51
|
Zheng J, Lin Z, Liu W, Wang L, Zhao S, Yang H, Zhang L. One-pot synthesis of CuFe 2O 4 magnetic nanocrystal clusters for highly specific separation of histidine-rich proteins. J Mater Chem B 2014; 2:6207-6214. [PMID: 32262138 DOI: 10.1039/c4tb00986j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports a facile ligand-free method for the rapid and highly specific separation of histidine (His)-rich proteins using CuFe2O4 magnetic nanocrystal clusters (MNCs). Monodispersed CuFe2O4 MNCs were synthesized via a simple and economical one-pot hydrothermal process. The resulting MNCs were characterized in detail. The measurements indicated that the MNCs exhibited good dispersion, high crystallinity, and superparamagnetic properties. Moreover, the obtained MNCs had a high saturation magnetization (45.1 emu g-1), which was sufficient to accomplish fast and efficient separation with an external magnetic field. The selectivity and binding capacity of CuFe2O4 MNCs were evaluated using a His-rich protein (bovine haemoglobin) and other proteins (bovine serum albumin, human serum albumin, myoglobin, lysozyme, cytochrome c and horseradish peroxidase) containing fewer surface-exposed His residues as model samples. The most distinct feature of the CuFe2O4 MNCs is the high haemoglobin binding capacity (4475 mg g-1) due to the coordination between copper(ii) ions and surface-exposed histidine resides of haemoglobin. In addition, the CuFe2O4 MNCs can be successfully employed to selectively bind and remove abundant haemoglobin from human blood samples. The good results demonstrate the potential of CuFe2O4 MNCs in the separation of His-rich proteins.
Collapse
Affiliation(s)
- Jiangnan Zheng
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China.
| | | | | | | | | | | | | |
Collapse
|
52
|
Evaluation of a novel magneto-optical method for the detection of malaria parasites. PLoS One 2014; 9:e96981. [PMID: 24824542 PMCID: PMC4019541 DOI: 10.1371/journal.pone.0096981] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 04/15/2014] [Indexed: 11/19/2022] Open
Abstract
Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as ∼ 40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/µL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/µL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs.
Collapse
|
53
|
Jain P, Chakma B, Patra S, Goswami P. Potential biomarkers and their applications for rapid and reliable detection of malaria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:852645. [PMID: 24804253 PMCID: PMC3996934 DOI: 10.1155/2014/852645] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
Malaria has been responsible for the highest mortality in most malaria endemic countries. Even after decades of malaria control campaigns, it still persists as a disease of high mortality due to improper diagnosis and rapidly evolving drug resistant malarial parasites. For efficient and economical malaria management, WHO recommends that all malaria suspected patients should receive proper diagnosis before administering drugs. It is thus imperative to develop fast, economical, and accurate techniques for diagnosis of malaria. In this regard an in-depth knowledge on malaria biomarkers is important to identify an appropriate biorecognition element and utilize it prudently to develop a reliable detection technique for diagnosis of the disease. Among the various biomarkers, plasmodial lactate dehydrogenase and histidine-rich protein II (HRP II) have received increasing attention for developing rapid and reliable detection techniques for malaria. The widely used rapid detection tests (RDTs) for malaria succumb to many drawbacks which promotes exploration of more efficient economical detection techniques. This paper provides an overview on the current status of malaria biomarkers, along with their potential utilization for developing different malaria diagnostic techniques and advanced biosensors.
Collapse
Affiliation(s)
- Priyamvada Jain
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Babina Chakma
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sanjukta Patra
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pranab Goswami
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
54
|
Davis KM, Bitting AL, Wright DW. On-particle detection of Plasmodium falciparum histidine-rich protein II by a “switch-on” iridium(III) probe. Anal Biochem 2014; 445:60-6. [DOI: 10.1016/j.ab.2013.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/25/2013] [Accepted: 10/03/2013] [Indexed: 11/25/2022]
|
55
|
Development of a novel bead-based 96-well filtration plate competitive immunoassay for the detection of Gentamycin. Biosens Bioelectron 2013; 49:126-32. [DOI: 10.1016/j.bios.2013.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/29/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022]
|
56
|
Malaria pigment crystals as magnetic micro-rotors: key for high-sensitivity diagnosis. Sci Rep 2013; 3:1431. [PMID: 23478535 PMCID: PMC3594758 DOI: 10.1038/srep01431] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/27/2013] [Indexed: 11/24/2022] Open
Abstract
The need to develop new methods for the high-sensitivity diagnosis of malaria has initiated a global activity in medical and interdisciplinary sciences. Most of the diverse variety of emerging techniques are based on research-grade instruments, sophisticated reagent-based assays or rely on expertise. Here, we suggest an alternative optical methodology with an easy-to-use and cost-effective instrumentation based on unique properties of malaria pigment reported previously and determined quantitatively in the present study. Malaria pigment, also called hemozoin, is an insoluble microcrystalline form of heme. These crystallites show remarkable magnetic and optical anisotropy distinctly from any other components of blood. As a consequence, they can simultaneously act as magnetically driven micro-rotors and spinning polarizers in suspensions. These properties can gain importance not only in malaria diagnosis and therapies, where hemozoin is considered as drug target or immune modulator, but also in the magnetic manipulation of cells and tissues on the microscopic scale.
Collapse
|
57
|
Electrochemical Magnetoimmunosensing Approach for the Sensitive Detection of H9N2 Avian Influenza Virus Particles. Chem Asian J 2013; 8:2220-6. [DOI: 10.1002/asia.201300521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Indexed: 01/23/2023]
|
58
|
Chen YP, Zou MQ, Wang DN, Li YL, Xue Q, Xie MX, Qi C. An immunosensor based on magnetic relaxation switch and polystyrene microparticle-induced immune multivalency enrichment system for the detection of Pantoea stewartii subsp. Stewartii. Biosens Bioelectron 2013; 43:6-11. [DOI: 10.1016/j.bios.2012.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/05/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
|
59
|
Huang SY, Chen YC. Magnetic Nanoparticle-Based Platform for Characterization of Histidine-Rich Proteins and Peptides. Anal Chem 2013; 85:3347-54. [DOI: 10.1021/ac4000128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shin-Yi Huang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
60
|
Lab-on-a-Chip, Micro- and Nanoscale Immunoassay Systems, and Microarrays. THE IMMUNOASSAY HANDBOOK 2013. [PMCID: PMC7152144 DOI: 10.1016/b978-0-08-097037-0.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
61
|
Zhang J, Liu S, Bao J, Tu W, Dai Z. Dual signal amplification of zinc oxide nanoparticles and quantum dots-functionalized zinc oxide nanoparticles for highly sensitive electrochemiluminescence immunosensing. Analyst 2013; 138:5396-403. [DOI: 10.1039/c3an00705g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
62
|
|
63
|
Electrochemical immunoassay for subgroup J of avian leukosis viruses using a glassy carbon electrode modified with a film of poly (3-thiophene boronic acid), gold nanoparticles, graphene and immobilized antibody. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0874-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Multifunctional Fe3O4 core/Ni–Al layered double hydroxides shell nanospheres as labels for ultrasensitive electrochemical immunoassay of subgroup J of avian leukosis virus. Biosens Bioelectron 2012; 37:107-11. [DOI: 10.1016/j.bios.2012.04.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 11/23/2022]
|
65
|
Davis KM, Swartz JD, Haselton FR, Wright DW. Low-Resource Method for Extracting the Malarial Biomarker Histidine-Rich Protein II To Enhance Diagnostic Test Performance. Anal Chem 2012; 84:6136-42. [DOI: 10.1021/ac301030m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Keersten M. Davis
- Department
of Chemistry and ‡Department of Biomedical Engineering, Vanderbilt University, Station B 351822, Nashville, Tennessee 37235-1822,
United States
| | - Joshua D. Swartz
- Department
of Chemistry and ‡Department of Biomedical Engineering, Vanderbilt University, Station B 351822, Nashville, Tennessee 37235-1822,
United States
| | - Frederick R. Haselton
- Department
of Chemistry and ‡Department of Biomedical Engineering, Vanderbilt University, Station B 351822, Nashville, Tennessee 37235-1822,
United States
| | - David W. Wright
- Department
of Chemistry and ‡Department of Biomedical Engineering, Vanderbilt University, Station B 351822, Nashville, Tennessee 37235-1822,
United States
| |
Collapse
|
66
|
Pedrero M, Campuzano S, Pingarrón JM. Magnetic Beads-Based Electrochemical Sensors Applied to the Detection and Quantification of Bioterrorism/Biohazard Agents. ELECTROANAL 2011; 24:470-482. [PMID: 32313410 PMCID: PMC7163718 DOI: 10.1002/elan.201100528] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/05/2011] [Indexed: 11/12/2022]
Abstract
Nowadays, detecting the presence of bioterrorism and biohazard agents in environmental and food samples is of great concern, due to their toxicity, and because many of them are prone to be used in terrorism attacks. The use of functionalized magnetic beads (MBs) in the development of electrochemical immuno- and genosensors has resulted in innovative and powerful detection strategies that may be applied to environmental, food and clinical analysis. This review describes current research on the combination of functionalized MBs with electrochemical detection for the development of magnetobiosensors applied to rapid, sensitive and specific detection of bioterrorism and biohazard agents.
Collapse
Affiliation(s)
- María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|