51
|
Rodeberg NT, Johnson JA, Bucher ES, Wightman RM. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data. ACS Chem Neurosci 2016; 7:1508-1518. [PMID: 27548680 PMCID: PMC5115212 DOI: 10.1021/acschemneuro.6b00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS.
Collapse
Affiliation(s)
- Nathan T. Rodeberg
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Justin A. Johnson
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Elizabeth S. Bucher
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - R. Mark Wightman
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
52
|
Singer BF, Bryan MA, Popov P, Scarff R, Carter C, Wright E, Aragona BJ, Robinson TE. The sensory features of a food cue influence its ability to act as an incentive stimulus and evoke dopamine release in the nucleus accumbens core. ACTA ACUST UNITED AC 2016; 23:595-606. [PMID: 27918279 PMCID: PMC5066606 DOI: 10.1101/lm.043026.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/28/2016] [Indexed: 12/02/2022]
Abstract
The sensory properties of a reward-paired cue (a conditioned stimulus; CS) may impact the motivational value attributed to the cue, and in turn influence the form of the conditioned response (CR) that develops. A cue with multiple sensory qualities, such as a moving lever-CS, may activate numerous neural pathways that process auditory and visual information, resulting in CRs that vary both within and between individuals. For example, CRs include approach to the lever-CS itself (rats that “sign-track”; ST), approach to the location of reward delivery (rats that “goal-track”; GT), or an “intermediate” combination of these behaviors. We found that the multimodal sensory features of the lever-CS were important to the development and expression of sign-tracking. When the lever-CS was covered, and thus could only be heard moving, STs not only continued to approach the lever location but also started to approach the food cup during the CS period. While still predictive of reward, the auditory component of the lever-CS was a much weaker conditioned reinforcer than the visible lever-CS. This plasticity in behavioral responding observed in STs closely resembled behaviors normally seen in rats classified as “intermediates.” Furthermore, the ability of both the lever-CS and the reward-delivery to evoke dopamine release in the nucleus accumbens was also altered by covering the lever—dopamine signaling in STs resembled neurotransmission observed in rats that normally only GT. These data suggest that while the visible lever-CS was attractive, wanted, and had incentive value for STs, when presented in isolation, the auditory component of the cue was simply predictive of reward, lacking incentive salience. Therefore, the specific sensory features of cues may differentially contribute to responding and ensure behavioral flexibility.
Collapse
Affiliation(s)
- Bryan F Singer
- Biopsychology Area, Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Myranda A Bryan
- Biopsychology Area, Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Pavlo Popov
- Biopsychology Area, Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Raymond Scarff
- Biopsychology Area, Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Cody Carter
- Biopsychology Area, Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Erin Wright
- Biopsychology Area, Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brandon J Aragona
- Biopsychology Area, Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Terry E Robinson
- Biopsychology Area, Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
53
|
Owesson-White C, Belle AM, Herr NR, Peele JL, Gowrishankar P, Carelli RM, Wightman RM. Cue-Evoked Dopamine Release Rapidly Modulates D2 Neurons in the Nucleus Accumbens During Motivated Behavior. J Neurosci 2016; 36:6011-21. [PMID: 27251622 PMCID: PMC4887565 DOI: 10.1523/jneurosci.0393-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/23/2016] [Accepted: 04/20/2016] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Dopaminergic neurons that project from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) fire in response to unpredicted rewards or to cues that predict reward delivery. Although it is well established that reward-related events elicit dopamine release in the NAc, the role of rapid dopamine signaling in modulating NAc neurons that respond to these events remains unclear. Here, we examined dopamine's actions in the NAc in the rat brain during an intracranial self-stimulation task in which a cue predicted lever availability for electrical stimulation of the VTA. To distinguish actions of dopamine at select receptors on NAc neurons during the task, we used a multimodal sensor that probes three aspects of neuronal communication simultaneously: neurotransmitter release, cell firing, and identification of dopamine receptor type. Consistent with prior studies, we first show dopamine release events in the NAc both at cue presentation and after lever press (LP). Distinct populations of NAc neurons encode these behavioral events at these same locations selectively. Using our multimodal sensor, we found that dopamine-mediated responses after the cue involve exclusively a subset of D2-like receptors (D2Rs), whereas dopamine-mediated responses proximal to the LP are mediated by both D1-like receptors (D1R) and D2Rs. These results demonstrate for the first time that dopamine-mediated responses after cues that predict reward availability are specifically linked to its actions at a subset of neurons in the NAc containing D2Rs. SIGNIFICANCE STATEMENT Successful reward procurement typically involves the completion of a goal-directed behavior in response to appropriate environmental cues. Although numerous studies link the mesolimbic dopamine system with these processes, how dopamine's effects are mediated on the receptor level within a key neural substrate, the nucleus accumbens, remains elusive. Here, we used a unique multimodal sensor that reveals three aspects of neuronal interactions: neurotransmitter release, cell firing, and dopamine-receptor type. We identified a key role of D2-like receptor (D2R)-expressing neurons in response to a reward-predicting cue, whereas both the D2R and D1R types modulate responses of neurons proximal to the goal-directed action. This work provides novel insight into the unique role of D2R-mediated neuronal activity to reward-associated cues, a fundamental aspect of motivated behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | - Regina M Carelli
- Department of Psychology and Neuroscience, and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - R Mark Wightman
- Department of Chemistry, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
54
|
Kirkpatrick DC, Wightman RM. Evaluation of Drug Concentrations Delivered by Microiontophoresis. Anal Chem 2016; 88:6492-9. [PMID: 27212615 DOI: 10.1021/acs.analchem.6b01211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microiontophoresis uses an electric current to eject a drug solution from a glass capillary and is often utilized for targeted delivery in neurochemical investigations. The amount of drug ejected, and its effective concentration at the tip, has historically been difficult to determine, which has precluded its use in quantitative studies. To address this, a method called controlled iontophoresis was developed which employs a carbon-fiber microelectrode incorporated into a multibarreled iontophoretic probe to detect the ejection of electroactive species. Here, we evaluate the accuracy of this method. To do this, we eject different concentrations of quinpirole, a D2 receptor agonist, into a brain slice containing the dorsal striatum, a brain region with a high density of dopamine terminals. Local electrical stimulation was used to evoke dopamine release, and inhibitory actions of quinpirole on this release were examined. The amount of drug ejected was estimated by detection of a coejected electrochemical marker. Dose response curves generated in this manner were compared to curves generated by conventional perfusion of quinpirole through the slice. We find several experimental conditions must be optimized for accurate results. First, selection of a marker with an identical charge was necessary to mimic the ejection of the cationic agonist. Next, evoked responses were more precise following longer periods between the end of the ejection and stimulation. Lastly, the accuracy of concentration evaluations was improved by longer ejections. Incorporation of these factors into existing protocols allows for greater certainty of concentrations delivered by controlled iontophoresis.
Collapse
Affiliation(s)
- Douglas C Kirkpatrick
- Department of Chemistry and ‡Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina, 27599-3290, United States
| | - R Mark Wightman
- Department of Chemistry and ‡Neuroscience Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina, 27599-3290, United States
| |
Collapse
|
55
|
Kirkpatrick DC, Walton LR, Edwards MA, Wightman RM. Quantitative analysis of iontophoretic drug delivery from micropipettes. Analyst 2016; 141:1930-8. [PMID: 26890395 PMCID: PMC4783294 DOI: 10.1039/c5an02530c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microiontophoresis is a drug delivery method in which an electric current is used to eject molecular species from a micropipette. It has been primarily utilized for neurochemical investigations, but is limited due to difficulty controlling and determining the ejected quantity. Consequently the concentration of an ejected species and the extent of the affected region are relegated to various methods of approximation. To address this, we investigated the principles underlying ejection rates and examined the concentration distribution in microiontophoresis using a combination of electrochemical, chromatographic, and fluorescence-based approaches. This involved a principal focus on how the iontophoretic barrel solution affects ejection characteristics. The ion ejection rate displayed a direct correspondence to the ionic mole fraction, regardless of the ejection current polarity. In contrast, neutral molecules are ejected by electroosmotic flow (EOF) at a rate proportional to the barrel solution concentration. Furthermore, the presence of EOF was observed from barrels containing high ionic strength solutions. In practice, use of a retaining current draws extracellular ions into the barrel and will alter the barrel solution composition. Even in the absence of a retaining current, diffusional exchange at the barrel tip will occur. Thus behavior of successive ejections may slightly differ. To account for this, electrochemical or fluorescence markers can be incorporated into the barrel solution in order to compare ejection quantities. These may also be used to provide an estimate of the ejected amount and distribution provided accurate use of calibration procedures.
Collapse
Affiliation(s)
- D C Kirkpatrick
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - L R Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - M A Edwards
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.
| | - R M Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA. and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
56
|
Electrochemical deposition of the new manganese(II) Schiff-base complex on a gold template and its application for dopamine sensing in the presence of interfering biogenic compounds. Talanta 2016; 149:347-355. [DOI: 10.1016/j.talanta.2015.11.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 11/21/2022]
|
57
|
Rodeberg NT, Johnson JA, Cameron CM, Saddoris MP, Carelli RM, Wightman RM. Construction of Training Sets for Valid Calibration of in Vivo Cyclic Voltammetric Data by Principal Component Analysis. Anal Chem 2015; 87:11484-91. [PMID: 26477708 DOI: 10.1021/acs.analchem.5b03222] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Principal component regression, a multivariate calibration technique, is an invaluable tool for the analysis of voltammetric data collected in vivo with acutely implanted microelectrodes. This method utilizes training sets to separate cyclic voltammograms into contributions from multiple electroactive species. The introduction of chronically implanted microelectrodes permits longitudinal measurements at the same electrode and brain location over multiple recordings. The reliability of these measurements depends on a consistent calibration methodology. One published approach has been the use of training sets built with data from separate electrodes and animals to evaluate neurochemical signals in multiple subjects. Alternatively, responses to unpredicted rewards have been used to generate calibration data. This study addresses these approaches using voltammetric data from three different experiments in freely moving rats obtained with acutely implanted microelectrodes. The findings demonstrate critical issues arising from the misuse of principal component regression that result in significant underestimates of concentrations and improper statistical model validation that, in turn, can lead to inaccurate data interpretation. Therefore, the calibration methodology for chronically implanted microelectrodes needs to be revisited and improved before measurements can be considered reliable.
Collapse
Affiliation(s)
| | | | | | - Michael P Saddoris
- Department of Psychology and Neuroscience, University of Colorado , Boulder, Colorado 80309-0345, United States
| | | | | |
Collapse
|
58
|
Dengler AK, Wightman RM, McCarty GS. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations. Anal Chem 2015; 87:10556-64. [PMID: 26375039 DOI: 10.1021/acs.analchem.5b02866] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.
Collapse
Affiliation(s)
- Adam K Dengler
- Department of Biomedical Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - R Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Gregory S McCarty
- Department of Biomedical Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
59
|
Fortin SM, Cone JJ, Ng-Evans S, McCutcheon JE, Roitman MF. Sampling phasic dopamine signaling with fast-scan cyclic voltammetry in awake, behaving rats. ACTA ACUST UNITED AC 2015; 70:7.25.1-7.25.20. [PMID: 25559005 DOI: 10.1002/0471142301.ns0725s70] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the in vivo measurement of extracellular fluctuations in multiple chemical species. The technique is frequently utilized to sample sub-second (phasic) concentration changes of the neurotransmitter dopamine in awake and behaving rats. Phasic dopamine signaling is implicated in reinforcement, goal-directed behavior, and locomotion, and FSCV has been used to investigate how rapid changes in striatal dopamine concentration contribute to these and other behaviors. This unit describes the instrumentation and construction, implantation, and use of components required to sample and analyze dopamine concentration changes in awake rats with FSCV.
Collapse
Affiliation(s)
- S M Fortin
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| | - J J Cone
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| | - S Ng-Evans
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - J E McCutcheon
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, United Kingdom
| | - M F Roitman
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois.,Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
60
|
Bucher ES, Wightman RM. Electrochemical Analysis of Neurotransmitters. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:239-61. [PMID: 25939038 PMCID: PMC4728736 DOI: 10.1146/annurev-anchem-071114-040426] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.
Collapse
|
61
|
Mirzaei M, Sawan M. Microelectronics-based biosensors dedicated to the detection of neurotransmitters: a review. SENSORS (BASEL, SWITZERLAND) 2014; 14:17981-8008. [PMID: 25264957 PMCID: PMC4239957 DOI: 10.3390/s141017981] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 11/30/2022]
Abstract
Dysregulation of neurotransmitters (NTs) in the human body are related to diseases such as Parkinson's and Alzheimer's. The mechanisms of several neurological disorders, such as epilepsy, have been linked to NTs. Because the number of diagnosed cases is increasing, the diagnosis and treatment of such diseases are important. To detect biomolecules including NTs, microtechnology, micro and nanoelectronics have become popular in the form of the miniaturization of medical and clinical devices. They offer high-performance features in terms of sensitivity, as well as low-background noise. In this paper, we review various devices and circuit techniques used for monitoring NTs in vitro and in vivo and compare various methods described in recent publications.
Collapse
Affiliation(s)
- Maryam Mirzaei
- Polystim Neurotechnologies Laboratory, Electrical Engineering Department, Polytechnique Montreal, Montreal, QC H3T1J4, Canada.
| | - Mohamad Sawan
- Polystim Neurotechnologies Laboratory, Electrical Engineering Department, Polytechnique Montreal, Montreal, QC H3T1J4, Canada.
| |
Collapse
|
62
|
Hrbac J, Halouzka V, Trnkova L, Vacek J. eL-Chem Viewer: a freeware package for the analysis of electroanalytical data and their post-acquisition processing. SENSORS 2014; 14:13943-54. [PMID: 25090415 PMCID: PMC4179022 DOI: 10.3390/s140813943] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/19/2014] [Accepted: 07/22/2014] [Indexed: 11/16/2022]
Abstract
In electrochemical sensing, a number of voltammetric or amperometric curves are obtained which are subsequently processed, typically by evaluating peak currents and peak potentials or wave heights and half-wave potentials, frequently after background correction. Transformations of voltammetric data can help to extract specific information, e.g., the number of transferred electrons, and can reveal aspects of the studied electrochemical system, e.g., the contribution of adsorption phenomena. In this communication, we introduce a LabView-based software package, 'eL-Chem Viewer', which is for the analysis of voltammetric and amperometric data, and enables their post-acquisition processing using semiderivative, semiintegral, derivative, integral and elimination procedures. The software supports the single-click transfer of peak/wave current and potential data to spreadsheet software, a feature that greatly improves productivity when constructing calibration curves, trumpet plots and performing similar tasks. eL-Chem Viewer is freeware and can be downloaded from www.lchem.cz/elchemviewer.htm.
Collapse
Affiliation(s)
- Jan Hrbac
- Department of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, Olomouc 771 46, Czech Republic.
| | - Vladimir Halouzka
- Department of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, Olomouc 771 46, Czech Republic.
| | - Libuse Trnkova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, Olomouc 775 15, Czech Republic.
| |
Collapse
|
63
|
Medullary norepinephrine neurons modulate local oxygen concentrations in the bed nucleus of the stria terminalis. J Cereb Blood Flow Metab 2014; 34:1128-37. [PMID: 24714037 PMCID: PMC4083375 DOI: 10.1038/jcbfm.2014.60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 11/08/2022]
Abstract
Neurovascular coupling is understood to be the underlying mechanism of functional hyperemia, but the actions of the neurotransmitters involved are not well characterized. Here we investigate the local role of the neurotransmitter norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat by measuring O₂, which is delivered during functional hyperemia. Extracellular changes in norepinephrine and O₂ were simultaneously monitored using fast-scan cyclic voltammetry. Introduction of norepinephrine by electrical stimulation of the ventral noradrenergic bundle or by iontophoretic ejection induced an initial increase in O₂ levels followed by a brief dip below baseline. Supporting the role of a hyperemic response, the O₂ increases were absent in a brain slice containing the vBNST. Administration of selective pharmacological agents demonstrated that both phases of this response involve β-adrenoceptor activation, where the delayed decrease in O₂ is sensitive to both α- and β-receptor subtypes. Selective lesioning of the locus coeruleus with the neurotoxin DSP-4 confirmed that these responses are caused by the noradrenergic cells originating in the nucleus of the solitary tract and A1 cell groups. Overall, these results support that non-coerulean norepinephrine release can mediate activity-induced O₂ influx in a deep brain region.
Collapse
|
64
|
Guo Z, Percival SJ, Zhang B. Chemically Resolved Transient Collision Events of Single Electrocatalytic Nanoparticles. J Am Chem Soc 2014; 136:8879-82. [DOI: 10.1021/ja503656a] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhihui Guo
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen J. Percival
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|