv 2005; 24:243-84. [PMID: 16326063 DOI: 10.1016/j.biotechadv.2005.10.002] [Citation(s) in RCA: 444] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 10/02/2005] [Accepted: 10/24/2005] [Indexed: 11/23/2022]
Abstract
The miniaturization of biological and chemical analytical devices by micro-electro-mechanical-systems (MEMS) technology has posed a vital influence on such fields as medical diagnostics, microbial detection and other bio-analysis. Among many miniaturized analytical devices, the polymerase chain reaction (PCR) microchip/microdevices are studied extensively, and thus great progress has been made on aspects of on-chip micromachining (fabrication, bonding and sealing), choice of substrate materials, surface chemistry and architecture of reaction vessel, handling of necessary sample fluid, controlling of three or two-step temperature thermocycling, detection of amplified nucleic acid products, integration with other analytical functional units such as sample preparation, capillary electrophoresis (CE), DNA microarray hybridization, etc. However, little has been done on the review of above-mentioned facets of the PCR microchips/microdevices including the two formats of flow-through and stationary chamber in spite of several earlier reviews [Zorbas, H. Miniature continuous-flow polymerase chain reaction: a breakthrough? Angew Chem Int Ed 1999; 38 (8):1055-1058; Krishnan, M., Namasivayam, V., Lin, R., Pal, R., Burns, M.A. Microfabricated reaction and separation systems. Curr Opin Biotechnol 2001; 12:92-98; Schneegabeta, I., Köhler, J.M. Flow-through polymerase chain reactions in chip themocyclers. Rev Mol Biotechnol 2001; 82:101-121; deMello, A.J. DNA amplification: does 'small' really mean 'efficient'? Lab Chip 2001; 1: 24N-29N; Mariella, Jr. R. MEMS for bio-assays. Biomed Microdevices 2002; 4 (2):77-87; deMello AJ. Microfluidics: DNA amplification moves on. Nature 2003; 422:28-29; Kricka, L.J., Wilding, P. Microchip PCR. Anal BioAnal Chem 2003; 377:820-825]. In this review, we survey the advances of the above aspects among the PCR microfluidic devices in detail. Finally, we also illuminate the potential and practical applications of PCR microfluidics to some fields such as microbial detection and disease diagnosis, based on the DNA/RNA templates used in PCR microfluidics. It is noted, especially, that this review is to help a novice in the field of on-chip PCR amplification to more easily find the original papers, because this review covers almost all of the papers related to on-chip PCR microfluidics.
Collapse
Affiliation(s)
- Chunsun Zhang
- Micro-Energy System Laboratory, Guangzhou Institute of Energy Conversion, The Chinese Academy of Sciences, No. 1 Nengyuan Road, Wushan, Tianhe District, Guangzhou 510640, PR China
| | | | | | | |
Collapse
|
55
|
POULSEN CLAUSR, EL-ALI JAMIL, PERCH-NIELSEN IVANR, BANG DANGDUONG, TELLEMAN PIETER, WOLFF ANDERS. DETECTION OF A PUTATIVE VIRULENCE cadF GENE OF CAMPYLOBACTER JEJUNI OBTAINED FROM DIFFERENT SOURCES USING A MICROFABRICATED PCR CHIP. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1745-4581.2005.00013.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
56
|
Cheng JY, Hsieh CJ, Chuang YC, Hsieh JR. Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient. Analyst 2005; 130:931-40. [PMID: 15912243 DOI: 10.1039/b501061f] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study develops a novel temperature cycling strategy for executing temperature cycling reactions in laser-etched poly(methylmethacrylate) (PMMA) microfluidic chips. The developed microfluidic chip is circular in shape and is clamped in contact with a circular ITO heater chip of an equivalent diameter. Both chips are fabricated using an economic and versatile laser scribing process. Using this arrangement, a self-sustained radial temperature gradient is generated within the microfluidic chip without the need to thermally isolate the different temperature zones. This study demonstrates the temperature cycling capabilities of the reported microfluidic device by a polymerase chain reaction (PCR) process using ribulose 1,5-bisphosphate carboxylase large subunit (rbcL) gene as a template. The temperature ramping rate of the sample inside the microchannel is determined from the spectral change of a thermochromic liquid crystal (TLC) solution pumped into the channel. The present results confirm that a rapid thermal cycling effect is achieved despite the low thermal conductivity of the PMMA substrate. Using IR thermometry, it is found that the radial temperature gradient of the chip is approximately 2 degrees C mm(-1). The simple system presented in this study has considerable potential for miniaturizing complex integrated reactions requiring different cycling parameters.
Collapse
Affiliation(s)
- Ji-Yen Cheng
- Research Center for Applied Sciences, 128 Sec. 2 Academia Rd., Taipei 11529, Taiwan.
| | | | | | | |
Collapse
|
57
|
Horsman KM, Barker SLR, Ferrance JP, Forrest KA, Koen KA, Landers JP. Separation of Sperm and Epithelial Cells in a Microfabricated Device: Potential Application to Forensic Analysis of Sexual Assault Evidence. Anal Chem 2005; 77:742-9. [PMID: 15679339 DOI: 10.1021/ac0486239] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Forensic DNA analysis of sexual assault evidence requires separation of DNA from epithelial (victim) and sperm (perpetrator) cells. The conventional method used by crime laboratories, which is termed "differential extraction", is a time-consuming process. To supplant the conventional process, separation of sperm from a biological mixture containing epithelial cells has been demonstrated on a microfluidic device. This separation utilizes the differential physical properties of the cells that result in settling of the epithelial cells to the bottom of the inlet reservoir and subsequent adherence to the glass substrate. As a result, low flow rates can be used to separate the sperm cells from the epithelial cell-containing biological mixture. Following cell separation on the microdevice, DNA extraction, amplification, and separation were performed using conventional laboratory methods, showing that the cell separation product in the outlet reservoir was of male origin. The reported cell separation has the potential to impact the forensic DNA analysis backlog of sexual assault cases by circumventing the time-consuming conventional differential extraction procedure.
Collapse
Affiliation(s)
- Katie M Horsman
- Departments of Chemistry and Pathology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | | | | |
Collapse
|
58
|
Easley CJ, Legendre LA, Roper MG, Wavering TA, Ferrance JP, Landers JP. Extrinsic Fabry−Perot Interferometry for Noncontact Temperature Control of Nanoliter-Volume Enzymatic Reactions in Glass Microchips. Anal Chem 2005; 77:1038-45. [PMID: 15858983 DOI: 10.1021/ac048693f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical fiber extrinsic Fabry-Perot interferometry (EFPI) was investigated as a noncontact temperature sensor and utilized for regulating the temperature of small-volume solutions in microchips. Interference pattern analysis determined the optical path lengths (OPL) associated with reflections from various surfaces on or in the microchip, in particular, from gold sputtered on the bottom of a microchannel. Since OPL is directly proportional to refractive index, which is dependent on solution temperature, the EFPI sensor was capable of noncontact monitoring of solution temperature simply from alterations in the measured path length. Calibration of the sensor against a thermocouple was performed while heating the microchip in a noncontact manner with an IR lamp. The combination of EFPI temperature sensor, IR-mediated heating, and air cooling allowed a fully noncontact system for small-volume temperature control in microchip structures, and its utility was illustrated by optimal digestion of DNA by a temperature-dependent restriction endonuclease in 320 nL. The functionality and simplicity of the microchip EFPI temperature sensor was enhanced by replacing the prebonding sputtered gold with a tunable, chemically plated semireflective silver coating created in situ after chip fabrication. This provided an 8-fold improvement in the lowest detectable temperature change (deltaT = 0.1 degrees C), facilitated primarily by enhanced reflection from both the bottom and top surfaces of the microchannel. This approach for controlling micro- and nanoscale reactions--with heating, cooling, and temperature control being carried out in a completely noncontact fashion--provides an accurate and sensitive method for executing chemical and biochemical reactions in microchips.
Collapse
Affiliation(s)
- Christopher J Easley
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | |
Collapse
|
59
|
Brenan C, Morrison T. High throughput, nanoliter quantitative PCR. DRUG DISCOVERY TODAY. TECHNOLOGIES 2005; 2:247-53. [PMID: 24981943 DOI: 10.1016/j.ddtec.2005.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The recent completion of the human genome sequence has increased the need for high throughput quantitative transcription analysis. Quantitative PCR is an alternative to microarrays for accurate and precise expression analysis with single transcript copy sensitivity. A review of current research in miniaturized, high throughput qPCR suggests this technique will soon be a viable option to hybridization microarrays for large-scale genetic analyses.:
Collapse
Affiliation(s)
- Colin Brenan
- BioTrove Inc., 12 Gill Street, Suite 4000, Woburn, MA 01810, USA.
| | - Tom Morrison
- BioTrove Inc., 12 Gill Street, Suite 4000, Woburn, MA 01810, USA
| |
Collapse
|
60
|
Footz T, Somerville MJ, Tomaszewski R, Sprysak KA, Backhouse CJ. Heteroduplex-based genotyping with microchip electrophoresis and dHPLC. ACTA ACUST UNITED AC 2004; 7:283-93. [PMID: 15000804 DOI: 10.1089/109065703322783635] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work compares the methods of mutation detection via denaturing high-performance liquid chromatography (dHPLC) and a microchip-based heteroduplex analysis (HA) method. The mutations analyzed were 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 with, as additional examples, 188del11 and 5396 + 1G --> A in BRCA1. Our HA method is based upon the use of a replaceable, highly denaturing sieving matrix that has dynamic coating capabilities, rendering our method relatively insensitive to contamination. We have found significant advantages in the microchip analysis in terms of reagent consumption, ease of use, versatility, simplicity of the protocol, the lack of constraints upon sample preparation or content, and the lack of parameters that need be adjusted. Although HA methods have a lower sensitivity than that of dHPLC, the electropherograms of the present HA method appear to provide more information and may allow mutations within the same amplicon to be distinguished. Although the dHPLC method has a remarkably high sensitivity, with this sensitivity there come constraints that may prevent it, in its present form, from being used in some applications, particularly those involving higher levels of integration. The advantages of the present HA method, along with recent developments in microchip-based single-nucleotide polymorphism (SNP) detection and high-throughput arrays, suggest that microchip-based systems could provide compact and integrated platforms capable of large-scale genotyping or mutational screening.
Collapse
Affiliation(s)
- Tim Footz
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4
| | | | | | | | | |
Collapse
|
61
|
Developments toward a complete micro-total analysis system for Duchenne muscular dystrophy diagnosis. Anal Chim Acta 2003. [DOI: 10.1016/j.aca.2003.08.067] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
62
|
Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V. Oligonucleotide-Functionalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor for DNA Analysis by Hybridization. Anal Chem 2003; 75:4155-60. [PMID: 14632129 DOI: 10.1021/ac034256+] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highly specific molecular recognition properties of oligonucleotides are combined with the unique optical properties of gold nanoparticles for the development of a dry-reagent strip-type biosensor that enables visual detection of double stranded DNA within minutes. The assay does not require instrumentation and avoids the multiple incubation and washing steps performed in most current assays. Gold nanoparticle reporters with oligo(dT) attached to their surface form an integral part of the strip. Biotinylated PCR products (233 bp or 495 bp) are hybridized (5 min) with a poly(dA)-tailed oligo and applied on the strip, which is then immersed in the appropriate buffer. As the buffer migrates upward, it rehydrates the nanoparticles that are linked to the target DNA through poly(dA)/(dT) hybridization. Capture of the hybrids by immobilized streptavidin in the test zone of the strip generates a characteristic red band. A second red band is formed, by hybridization, in the control zone of the strip to indicate proper test performance. The sensor offers at least 8 times higher detectability than ethidium bromide staining of agarose gels and provides confirmation of the amplified fragments. Quantitative data are obtained by densitometric analysis of the bands. As low as 2 fmol of amplified DNA were detectable by the strip sensor. Also, 500 copies of prostate-specific antigen cDNA were detected by combining PCR and the strip sensor. The sensor was used successfully for detection of hepatitis C virus in plasma samples from 20 patients. The strip detected 16 out of 16 positive samples and gave no signal for 4 samples that were negative for the virus. To our knowledge, this is the first dry-reagent system that makes use of oligonucleotide-conjugated gold nanoparticles as probes.
Collapse
|
63
|
Lenigk R, Liu RH, Athavale M, Chen Z, Ganser D, Yang J, Rauch C, Liu Y, Chan B, Yu H, Ray M, Marrero R, Grodzinski P. Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays. Anal Biochem 2002; 311:40-9. [PMID: 12441151 DOI: 10.1016/s0003-2697(02)00391-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Conventional DNA hybridization assay kinetics depends solely on the diffusion of target to surface-bound probes, causing long hybridization times. In this study, we examined the possibilities of accelerating the hybridization process by using microfluidic channels ("biochannels") made of polycarbonate, optionally with an integrated pump. We produced two different devices to study these effects: first, hybridization kinetics was investigated by using an eSensor electrochemical DNA detection platform allowing kinetic measurements in homogenous solution. We fabricated an integrated cartridge for the chip comprising the channel network and a micropump for the oscillation of the hybridization mixture to further overcome diffusion limitations. As a model assay, we used an assay for the detection of single-nucleotide polymorphisms in the HFE-H gene. Second, based on the biochannel approach, we constructed a plastic microfluidic chip with a network of channels for optical detection of fluorescent-labeled targets. An assay for the simultaneous detection of four pathogenic bacteria surrogate strains from multiple samples was developed for this device. We observed high initial hybridization velocities and a fast attainment of equilibrium for the biochannel with integrated pump. Experimental results were compared with predictions generated by computer simulations.
Collapse
Affiliation(s)
- Ralf Lenigk
- Motorola PSRL Microfluidics Laboratory, Tempe, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Geoun MB, Choi KS, Lee YI, Kim Y. Characterization of single-stranded DNA separation by capillary gel electrophoresis. Microchem J 2002. [DOI: 10.1016/s0026-265x(02)00082-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
65
|
Abstract
Microfabricated bioanalytical devices (also referred to as laboratory-on-a-chip or micro-TAS) offer highly efficient platforms for simultaneous analysis of a large number of biologically important molecules, possessing great potential for genome, proteome and metabolome studies. Development and implementation of microfluidic-based bioanalytical tools involves both established and evolving technologies, including microlithography, micromachining, micro-electromechanical systems technology and nanotechnology. This article provides an overview of the latest developments in the key device subject areas and the basic interdisciplinary technologies. Important aspects of DNA and protein analysis, interfacing issues and system integration are all thoroughly discussed, along with applications for this novel "synergized" technology in high-throughput separations of biologically important molecules. This review also gives a better understanding of how to utilize these technologies as well as to provide appropriate technical solutions to problems perceived as being more fundamental.
Collapse
|
66
|
Giordano BC, Ferrance J, Swedberg S, Hühmer AF, Landers JP. Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal Biochem 2001; 291:124-32. [PMID: 11262165 DOI: 10.1006/abio.2000.4974] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is much interest in developing methods amenable to amplifying nucleic acids by the polymerase chain reaction (PCR) in small volumes in microfabricated devices. The use of infrared-mediated temperature control to accurately thermocycle microliter volumes in microchips fabricated from polyimide is demonstrated. Amplification of a 500-base-pair fragment of lambda-phage DNA was achieved in a 1.7-microl chamber containing a thermocouple that allowed for accurate control of temperature. While previous work showed that Taq polymerase was inactivated when in direct contact with the thermocouple, this was circumvented with the polyimide chip by the addition of polyethylene glycol as a buffer additive. This, consequently, allowed for adequate amounts of PCR product to be observed after only 15 cycles, with a total time for amplification of 240 s.
Collapse
Affiliation(s)
- B C Giordano
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22901, USA. (Work was carried out at Landers Lab, University of Pittsburgh, PA, USA.)
| | | | | | | | | |
Collapse
|
67
|
Giordano BC, Copeland ER, Landers JP. Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction. Electrophoresis 2001; 22:334-40. [PMID: 11288902 DOI: 10.1002/1522-2683(200101)22:2<334::aid-elps334>3.0.co;2-o] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As microchip technology evolves to allow for the integration of more complex processes, particularly the polymerase chain reaction (PCR), it will become necessary to define simple approaches for minimizing the effects of surfaces on the chemistry/processes to be performed. We have explored alternatives to silanization of the glass surface with the use of additives that either dynamically coat or adsorb to the glass surface. Polyethylene glycol, polyvinylpyrrolidone (PVP), and hydroxyethylcellulose (HEC) have been explored as potential dynamic coatings and epoxy (poly)dimethylacrylamide (EPDMA) evaluated as an adsorbed coating. By carrying out analysis of the PCR products generated under different conditions via microchip electrophoresis, we demonstrate that these coating agents adequately passivate the glass surface in a manner that prevents interference with the subsequent PCR process. While several of the agents tested allowed for PCR amplification of DNA in glass, the EPDMA was clearly superior with respect to ease of preparation. However, more efficient PCR (larger mass of amplified product) could be obtained by silanizing the glass surface.
Collapse
Affiliation(s)
- B C Giordano
- Department of Chemistry, University of Virginia, Charlottesville 22901, USA
| | | | | |
Collapse
|