51
|
Jia Y, Li J. Molecular assembly of Schiff Base interactions: construction and application. Chem Rev 2014; 115:1597-621. [PMID: 25543900 DOI: 10.1021/cr400559g] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | | |
Collapse
|
52
|
Ahmadalinezhad A, Wu G, Keeler W, Chen A. Fabrication and electrochemical study of carbon modified TiO2 nanowires. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
53
|
Su M, Liu H, Ge L, Wang Y, Ge S, Yu J, Yan M. Aptamer-Based electrochemiluminescent detection of MCF-7 cancer cells based on carbon quantum dots coated mesoporous silica nanoparticles. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.129] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
54
|
Dipeptidyl peptidase-IV activity assay and inhibitor screening using a gold nanoparticle-modified gold electrode with an immobilized enzyme substrate. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1329-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
55
|
Yuan L, Liu S, Tu W, Zhang Z, Bao J, Dai Z. Biomimetic Superoxide Dismutase Stabilized by Photopolymerization for Superoxide Anions Biosensing and Cell Monitoring. Anal Chem 2014; 86:4783-90. [DOI: 10.1021/ac403920q] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ling Yuan
- Jiangsu Key Laboratory of
Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Suli Liu
- Jiangsu Key Laboratory of
Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wenwen Tu
- Jiangsu Key Laboratory of
Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zengsong Zhang
- Jiangsu Key Laboratory of
Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of
Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Key Laboratory of
Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
56
|
Hu C, Yang DP, Zhu F, Jiang F, Shen S, Zhang J. Enzyme-labeled Pt@BSA nanocomposite as a facile electrochemical biosensing interface for sensitive glucose determination. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4170-4178. [PMID: 24575892 DOI: 10.1021/am405841k] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electrocatalytic reactions of glucose oxidation based on enzyme-labeled electrochemical biosensors demand a high enzymatic activity and fast electron transfer property to produce the amplified signal response. Through a "green" synthesis method, Pt@BSA nanocomposite was prepared as a biosensing interface for the first time. Herein we presented a convenient and effective glucose sensing matrix based on Pt@BSA nanocomposite along with the covalent adsorption of glucose oxidase (GOD). The electrocatalytic activity toward oxygen reduction was significantly enhanced due to the excellent bioactivity of anchored GOD and superior catalytic performance of interior platinum nanoparticles, which was gradually restrained with the addition of glucose. A sensitive glucose biosensor was then successfully developed upon the restrained oxygen reduction peak current. Differential pulse voltammetry (DPV) was employed to investigate the determination performance of the enzyme biosensor, resulting in a linear response range from 0.05 to 12.05 mM with an optimal detection limit of 0.015 mM. The as-proposed sensing technique revealed high selectivity against endogenous interfering species, satisfactory storage stability, acceptable durability, and favorable fabrication reproducibility with the RSD of 3.8%. During the practical application in human blood serum samples, this glucose biosensor obtained a good detection accuracy of analytical recoveries within 97.5 to 104.0%, providing an alternative scheme for glucose level assay in clinical application.
Collapse
Affiliation(s)
- Chenyi Hu
- Institute of Fuel Cell, Ministry of Education Key Laboratory of Power Machinery and Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
57
|
Zhang T, Zeng L, Han L, Li T, Zheng C, Wei M, Liu A. Ultrasensitive electrochemical sensor for p-nitrophenyl organophosphates based on ordered mesoporous carbons at low potential without deoxygenization. Anal Chim Acta 2014; 822:23-9. [PMID: 24725744 DOI: 10.1016/j.aca.2014.03.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
p-Nitrophenyl organophosphates (OPs) including paraoxon, parathion and methyl parathion, etc, are highly poisonous OPs, for which sensitive and rapid detection method is most needed. In this work, an ultrasensitive electrochemical sensor for the determination of p-nitrophenyl OPs was developed based on ordered mesoporous carbons (OMCs) modified glassy carbon electrode (GCE) (OMCs/GCE). The electrochemical behavior and reaction mechanism of p-nitrophenyl OPs at OMCs/GCE was elaborated by taking paraoxon as an example. Experimental conditions such as buffer pH, preconcentration potential and time were optimized. By using differential pulse voltammetry, the current response of the sensor at -0.085 V was linear with concentration within 0.01-1.00 μM and 1.00-20 μM paraoxon. Similar linear ranges of 0.015-0.5 μM and 0.5-10 μM were found for parathion, and 0.01-0.5 μM and 0.5-10 μM for methyl parathion. The low limits of detection were evaluated to be 1.9nM for paraoxon, 3.4 nM for parathion and 2.1 nM for methyl parathion (S/N=3). Common interfering species had no interference to the detection of p-nitrophenyl OPs. The sensor can be applicable to real samples measurement. Therefore, a simple, sensitive, reproducible and cost-effective electrochemical sensor was proposed for the fast direct determination of trace p-nitrophenyl OPs at low potential without deoxygenization.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China; Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Lingxing Zeng
- Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Lei Han
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Tie Li
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China.
| | - Cheng Zheng
- Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Mingdeng Wei
- Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Aihua Liu
- Laboratory for Biosensing, Qingdao Institute of Bioenergy & Bioprocess Technology, and Key Laboratory of Bioenergy, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China.
| |
Collapse
|
58
|
Wang X, Ju J, Li J, Li J, Qian Q, Mao C, Shen J. Preparation of Electrochemical Cytosensor for Sensitive Detection of HeLa Cells Based on Self-Assembled Monolayer. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
59
|
Yang D, Du B, Yan Y, Li H, Zhang D, Fan T. Rice-husk-templated hierarchical porous TiO(2)/SiO(2) for enhanced bacterial removal. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2377-2385. [PMID: 24517322 DOI: 10.1021/am500206g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To further enhance the bacterial removal capability, we synthesize a biotemplated hierarchical porous material coupling chemical components and hierarchical microstructure, which is derived from rice husk. The results show that the chemical components and hierarchical microstructure of the prepared material could both be factors in enhancing the bacterial removal capability. On the basis of the experimental results, we propose a hypothetical enhanced bacterial removal mechanism model of the prepared material. Furthermore, we propose a hypothetical method of inferring bacterial physical removal effects of samples by their dye adsorption results. Also, the hypothetical method has been proven to be reasonable by the experimental results. This work provides a new paradigm for bacterial removal and can contribute to the development of new functional materials for enhanced bacterial removal in the future.
Collapse
Affiliation(s)
- Dalong Yang
- State Key Laboratory of Metal Matrix Composites, §School of Agriculture and Biology Department, and ⊥Instrumental Analysis Center, Shanghai Jiaotong University , Shanghai 200240, People's Republic of China
| | | | | | | | | | | |
Collapse
|