51
|
Szabo Z, Janaky T. Challenges and developments in protein identification using mass spectrometry. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
52
|
Donohoe GC, Arndt JR, Valentine SJ. Online deuterium hydrogen exchange and protein digestion coupled with ion mobility spectrometry and tandem mass spectrometry. Anal Chem 2015; 87:5247-54. [PMID: 25893550 DOI: 10.1021/acs.analchem.5b00277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) is demonstrated using drift tube ion mobility spectrometry (DTIMS) coupled with linear ion trap (LTQ) mass spectrometry (MS) with electron transfer dissociation (ETD) capabilities. DHX of deuterated ubiquitin, followed by subsequent quenching and digestion, is performed within ∼60 s, yielding 100% peptide sequence coverage. The high reproducibility of the IMS separation allows spectral feature matching between two-dimensional IMS-MS datasets (undeuterated and deuterated) without the need for dataset alignment. Extracted ion drift time distributions (XIDTDs) of deuterated peptic peptides are mobility-matched to corresponding XIDTDs of undeuterated peptic peptides that were identified using collision-induced dissociation (CID). Matching XIDTDs allows a straightforward identification and deuterium retention evaluation for labeled peptides. Aside from the mobility separation, the ion trapping capabilities of the LTQ, combined with ETD, are demonstrated to provide single-residue resolution. Deuterium retention for the c- series ions across residues M(1)-L(15) and N(25)-R(42) are in good agreement with the known secondary structural elements within ubiquitin.
Collapse
Affiliation(s)
- Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - James R Arndt
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
53
|
Arnold JM, Choi WT, Sreekumar A, Maletić-Savatić M. Analytical strategies for studying stem cell metabolism. ACTA ACUST UNITED AC 2015. [PMID: 26213533 DOI: 10.1007/s11515-015-1357-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention is being given to the significance of metabolism, through the production of energy and generation of small molecules, as a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now allow for in-depth profiling of stem cells both in vitro and in vivo, providing a systems perspective on key metabolic and molecular pathways which influence stem cell biology. Understanding the analytical platforms and techniques that are currently used to study stem cell metabolomics, as well as how new insights can be derived from this knowledge, will accelerate new research in the field and improve future efforts to expand our understanding of the interplay between metabolism and stem cell biology.
Collapse
Affiliation(s)
- James M Arnold
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - William T Choi
- Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletić-Savatić
- Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA ; Departments of Pediatrics-Neurology and Neuroscience, and Program in Structural and Computational Biology and Molecular Biophysics Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
54
|
Pettit ME, Harper B, Brantley MR, Solouki T. Collision-energy resolved ion mobility characterization of isomeric mixtures. Analyst 2015. [DOI: 10.1039/c5an00940e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Existing instrumental resolving power limitations in ion mobility spectrometry (IMS) often restrict adequate characterization of unresolved or co-eluting chemical isomers.
Collapse
Affiliation(s)
| | - Brett Harper
- Institute of Biomedical Studies
- Baylor University
- Waco
- USA
| | | | - Touradj Solouki
- Department of Chemistry and Biochemistry
- Baylor University
- Waco
- USA
| |
Collapse
|
55
|
Botas A, Campbell HM, Han X, Maletic-Savatic M. Metabolomics of Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:53-80. [DOI: 10.1016/bs.irn.2015.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
56
|
Rathore D, Dodds ED. Collision-induced release, ion mobility separation, and amino acid sequence analysis of subunits from mass-selected noncovalent protein complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1600-1609. [PMID: 25001382 DOI: 10.1007/s13361-014-0946-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Abstract
In recent years, mass spectrometry has become a valuable tool for detecting and characterizing protein-protein interactions and for measuring the masses and subunit stoichiometries of noncovalent protein complexes. The gas-phase dissociation of noncovalent protein assemblies via tandem mass spectrometry can be useful in confirming subunit masses and stoichiometries; however, dissociation experiments that are able to yield subunit sequence information must usually be conducted separately. Here, we furnish proof of concept for a method that allows subunit sequence information to be directly obtained from a protein aggregate in a single gas-phase analysis. The experiments were carried out using a quadrupole time-of-flight mass spectrometer equipped with a traveling-wave ion mobility separator. This instrument configuration allows for a noncovalent protein assembly to be quadrupole selected, then subjected to two successive rounds of collision-induced dissociation with an intervening stage of ion mobility separation. This approach was applied to four model proteins as their corresponding homodimers: glucagon, ubiquitin, cytochrome c, and β-lactoglobulin. In each case, b- and y-type fragment ions were obtained upon further collisional activation of the collisionally-released subunits, resulting in up to 50% sequence coverage. Owing to the incorporation of an ion mobility separation, these results also suggest the intriguing possibility of measuring complex mass, complex collisional cross section, subunit masses, subunit collisional cross sections, and sequence information for the subunits in a single gas-phase experiment. Overall, these findings represent a significant contribution towards the realization of protein interactomic analyses, which begin with native complexes and directly yield subunit identities.
Collapse
Affiliation(s)
- Deepali Rathore
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | | |
Collapse
|
57
|
Donohoe GC, Maleki H, Arndt JR, Khakinejad M, Yi J, McBride C, Nurkiewicz TR, Valentine SJ. A new ion mobility-linear ion trap instrument for complex mixture analysis. Anal Chem 2014; 86:8121-8. [PMID: 25068446 DOI: 10.1021/ac501527y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new instrument that couples a low-pressure drift tube with a linear ion trap mass spectrometer is demonstrated for complex mixture analysis. The combination of the low-pressure separation with the ion trapping capabilities provides several benefits for complex mixture analysis. These include high sensitivity, unique ion fragmentation capabilities, and high reproducibility. Even though the gas-phase separation and the mass measurement steps are each conducted in an ion filtering mode, detection limits for mobility-selected peptide ions are in the tens of attomole range. In addition to ion separation, the low-pressure drift tube can be used as an ion fragmentation cell yielding mobility-resolved fragment ions that can be subsequently analyzed by multistage tandem mass spectrometry (MS(n)) methods in the ion trap. Because of the ion trap configuration, these methods can be comprised of any number (limited by ion signal) of collision-induced dissociation (CID) and electron transfer dissociation (ETD) processes. The high reproducibility of the gas-phase separation allows for comparison of two-dimensional ion mobility spectrometry (IMS)-MS data sets in a pixel-by-pixel fashion without the need for data set alignment. These advantages are presented in model analyses representing mixtures encountered in proteomics and metabolomics experiments.
Collapse
Affiliation(s)
- Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Zinnel NF, Russell DH. Size-to-charge dispersion of collision-induced dissociation product ions for enhancement of structural information and product ion identification. Anal Chem 2014; 86:4791-8. [PMID: 24754452 DOI: 10.1021/ac403929u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ion mobility is used to disperse product ions formed by collision-induced dissociation (CID) on the basis of charge state and size-to-charge ratio. We previously described an approach for combining CID with ion mobility mass spectrometry (IM-MS) for dispersing fragment ions along charge state specific trend lines (Zinnel, N. F.; Pai, P. J.; Russell, D. H. Anal. Chem. 2012, 84, 3390; Sowell, R. A.; Koeniger, S. L.; Valentine, S. J.; Moon, M. H.; Clemmer, D. E. J. Am. Soc. Mass Spectrom. 2004, 15, 1341; McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Int. J. Mass Spectrom. 2005, 240, 301), and this approach was used to assign metal ion binding sites for human metallothionein protein MT-2a (Chen, S. H.; Russell, W. K.; Russell, D. H. Anal. Chem. 2013, 85, 3229). Here, we use this approach to distinguish b-type N-terminal fragment ions from both internal fragment ions and y-type C-terminal fragment ions. We also show that in some cases specific secondary structural elements, viz., extended coils or helices, can be obtained for the y-type fragment ions series. The advantage of this approach is that product ion identity can be correlated to gas-phase ion structure, which provides rapid identification of the onset and termination of extended coil structure in peptides.
Collapse
Affiliation(s)
- Nathanael F Zinnel
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Texas A&M University , College Station, Texas 77842, United States
| | | |
Collapse
|
59
|
Abstract
The most common markers for monitoring patients with diabetes are glucose and HbA1c, but additional markers such as glycated human serum albumin (HSA) have been identified that could address the glycation gap and bridge the time scales of glycemia between transient and 2-3 months. However, there is currently no technical platform that could measure these markers concurrently in a cost-effective manner. We have developed a new assay that is able to measure glucose, HbA1c, glycated HSA, and glycated apolipoprotein A-I (apoA-I) for monitoring of individual blood glycemia, as well as cysteinylated HSA, S-nitrosylated HbA, and methionine-oxidized apoA-I for gauging oxidative stress and cardiovascular risks, all in 5 μL of blood. The assay utilizes our proprietary multinozzle emitter array chip technology to enable the analysis of small volumes of blood, without complex sample preparation prior to the online and on-chip liquid chromatography-nanoelectrospray ionization mass spectrometry. Importantly, the assay employs top-down proteomics for more accurate quantitation of protein levels and for identification of post-translational modifications. Further, the assay provides multimarker, multitime-scale, and multicompartment monitoring of blood glycemia. Our assay readily segregates healthy controls from Type 2 diabetes patients and may have the potential to enable better long-term monitoring and disease management of diabetes.
Collapse
Affiliation(s)
- Pan Mao
- Newomics Inc. , 5980 Horton Street, Suite 525, Emeryville, California 94608, United States
| | | |
Collapse
|
60
|
Zhang Z, Wu S, Stenoien DL, Paša-Tolić L. High-throughput proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:427-454. [PMID: 25014346 DOI: 10.1146/annurev-anchem-071213-020216] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.
Collapse
|
61
|
Abstract
Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge ratio of electrically charged gas-phase particles. All mass spectrometers combine ion formation, mass analysis, and ion detection. Although mass analyzers can be regarded as sophisticated devices that manipulate ions in space and time, the rich diversity of possible ways to combine ion separation, focusing, and detection in dynamic mass spectrometers accounts for the large number of instrument designs. A historical perspective of the progress in mass spectrometry that since 1965 until today have contributed to position this technique as an indispensable tool for biological research has been recently addressed by a privileged witness of this golden age of MS (Gelpí J. Mass Spectrom 43:419-435, 2008; Gelpí J. Mass Spectrom 44:1137-1161, 2008). The aim of this chapter is to highlight the view that the operational principles of mass spectrometry can be understood by a simple mathematical language, and that an understanding of the basic concepts of mass spectrometry is necessary to take the most out of this versatile technique.
Collapse
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| |
Collapse
|
62
|
Fisher HC, Smith M, Ashcroft AE. De novo sequencing of short interfering ribonucleic acids facilitated by use of tandem mass spectrometry with ion mobility spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2247-2254. [PMID: 24019190 DOI: 10.1002/rcm.6685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/03/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE The use of RNAi for new therapeutics is becoming more widespread. To improve the development and quality control of such materials there is a need for rapid, accurate and meaningful analyses. Here, the use of negative ion nano-electrospray ionisation tandem mass spectrometry with ion mobility spectrometry (nESI-MS/MS-IMS-MS) is shown to simplify data interpretation and lead to higher sequence coverage. METHODS A set of 20-nucleotide RNA molecules was analysed using nESI-MS/MS and their sequences determined manually with the aid of the Simple Oligonucleotide Sequencer (SOS) program. The RNAs were also analysed using nESI-MS/MS-IMS-MS. This incorporates an extra step involving travelling-wave IMS separation of the product ions into groups according to the number of charges that the ions carry. Following this, the RNA sequences were determined from the separated groups of ions. RESULTS nESI-MS/MS collision-induced dissociation of the RNA sequences produced w, y, a-(Base) and c product ions. Sequence determination resulted in incomplete coverage with bases in the centre of the sequences being unidentifiable because of the plethora of overlapping ions. Sequencing carried out from the nESI-MS/MS-IMS-MS data, whereby individual product ion spectra arising only from ions carrying the same charge were generated, gave full sequence coverage for each nucleotide (except y1 ) with assignment confirmation from a minimum of four different product ions. CONCLUSIONS Using nESI-MS/MS-IMS-MS to analyse a number of 20-nucleotide RNA molecules produced full sequence coverage with 100% accuracy, in addition to molecular mass confirmation. This method has the potential for automation for higher sample throughput and thus constitutes a robust approach for the quality control of RNAs in therapeutics.
Collapse
Affiliation(s)
- Henry C Fisher
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
63
|
Wang B, Zhang J, Chen P, Ji Z, Deng S, Li C. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features. BMC Bioinformatics 2013; 14 Suppl 8:S9. [PMID: 23815343 PMCID: PMC3654891 DOI: 10.1186/1471-2105-14-s8-s9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics. Results In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model. Conclusions Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques.
Collapse
Affiliation(s)
- Bing Wang
- The Advanced Research Institute of Intelligent Sensing Network, Tongji University, shanghai, 201804, China.
| | | | | | | | | | | |
Collapse
|
64
|
Chen SH, Russell WK, Russell DH. Combining chemical labeling, bottom-up and top-down ion-mobility mass spectrometry to identify metal-binding sites of partially metalated metallothionein. Anal Chem 2013; 85:3229-37. [PMID: 23421923 DOI: 10.1021/ac303522h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metalation and demetalation of human metallothionein-2A (MT) with Cd(2+) is investigated by using chemical labeling and "bottom-up" and "top-down" proteomics approaches. Both metalation and demetalation of MT-2A by Cd(2+) are shown to be domain specific and occur as two distinct processes. Metalation involves sequential addition of Cd(2+) to the α-domain resulting in formation of an intermediate, Cd4MT. Chemical labeling with N-ethylmaleimide (NEM) and tandem mass spectrometry experiments clearly show that the four metal ions are located in the α-domain. In the presence of excess Cd(2+), the Cd4MT intermediate reacts to add Cd(2+) to the β-domain to yield the fully metalated Cd7MT. Demetalation occurs in the reverse order, i.e., Cd(2+) is removed (by EDTA) first from the β-domain followed by Cd(2+) removal from the α-domain. Metalation of human MT-2A is shown to be metal ion specific by comparing relative metal ion binding constants for Cd(2+) and Zn(2+).
Collapse
Affiliation(s)
- Shu-Hua Chen
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | | |
Collapse
|
65
|
Zekavat B, Solouki T. Chemometric data analysis for deconvolution of overlapped ion mobility profiles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1873-1884. [PMID: 22948903 DOI: 10.1007/s13361-012-0471-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 06/01/2023]
Abstract
We present the details of a data analysis approach for deconvolution of the ion mobility (IM) overlapped or unresolved species. This approach takes advantage of the ion fragmentation variations as a function of the IM arrival time. The data analysis involves the use of an in-house developed data preprocessing platform for the conversion of the original post-IM/collision-induced dissociation mass spectrometry (post-IM/CID MS) data to a Matlab compatible format for chemometric analysis. We show that principle component analysis (PCA) can be used to examine the post-IM/CID MS profiles for the presence of mobility-overlapped species. Subsequently, using an interactive self-modeling mixture analysis technique, we show how to calculate the total IM spectrum (TIMS) and CID mass spectrum for each component of the IM overlapped mixtures. Moreover, we show that PCA and IM deconvolution techniques provide complementary results to evaluate the validity of the calculated TIMS profiles. We use two binary mixtures with overlapping IM profiles, including (1) a mixture of two non-isobaric peptides (neurotensin (RRPYIL) and a hexapeptide (WHWLQL)), and (2) an isobaric sugar isomer mixture of raffinose and maltotriose, to demonstrate the applicability of the IM deconvolution.
Collapse
Affiliation(s)
- Behrooz Zekavat
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
66
|
Wang ZU, Wang YS, Pai PJ, Russell WK, Russell DH, Liu WR. A facile method to synthesize histones with posttranslational modification mimics. Biochemistry 2012; 51:5232-4. [PMID: 22697363 DOI: 10.1021/bi300535a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Using an evolved pyrrolysyl-tRNA synthetase-tRNA(Pyl) pair, a Se-alkylselenocysteine was genetically incorporated into histone H3 with a high protein expression yield. Quantitative oxidative elimination of Se-alkylselenocysteine followed by Michael addition reactions with various thiol nucleophiles generated biologically active mimics of H3 with posttranslational modifications including lysine methylation, lysine acetylation, and serine phosphorylation.
Collapse
Affiliation(s)
- Zhiyong U Wang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|