51
|
van Lanschot CGF, Klazen YP, de Ridder MAJ, Mast H, Ten Hove I, Hardillo JA, Monserez DA, Sewnaik A, Meeuwis CA, Keereweer S, Aaboubout Y, Barroso EM, van der Toom QM, Bakker Schut TC, Wolvius EB, Baatenburg de Jong RJ, Puppels GJ, Koljenović S. Depth of invasion in early stage oral cavity squamous cell carcinoma: The optimal cut-off value for elective neck dissection. Oral Oncol 2020; 111:104940. [PMID: 32769035 DOI: 10.1016/j.oraloncology.2020.104940] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Depth of invasion (DOI) is the most important predictor for lymph node metastasis (LNM) in early stage (T1-T2) oral cancer. The aim of this study is to validate the cut-off value of 4 mm on which the decision to perform an Elective Neck Dissection (END) is made. MATERIALS AND METHODS We performed a retrospective study in patients with pathologically proven early stage oral cavity squamous cell carcinoma (OCSCC) without clinical or radiological signs of LNM, who were treated between 2013 and 2018. An END was performed when DOI was ≥ 4 mm and a watchful waiting protocol was applied in patients with DOI < 4 mm. RESULTS Three hundred patients were included. END was performed in 77% of patients with DOI ≥ 4 mm, of which 36% had occult LNM (pN+). Patients in the watchful waiting group (48%) developed a regional recurrence in 5.2% for DOI < 4 mm and 24.1% for DOI ≥ 4 mm. For DOI ≥ 4 mm, regional recurrence free survival was higher for patients who were treated with END compared to watchful waiting (p = 0.002). A Receiver-Operator-Curve -analysis showed that a DOI cut-off value of 4.0 mm was the optimal threshold for the prediction of occult LNM (95.1% sensitivity, 52.9% specificity). CONCLUSION A DOI of ≥ 4 mm is an accurate cut-off value for performing an END in early stage OCSCC. END results in higher survival rates and lower regional recurrence rates in patients with DOI ≥ 4 mm.
Collapse
Affiliation(s)
- Cornelia G F van Lanschot
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Yoram P Klazen
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Maria A J de Ridder
- Department of Medical Informatics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Hetty Mast
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Ivo Ten Hove
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - José A Hardillo
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Dominiek A Monserez
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Aniel Sewnaik
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Cees A Meeuwis
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Stijn Keereweer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Yassine Aaboubout
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Pathology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Elisa M Barroso
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Pathology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Quincy M van der Toom
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Tom C Bakker Schut
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Gerwin J Puppels
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Senada Koljenović
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Pathology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
52
|
Zhan Q, Li Y, Yuan Y, Liu J, Li Y. The accuracy of Raman spectroscopy in the detection and diagnosis of oral cancer: A systematic review and meta‐analysis. JOURNAL OF RAMAN SPECTROSCOPY 2020. [DOI: 10.1002/jrs.5940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qi Zhan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yuan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yihang Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jinchi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
53
|
An Update on Surgical Margins in the Head Neck Squamous Cell Carcinoma: Assessment, Clinical Outcome, and Future Directions. Curr Oncol Rep 2020; 22:82. [PMID: 32601821 DOI: 10.1007/s11912-020-00942-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Failure to achieve tumor-free margins is the single largest cause of death for head neck cancer patients. At the same time, it is the only factor that is in complete control of the surgeon. This review summarizes evidence for the definition, clinical implications, and methods to achieve optimal margins. RECENT FINDINGS The previous universally followed definition of adequate margin (5 mm in final histopathology) has been disputed. Various biological, optical, and imaging adjuncts can aid in achieving optimal margins. Extent of resection and margins in human papilloma virus (HPV)-positive oropharyngeal cancers and following induction chemotherapy remain controversial. Though practiced widely, frozen section-guided margin revision has not conclusively shown improved local control rates. The role of molecular assessment of margins is promising but not established. The definition of adequate margin differs according to the site in the head neck region. Currently, the 5-mm margin at final histopathology is the most commonly accepted definition of an "adequate" margin.
Collapse
|
54
|
Hubbard TJE, Shore A, Stone N. Raman spectroscopy for rapid intra-operative margin analysis of surgically excised tumour specimens. Analyst 2020; 144:6479-6496. [PMID: 31616885 DOI: 10.1039/c9an01163c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Raman spectroscopy, a form of vibrational spectroscopy, has the ability to provide sensitive and specific biochemical analysis of tissue. This review article provides an in-depth analysis of the suitability of different Raman spectroscopy techniques in providing intra-operative margin analysis in a range of solid tumour pathologies. Surgical excision remains the primary treatment of a number of solid organ cancers. Incomplete excision of a tumour and positive margins on histopathological analysis is associated with a worse prognosis, the need for adjuvant therapies with significant side effects and a resulting financial burden. The provision of intra-operative margin analysis of surgically excised tumour specimens would be beneficial for a number of pathologies, as there are no widely adopted and accurate methods of margin analysis, beyond histopathology. The limitations of Raman spectroscopic studies to date are discussed and future work necessary to enable translation to clinical use is identified. We conclude that, although there remain a number of challenges in translating current techniques into a clinically effective tool, studies so far demonstrate that Raman Spectroscopy has the attributes to successfully perform highly accurate intra-operative margin analysis in a clinically relevant environment.
Collapse
|
55
|
Mondal SB, O'Brien CM, Bishop K, Fields RC, Margenthaler JA, Achilefu S. Repurposing Molecular Imaging and Sensing for Cancer Image-Guided Surgery. J Nucl Med 2020; 61:1113-1122. [PMID: 32303598 DOI: 10.2967/jnumed.118.220426] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/05/2020] [Indexed: 12/25/2022] Open
Abstract
Gone are the days when medical imaging was used primarily to visualize anatomic structures. The emergence of molecular imaging (MI), championed by radiolabeled 18F-FDG PET, has expanded the information content derived from imaging to include pathophysiologic and molecular processes. Cancer imaging, in particular, has leveraged advances in MI agents and technology to improve the accuracy of tumor detection, interrogate tumor heterogeneity, monitor treatment response, focus surgical resection, and enable image-guided biopsy. Surgeons are actively latching on to the incredible opportunities provided by medical imaging for preoperative planning, intraoperative guidance, and postoperative monitoring. From label-free techniques to enabling cancer-selective imaging agents, image-guided surgery provides surgical oncologists and interventional radiologists both macroscopic and microscopic views of cancer in the operating room. This review highlights the current state of MI and sensing approaches available for surgical guidance. Salient features of nuclear, optical, and multimodal approaches will be discussed, including their strengths, limitations, and clinical applications. To address the increasing complexity and diversity of methods available today, this review provides a framework to identify a contrast mechanism, suitable modality, and device. Emerging low-cost, portable, and user-friendly imaging systems make the case for adopting some of these technologies as the global standard of care in surgical practice.
Collapse
Affiliation(s)
- Suman B Mondal
- Department of Radiology, Washington University, St. Louis, Missouri
| | | | - Kevin Bishop
- Department of Radiology, Washington University, St. Louis, Missouri
| | - Ryan C Fields
- Department of Surgery and Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Julie A Margenthaler
- Department of Surgery and Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Achilefu
- Department of Radiology, Washington University, St. Louis, Missouri .,Department of Biomedical Engineering, Washington University, St. Louis, Missouri; and.,Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri
| |
Collapse
|
56
|
Calado G, Behl I, Daniel A, Byrne HJ, Lyng FM. Raman spectroscopic analysis of saliva for the diagnosis of oral cancer: A systematic review. TRANSLATIONAL BIOPHOTONICS 2019. [DOI: 10.1002/tbio.201900001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Genecy Calado
- Radiation and Environmental Science CentreFOCAS Research Institute, Technological University Dublin, City Centre Campus Dublin Ireland
- School of Physics and Clinical and Optometric SciencesTechnological University Dublin, City Centre Campus Dublin Ireland
| | - Isha Behl
- Radiation and Environmental Science CentreFOCAS Research Institute, Technological University Dublin, City Centre Campus Dublin Ireland
- School of Physics and Clinical and Optometric SciencesTechnological University Dublin, City Centre Campus Dublin Ireland
| | - Amuthachelvi Daniel
- Radiation and Environmental Science CentreFOCAS Research Institute, Technological University Dublin, City Centre Campus Dublin Ireland
- School of Physics and Clinical and Optometric SciencesTechnological University Dublin, City Centre Campus Dublin Ireland
| | - Hugh J. Byrne
- FOCAS Research InstituteTechnological University Dublin, City Centre Campus Dublin Ireland
| | - Fiona M. Lyng
- Radiation and Environmental Science CentreFOCAS Research Institute, Technological University Dublin, City Centre Campus Dublin Ireland
- School of Physics and Clinical and Optometric SciencesTechnological University Dublin, City Centre Campus Dublin Ireland
| |
Collapse
|
57
|
Jeng MJ, Sharma M, Sharma L, Chao TY, Huang SF, Chang LB, Wu SL, Chow L. Raman Spectroscopy Analysis for Optical Diagnosis of Oral Cancer Detection. J Clin Med 2019; 8:E1313. [PMID: 31461884 PMCID: PMC6780219 DOI: 10.3390/jcm8091313] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Raman spectroscopy (RS) is widely used as a non-invasive technique in screening for the diagnosis of oral cancer. The potential of this optical technique for several biomedical applications has been proved. This work studies the efficacy of RS in detecting oral cancer using sub-site-wise differentiation. A total of 80 samples (44 tumor and 36 normal) were cryopreserved from three different sub-sites: The tongue, the buccal mucosa, and the gingiva of the oral mucosa during surgery. Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) were used with principal component analysis (PCA) to classify the samples and the classifications were validated by leave-one-out-cross-validation (LOOCV) and k-fold cross-validation methods. The normal and tumor tissues were differentiated under the PCA-LDA model with an accuracy of 81.25% (sensitivity: 77.27%, specificity: 86.11%). The PCA-QDA classifier model differentiated these tissues with an accuracy of 87.5% (sensitivity: 90.90%, specificity: 83.33%). The PCA-QDA classifier model outperformed the PCA-LDA-based classifier. The model studies revealed that protein, amino acid, and beta-carotene variations are the main biomolecular difference markers for detecting oral cancer.
Collapse
Affiliation(s)
- Ming-Jer Jeng
- Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou 244, Taiwan
| | - Mukta Sharma
- Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Lokesh Sharma
- AI Innovation Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Yu Chao
- Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Shiang-Fu Huang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou 244, Taiwan.
- Department of Public Health, Chang Gung University, Taoyuan 333, Taiwan.
| | - Liann-Be Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou 244, Taiwan.
- Green Technology Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| | - Shih-Lin Wu
- AI Innovation Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Lee Chow
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
58
|
Ralbovsky NM, Lednev IK. Raman spectroscopy and chemometrics: A potential universal method for diagnosing cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:463-487. [PMID: 31075613 DOI: 10.1016/j.saa.2019.04.067] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 05/14/2023]
Abstract
Cancer is the second-leading cause of death worldwide. It affects an unfathomable number of people, with almost 16 million Americans currently living with it. While many cancers can be detected, current diagnostic efforts exhibit definite room for improvement. It is imperative that a person be diagnosed with cancer as early on in its progression as possible. An earlier diagnosis allows for the best treatment and intervention options available to be presented. Unfortunately, existing methods for diagnosing cancer can be expensive, invasive, inconclusive or inaccurate, and are not always made during initial stages of the disease. As such, there is a crucial unmet need to develop a singular universal method that is reliable, cost-effective, and non-invasive and can diagnose all forms of cancer early-on. Raman spectroscopy in combination with advanced statistical analysis is offered here as a potential solution for this need. This review covers recently published research in which Raman spectroscopy was used for the purpose of diagnosing cancer. The benefits and the risks of the methodology are presented; however, there is overwhelming evidence that suggests Raman spectroscopy is highly suitable for becoming the first universal method to be used for diagnosing cancer.
Collapse
Affiliation(s)
- Nicole M Ralbovsky
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
59
|
Sahu A, Gera P, Malik A, Nair S, Chaturvedi P, Murali Krishna C. Raman exfoliative cytology for prognosis prediction in oral cancers: A proof of concept study. JOURNAL OF BIOPHOTONICS 2019; 12:e201800334. [PMID: 30719849 DOI: 10.1002/jbio.201800334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/16/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Oral cancer is associated with high rates of recurrence, attributable to field cancerization. Early detection of advanced field changes that can potentially progress to carcinoma can facilitate timely intervention and can lead to improved prognosis. Previous in vivo studies have successfully detected advanced field effects in oral cancers. Raman exfoliative cytology has previously shown to differentiate normal, oral pre-cancer and cancers. The present study explores Raman-exfoliative-cytology-based detection of field effects. Exfoliated cells were collected from tumor (n = 16) and contralateral-normal appearing mucosa (n = 16) of oral cancer patients, and healthy tobacco habitués (n = 20). After spectral acquisition, specimens were Pap-stained for cytological evaluation. Data analysis, by Principal Component Analysis and Principal Component-Linear Discriminant Analysis, indicate several spectral-misclassifications between contralateral normal and tumor, which were investigated and correlated with spectral, cytological and clinical outcomes. A qualitative analysis by grouping patients with number of misclassifications with tumor (Group 1: 0, Group 2: 1 and Group 3: >1) was explored. Group 3 with highest misclassifications showed spectral and cytological similarity to tumor group - one patient was a case of early inoperable residual disease, despite clear margins on histopathology. Thus, these misclassifications could be indicative of cancer field changes, and can prospectively help to identify patients susceptible to recurrences .
Collapse
Affiliation(s)
- Aditi Sahu
- Chilakapati Laboratory, Tata Memorial Centre, ACTREC, Mumbai, India
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Poonam Gera
- ACTREC Biorepository, Tata Memorial Centre, ACTREC, Mumbai, India
| | - Akshat Malik
- Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Sudhir Nair
- Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Pankaj Chaturvedi
- Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - C Murali Krishna
- Chilakapati Laboratory, Tata Memorial Centre, ACTREC, Mumbai, India
- Homi Baba National Institute, Trombay, Mumbai
| |
Collapse
|
60
|
Surgical margins in oral squamous cell cancer: intraoperative evaluation and prognostic impact. Curr Opin Otolaryngol Head Neck Surg 2019; 27:98-103. [PMID: 30844923 DOI: 10.1097/moo.0000000000000516] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW To summarize recent findings regarding surgical management of oral squamous cell cancer (OSCC) through analysis of different intraoperative techniques for assessment of margins, evaluate the pros and cons of each, and ensuing prognostic impact. RECENT FINDINGS 'En bloc' OSCC resection and histopathologic evaluation of margins on the formalin-fixed specimen remain the 'gold standard' for oral oncologic surgery, whereas assessment of intraoperative surgical margins and its overall clinical value are still questioned and debated in the literature. The commonly applied evaluation of frozen sections still raises concerns regarding its efficacy and reproducibility; therefore, several ancillary diagnostic methods have entered the field of head and neck oncology in the last decades, aiming to support the surgeon in achieving tumor-free margins during ablative procedures. SUMMARY Poor prognosis of OSCC is strongly associated with residual tumor after surgery. Negative surgical margins are one of the strongest prognosticators for disease-free survival and locoregional control, but their intraoperative determination seems still to be suboptimal and needs better refinement. The most studied techniques to assess intraoperative margins include fluorescence, Raman spectroscopy, narrow band imaging, optical coherence tomography, and cytological bone margins analysis; each has its unique characteristics that are described in detail herein.
Collapse
|
61
|
Predictive Value of Opto-magnetic Imaging Spectroscopy in Discriminating Oral Squamous Cell Carcinoma from Non-tumor Tissue in Surgical Margins. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
62
|
Kain JJ, Birkeland AC, Udayakumar N, Morlandt AB, Stevens TM, Carroll WR, Rosenthal EL, Warram JM. Surgical margins in oral cavity squamous cell carcinoma: Current practices and future directions. Laryngoscope 2019; 130:128-138. [PMID: 31025711 DOI: 10.1002/lary.27943] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/09/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To discuss the current available techniques for intraoperative margin assessment in the surgical treatment of oral squamous cell carcinoma (OSCC) through a review of the available literature. METHODS A systematic review was undertaken of the available English literature between 2008 through 2018 regarding surgical margins in OCSS. A total of 893 relevant articles were returned; 144 met criteria for review; and 64 articles were included. RESULTS In this review, we discuss the data surrounding the use of frozen section in OCSS. Additionally, alternative techniques for margin assessment are discussed, including Mohs, molecular analysis, nonfluorescent dyes, fluorescent dyes, autofluorescent imaging, narrow-band imaging, optical coherence tomography, confocal microscopy, high-resolution microendoscopy, and spectroscopy. For each technique, particular emphasis is placed on the local recurrence, disease-free survival, and overall survival rates when available. CONCLUSION This review provides support for the practice of specimen-driven margin assessment when using frozen section analysis to improve the utility of the results. Finally, several alternatives for intraoperative margin assessment currently under investigation, including pathologic, wide-field imaging and narrow-field imaging techniques, are presented. We aim to fuel further investigation into methods for margin assessment that will improve survival for patients with OSCC through a critical analysis of the available techniques. LEVEL OF EVIDENCE NA Laryngoscope, 130:128-138, 2020.
Collapse
Affiliation(s)
- Joshua J Kain
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Andrew C Birkeland
- Department of Otolaryngology, Stanford University, Stanford, California, U.S.A
| | - Neha Udayakumar
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Anthony B Morlandt
- Department of Oral & Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Todd M Stevens
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - William R Carroll
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University, Stanford, California, U.S.A
| | - Jason M Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| |
Collapse
|
63
|
Cals FLJ, Bakker Schut TC, Caspers PJ, Baatenburg de Jong RJ, Koljenović S, Puppels GJ. Raman spectroscopic analysis of the molecular composition of oral cavity squamous cell carcinoma and healthy tongue tissue. Analyst 2019; 143:4090-4102. [PMID: 30083685 DOI: 10.1039/c7an02106b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A Raman tissue spectrum is a quantitative representation of the overall molecular composition of that tissue. Raman spectra are often used as tissue fingerprints without further interpretation of the specific information that they contain about the tissue's molecular composition. In this study, we analyzed the differences in molecular composition between oral cavity squamous cell carcinoma (OCSCC) and healthy tissue structures in tongue, based on their Raman spectra. A total of 1087 histopathologically annotated spectra (142 OCSCC, 202 surface squamous epithelium, 61 muscle, 65 adipose tissue, 581 connective tissue, 26 gland, and 10 nerve) were obtained from Raman maps of 44 tongue samples from 21 patients. A characteristic, average spectrum of each tissue structure was fitted with a set of 55 pure-compound reference spectra, to define the best library of fit-spectra. Reference spectra represented proteins, lipids, nucleic acids, carbohydrates, amino acids and other miscellaneous molecules. A non-negative least-squares algorithm was used for fitting. Individual spectra per histopathological annotation were then fitted with this selected library in order to determine the molecular composition per tissue structure. The spectral contribution per chemical class was calculated. The results show that all characteristic tissue-type spectra could be fitted with a low residual of <4.82%. The content of carbohydrates, proteins and amino acids was the strongest discriminator between OCSCC and healthy tissue. The combination of carbohydrates, proteins and amino acids was used for a classification model of 'tumor' versus 'healthy tissue'. Validation of this model on an independent dataset showed a specificity of 93% at a sensitivity of 100%.
Collapse
Affiliation(s)
- F L J Cals
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer institute, University Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
64
|
Khristoforova YA, Bratchenko IA, Myakinin OO, Artemyev DN, Moryatov AA, Orlov AE, Kozlov SV, Zakharov VP. Portable spectroscopic system for in vivo skin neoplasms diagnostics by Raman and autofluorescence analysis. JOURNAL OF BIOPHOTONICS 2019; 12:e201800400. [PMID: 30597749 DOI: 10.1002/jbio.201800400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The present paper studies the applicability of a portable cost-effective spectroscopic system for the optical screening of skin tumors. in vivo studies of Raman scattering and autofluorescence (AF) of skin tumors with the 785 nm excitation laser in the near-infrared region included malignant melanoma, basal cell carcinoma and various types of benign neoplasms. The efficiency of the portable system was evaluated by comparison with a highly sensitive spectroscopic system and with the diagnosis accuracy of a human oncologist. Partial least square analysis of Raman and AF spectra was performed; specificity and sensitivity of various skin oncological pathologies detection varied from 78.9% to 100%. Hundred percent accuracy of benign and malignant skin tumors differentiation is possible only with a combined analysis of Raman and AF signals.
Collapse
Affiliation(s)
- Yulia A Khristoforova
- Samara National Research University, Department of Laser and Biotechnical Systems, Samara, Russia
| | - Ivan A Bratchenko
- Samara National Research University, Department of Laser and Biotechnical Systems, Samara, Russia
| | - Oleg O Myakinin
- Samara National Research University, Department of Laser and Biotechnical Systems, Samara, Russia
| | - Dmitry N Artemyev
- Samara National Research University, Department of Laser and Biotechnical Systems, Samara, Russia
| | - Alexander A Moryatov
- Samara State Medical University, Department of Oncology, Samara, Russia
- Samara Regional Clinical Oncology Dispensary, Department of Visual Localization Tumors, Samara, Russia
| | - Andrey E Orlov
- Samara Regional Clinical Oncology Dispensary, Department of Visual Localization Tumors, Samara, Russia
| | - Sergey V Kozlov
- Samara State Medical University, Department of Oncology, Samara, Russia
- Samara Regional Clinical Oncology Dispensary, Department of Visual Localization Tumors, Samara, Russia
| | - Valery P Zakharov
- Samara National Research University, Department of Laser and Biotechnical Systems, Samara, Russia
| |
Collapse
|
65
|
Fabelo H, Halicek M, Ortega S, Shahedi M, Szolna A, Piñeiro JF, Sosa C, O'Shanahan AJ, Bisshopp S, Espino C, Márquez M, Hernández M, Carrera D, Morera J, Callico GM, Sarmiento R, Fei B. Deep Learning-Based Framework for In Vivo Identification of Glioblastoma Tumor using Hyperspectral Images of Human Brain. SENSORS 2019; 19:s19040920. [PMID: 30813245 PMCID: PMC6412736 DOI: 10.3390/s19040920] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 02/02/2023]
Abstract
The main goal of brain cancer surgery is to perform an accurate resection of the tumor, preserving as much normal brain tissue as possible for the patient. The development of a non-contact and label-free method to provide reliable support for tumor resection in real-time during neurosurgical procedures is a current clinical need. Hyperspectral imaging is a non-contact, non-ionizing, and label-free imaging modality that can assist surgeons during this challenging task without using any contrast agent. In this work, we present a deep learning-based framework for processing hyperspectral images of in vivo human brain tissue. The proposed framework was evaluated by our human image database, which includes 26 in vivo hyperspectral cubes from 16 different patients, among which 258,810 pixels were labeled. The proposed framework is able to generate a thematic map where the parenchymal area of the brain is delineated and the location of the tumor is identified, providing guidance to the operating surgeon for a successful and precise tumor resection. The deep learning pipeline achieves an overall accuracy of 80% for multiclass classification, improving the results obtained with traditional support vector machine (SVM)-based approaches. In addition, an aid visualization system is presented, where the final thematic map can be adjusted by the operating surgeon to find the optimal classification threshold for the current situation during the surgical procedure.
Collapse
Affiliation(s)
- Himar Fabelo
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain.
| | - Martin Halicek
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1841 Clifton Road NE, Atlanta, GA 30329, USA.
| | - Samuel Ortega
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain.
| | - Maysam Shahedi
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.
| | - Adam Szolna
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - Juan F Piñeiro
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - Coralia Sosa
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - Aruma J O'Shanahan
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - Sara Bisshopp
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - Carlos Espino
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - Mariano Márquez
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - María Hernández
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - David Carrera
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - Jesús Morera
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - Gustavo M Callico
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain.
| | - Roberto Sarmiento
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain.
| | - Baowei Fei
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hine Blvd, Dallas, TX 75390, USA.
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hine Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
66
|
Ghosh A, Raha S, Dey S, Chatterjee K, Roy Chowdhury A, Barui A. Chemometric analysis of integrated FTIR and Raman spectra obtained by non-invasive exfoliative cytology for the screening of oral cancer. Analyst 2019; 144:1309-1325. [DOI: 10.1039/c8an02092b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
FTIR spectroscopy and Raman spectroscopy of biological analytes are increasingly explored as screening tools for early detection of cancer.
Collapse
Affiliation(s)
- Aritri Ghosh
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Sreyan Raha
- Department of Physics
- Bose Institute
- Kolkata-700009
- India
| | - Susmita Dey
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Kabita Chatterjee
- Department of Oral and Maxillofacial Pathology
- Buddha Institute of Dental Sciences
- Patna 800020
- India
| | - Amit Roy Chowdhury
- Department of Aerospace and Applied Mechanics
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Ananya Barui
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| |
Collapse
|
67
|
Santos IP, Barroso EM, Bakker Schut TC, Caspers PJ, van Lanschot CGF, Choi DH, van der Kamp MF, Smits RWH, van Doorn R, Verdijk RM, Noordhoek Hegt V, von der Thüsen JH, van Deurzen CHM, Koppert LB, van Leenders GJLH, Ewing-Graham PC, van Doorn HC, Dirven CMF, Busstra MB, Hardillo J, Sewnaik A, Ten Hove I, Mast H, Monserez DA, Meeuwis C, Nijsten T, Wolvius EB, Baatenburg de Jong RJ, Puppels GJ, Koljenović S. Raman spectroscopy for cancer detection and cancer surgery guidance: translation to the clinics. Analyst 2018; 142:3025-3047. [PMID: 28726868 DOI: 10.1039/c7an00957g] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oncological applications of Raman spectroscopy have been contemplated, pursued, and developed at academic level for at least 25 years. Published studies aim to detect pre-malignant lesions, detect cancer in less invasive stages, reduce the number of unnecessary biopsies and guide surgery towards the complete removal of the tumour with adequate tumour resection margins. This review summarizes actual clinical needs in oncology that can be addressed by spontaneous Raman spectroscopy and it provides an overview over the results that have been published between 2007 and 2017. An analysis is made of the current status of translation of these results into clinical practice. Despite many promising results, most of the applications addressed in scientific studies are still far from clinical adoption and commercialization. The main hurdles are identified, which need to be overcome to ensure that in the near future we will see the first Raman spectroscopy-based solutions being used in routine oncologic diagnostic and surgical procedures.
Collapse
Affiliation(s)
- Inês P Santos
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Masson LE, O'Brien CM, Pence IJ, Herington JL, Reese J, van Leeuwen TG, Mahadevan-Jansen A. Dual excitation wavelength system for combined fingerprint and high wavenumber Raman spectroscopy. Analyst 2018; 143:6049-6060. [PMID: 30420993 PMCID: PMC6295447 DOI: 10.1039/c8an01989d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A fiber optic probe-based Raman spectroscopy system using a single laser module with two excitation wavelengths, at 680 and 785 nm, has been developed for measuring the fingerprint and high wavenumber regions using a single detector. This system is simpler and less expensive than previously reported configurations of combined fingerprint and high wavenumber Raman systems, and its probe-based implementation facilitates numerous in vivo applications. The high wavenumber region of the Raman spectrum ranges from 2800-3800 cm-1 and contains valuable information corresponding to the molecular vibrations of proteins, lipids, and water, which is complimentary to the biochemical signatures found in the fingerprint region (800-1800 cm-1), which probes DNA, lipids, and proteins. The efficacy of the system is demonstrated by tracking changes in water content in tissue-mimicking phantoms, where Voigtian decomposition of the high wavenumber water peak revealed a correlation between the water content and type of water-tissue interactions in the samples. This dual wavelength system was then used for in vivo assessment of cervical remodeling during mouse pregnancy, a physiologic process with known changes in tissue hydration. The system shows that Raman spectroscopy is sensitive to changes in collagen content in the fingerprint region and hydration state in the high wavenumber region, which was verified using an ex vivo comparison of wet and dry weight. Simultaneous fingerprint and high wavenumber Raman spectroscopy will allow precise in vivo quantification of tissue water content in the high wavenumber region, paired with the high biochemical specificity of the fingerprint region.
Collapse
Affiliation(s)
- Laura E Masson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Auner GW, Koya SK, Huang C, Broadbent B, Trexler M, Auner Z, Elias A, Mehne KC, Brusatori MA. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev 2018; 37:691-717. [PMID: 30569241 PMCID: PMC6514064 DOI: 10.1007/s10555-018-9770-9] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel approaches toward understanding the evolution of disease can lead to the discovery of biomarkers that will enable better management of disease progression and improve prognostic evaluation. Raman spectroscopy is a promising investigative and diagnostic tool that can assist in uncovering the molecular basis of disease and provide objective, quantifiable molecular information for diagnosis and treatment evaluation. This technique probes molecular vibrations/rotations associated with chemical bonds in a sample to obtain information on molecular structure, composition, and intermolecular interactions. Raman scattering occurs when light interacts with a molecular vibration/rotation and a change in polarizability takes place during molecular motion. This results in light being scattered at an optical frequency shifted (up or down) from the incident light. By monitoring the intensity profile of the inelastically scattered light as a function of frequency, the unique spectroscopic fingerprint of a tissue sample is obtained. Since each sample has a unique composition, the spectroscopic profile arising from Raman-active functional groups of nucleic acids, proteins, lipids, and carbohydrates allows for the evaluation, characterization, and discrimination of tissue type. This review provides an overview of the theory of Raman spectroscopy, instrumentation used for measurement, and variation of Raman spectroscopic techniques for clinical applications in cancer, including detection of brain, ovarian, breast, prostate, and pancreatic cancers and circulating tumor cells.
Collapse
Affiliation(s)
- Gregory W Auner
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA.
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA.
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA.
- Henry Ford Health Systems, Detroit Institute of Ophthalmology, Grosse Pointe Park, MI, 48230, USA.
| | - S Kiran Koya
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Changhe Huang
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Brandy Broadbent
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Micaela Trexler
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Zachary Auner
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
- Department of Physics & Astronomy, Wayne State University, Detroit, MI, 48202, USA
| | - Angela Elias
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Katlyn Curtin Mehne
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| | - Michelle A Brusatori
- Michael and Marian Ilitch Department of Surgery, School of Medicine, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Department of Biomedical Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA
- Smart Sensors and Integrated Microsystems Program, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
70
|
In vivo Raman spectroscopic characteristics of different sites of the oral mucosa in healthy volunteers. Clin Oral Investig 2018; 23:3021-3031. [DOI: 10.1007/s00784-018-2714-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
|
71
|
Pahlow S, Weber K, Popp J, Wood BR, Kochan K, Rüther A, Perez-Guaita D, Heraud P, Stone N, Dudgeon A, Gardner B, Reddy R, Mayerich D, Bhargava R. Application of Vibrational Spectroscopy and Imaging to Point-of-Care Medicine: A Review. APPLIED SPECTROSCOPY 2018; 72:52-84. [PMID: 30265133 PMCID: PMC6524782 DOI: 10.1177/0003702818791939] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Susanne Pahlow
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
| | - Karina Weber
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Anja Rüther
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - David Perez-Guaita
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Nick Stone
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Alex Dudgeon
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Ben Gardner
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Rohith Reddy
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - David Mayerich
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Departments of Mechanical Engineering, Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
72
|
Guo S, Kohler A, Zimmermann B, Heinke R, Stöckel S, Rösch P, Popp J, Bocklitz T. Extended Multiplicative Signal Correction Based Model Transfer for Raman Spectroscopy in Biological Applications. Anal Chem 2018; 90:9787-9795. [PMID: 30016081 DOI: 10.1021/acs.analchem.8b01536] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The chemometric analysis of Raman spectra of biological materials is hampered by spectral variations due to the instrumental setup that overlay the subtle biological changes of interest. Thus, an established statistical model may fail when applied to Raman spectra of samples acquired with a different device. Therefore, model transfer strategies are essential. Herein we report a model transfer approach based on extended multiplicative signal correction (EMSC). As opposed to existing model transfer methods, the EMSC based approach does not require group information on the secondary data sets, thus no extra measurements are required. The proposed model-transfer approach is a preprocessing procedure and can be combined with any method for regression and classification. The performance of EMSC as a model transfer method was demonstrated with a data set of Raman spectra of three Bacillus bacteria spore species ( B. mycoides, B. subtilis, and B. thuringiensis), which were acquired on four Raman spectrometers. A three-group classification by partial least-squares discriminant analysis (PLS-DA) with leave-one-device-out external cross-validation (LODCV) was performed. The mean sensitivities of the prediction on the independent device were considerably improved by the EMSC method. Besides the mean sensitivity, the model transferability was additionally benchmarked by the newly defined numeric markers: (1) relative Pearson's correlation coefficient and (2) relative Fisher's discriminant ratio. We show that these markers have led to consistent conclusions compared to the mean sensitivity of the classification. The advantage of our defined markers is that the evaluation is more effective and objective, because it is independent of the classification models.
Collapse
Affiliation(s)
- Shuxia Guo
- Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University of Jena , Helmholtzweg 4 , D-07743 Jena , Germany.,Leibniz Institute of Photonic Technology, Member of Leibniz Research Alliance 'Health Technologies' , Albert-Einstein-Straße 9 , D-07745 Jena , Germany
| | - Achim Kohler
- Faculty of Science and Technology , Norwegian University of Life Sciences , P.O. Box 5003, NO1432 , Ås , Norway
| | - Boris Zimmermann
- Faculty of Science and Technology , Norwegian University of Life Sciences , P.O. Box 5003, NO1432 , Ås , Norway
| | - Ralf Heinke
- Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University of Jena , Helmholtzweg 4 , D-07743 Jena , Germany
| | - Stephan Stöckel
- Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University of Jena , Helmholtzweg 4 , D-07743 Jena , Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University of Jena , Helmholtzweg 4 , D-07743 Jena , Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University of Jena , Helmholtzweg 4 , D-07743 Jena , Germany.,Leibniz Institute of Photonic Technology, Member of Leibniz Research Alliance 'Health Technologies' , Albert-Einstein-Straße 9 , D-07745 Jena , Germany.,InfectoGnostics , Forschungscampus Jena , Philosophenweg 7 , D-07743 Jena , Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University of Jena , Helmholtzweg 4 , D-07743 Jena , Germany.,Leibniz Institute of Photonic Technology, Member of Leibniz Research Alliance 'Health Technologies' , Albert-Einstein-Straße 9 , D-07745 Jena , Germany
| |
Collapse
|
73
|
Guo S, Chernavskaia O, Popp J, Bocklitz T. Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS). Talanta 2018; 186:372-380. [DOI: 10.1016/j.talanta.2018.04.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/27/2022]
|
74
|
Gnutt D, Brylski O, Edengeiser E, Havenith M, Ebbinghaus S. Imperfect crowding adaptation of mammalian cells towards osmotic stress and its modulation by osmolytes. MOLECULAR BIOSYSTEMS 2018; 13:2218-2221. [PMID: 28929156 DOI: 10.1039/c7mb00432j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Changes of the extracellular milieu could affect cellular crowding. To prevent detrimental effects, cells use adaptation mechanisms to react to such conditions. Using fluorescent crowding sensors, we show that the initial response to osmotic stress is fast but imperfect, while the slow response renders cells more tolerant to stress, particularly in the presence of osmolytes.
Collapse
Affiliation(s)
- David Gnutt
- Department of Physical Chemistry II, Ruhr University Bochum, Universitättstr. 150, 44801 Bochum, Germany.
| | | | | | | | | |
Collapse
|
75
|
Cordero E, Latka I, Matthäus C, Schie I, Popp J. In-vivo Raman spectroscopy: from basics to applications. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-23. [PMID: 29956506 DOI: 10.1117/1.jbo.23.7.071210] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 05/20/2023]
Abstract
For more than two decades, Raman spectroscopy has found widespread use in biological and medical applications. The instrumentation and the statistical evaluation procedures have matured, enabling the lengthy transition from ex-vivo demonstration to in-vivo examinations. This transition goes hand-in-hand with many technological developments and tightly bound requirements for a successful implementation in a clinical environment, which are often difficult to assess for novice scientists in the field. This review outlines the required instrumentation and instrumentation parameters, designs, and developments of fiber optic probes for the in-vivo applications in a clinical setting. It aims at providing an overview of contemporary technology and clinical trials and attempts to identify future developments necessary to bring the emerging technology to the clinical end users. A comprehensive overview of in-vivo applications of fiber optic Raman probes to characterize different tissue and disease types is also given.
Collapse
Affiliation(s)
- Eliana Cordero
- Leibniz-Institut für Photonische Technologien e.V., Germany
| | - Ines Latka
- Leibniz-Institut für Photonische Technologien e.V., Germany
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien e.V., Germany
- Institut für Physikalische Chemie, Friedrich-Schiller-Univ. Jena, Germany
- Abbe Ctr. of Photonics, Germany
| | - Iwan Schie
- Leibniz-Institut für Photonische Technologien e.V., Germany
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien e.V., Germany
- Institute für Physikalische Chemie, Friedrich-Schiller-Univ. Jena, Germany
| |
Collapse
|
76
|
Mascarella MA, Alrasheed A, Fnais N, Gourgas O, Jalani G, Cerruti M, Tewfik MA. Raman Spectroscopy for Inverted Papilloma: A Proof-of-Concept Study. Otolaryngol Head Neck Surg 2018; 159:587-589. [PMID: 29763337 DOI: 10.1177/0194599818776640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inverted papillomas are tumors of the sinonasal tract with a propensity to recur. Raman spectroscopy can potentially identify inverted papillomas from other tissue based on biochemical signatures. A pilot study comparing Raman spectroscopy to histopathology for 3 types of sinonasal tissue was performed. Spectral data of biopsies from patients with normal sinonasal mucosa, chronic rhinosinusitis, and inverted papillomas are compared to histopathology using principal component analysis and linear discriminant analysis after data preprocessing. A total of 18 normal, 15 chronic rhinosinusitis, and 18 inverted papilloma specimens were evaluated. The model distinguished normal sinonasal mucosa, chronic rhinosinusitis, and inverted papilloma tissue with an overall accuracy of 90.2% (95% confidence interval, 0.86-0.94). In conclusion, Raman spectroscopy can distinguish inverted papilloma, normal sinonasal mucosa, and chronically rhinosinusitis tissue with acceptable accuracy.
Collapse
Affiliation(s)
- Marco A Mascarella
- 1 Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Abdulaziz Alrasheed
- 1 Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada.,2 Department of Otolaryngology-Head and Neck Surgery, King Saud University, Riyadh, Saudi Arabia
| | - Naif Fnais
- 1 Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada.,2 Department of Otolaryngology-Head and Neck Surgery, King Saud University, Riyadh, Saudi Arabia
| | - Ophelie Gourgas
- 3 Biointerface Lab, Department of Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Ghulam Jalani
- 3 Biointerface Lab, Department of Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Marta Cerruti
- 3 Biointerface Lab, Department of Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Marc A Tewfik
- 1 Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
77
|
Sato ET, Martinho H. First-principles calculations of Raman vibrational modes in the fingerprint region for connective tissue. BIOMEDICAL OPTICS EXPRESS 2018; 9:1728-1734. [PMID: 29675314 PMCID: PMC5905918 DOI: 10.1364/boe.9.001728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 05/16/2023]
Abstract
Vibrational spectroscopy has been widely employed to unravel the physical-chemical properties of biological systems. Due to its high sensitivity to monitoring real time "in situ" changes, Raman spectroscopy has been successfully employed, e.g., in biomedicine, metabolomics, and biomedical engineering. The interpretation of Raman spectra in these cases is based on the isolated macromolecules constituent vibrational assignment. Due to this, probing the anharmonic or the mutual interactions among specific moieties/side chains is a challenge. We present a complete vibrational modes calculation for connective tissue in the fingerprint region (800 - 1800 cm-1) using first-principles density functional theory. Our calculations accounted for the inherent complexity of the spectral features of this region and useful spectral markers for biological processes were unambiguously identified. Our results indicated that important spectral features correlated to molecular characteristics have been ignored in the current tissue spectral bands assignments. In particular, we found that the presence of confined water is mainly responsible for the observed spectral complexity.
Collapse
|
78
|
Smits RWH, Ten Hove I, Dronkers EAC, Bakker Schut TC, Mast H, Baatenburg de Jong RJ, Wolvius EB, Puppels GJ, Koljenović S. Evaluation of bone resection margins of segmental mandibulectomy for oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2018; 47:959-964. [PMID: 29605084 DOI: 10.1016/j.ijom.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/15/2018] [Accepted: 03/09/2018] [Indexed: 12/01/2022]
Abstract
Resection margins are frequently studied in patients with oral squamous cell carcinoma and are accepted as a constant prognostic factor. While most evidence is based on soft tissue margins, reported data for bone resection margins are scarce. The aim of this retrospective study was to evaluate and determine the utility of surgical margins in bone resections for oral cavity squamous cell carcinoma (OCSCC). The status of bone resection margins and their impact on survival was investigated in patients who had undergone segmental mandibulectomy for OCSCC. Medical records were retrieved for the years 2000-2012; 127 patients were identified and included in the study. Tumour-positive bone resection margins were found in 21% of the patients. The 5-year overall survival was significantly lower in this group (P<0.005). Therefore, there is a need for intraoperative feedback on the status of bone resection margins to enable immediate additional resection where necessary. Although the lack of intraoperative methods for the evaluation of bone tissue has been addressed by many authors, there is still no reliable method for widespread use. Future research should focus on an objective, accurate, and rapid method of intraoperative assessment for the entire bone resection margin to optimize patient outcomes.
Collapse
Affiliation(s)
- R W H Smits
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands; Centre for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ivo Ten Hove
- Centre for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands; Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - E A C Dronkers
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - T C Bakker Schut
- Centre for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - H Mast
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - R J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - E B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - G J Puppels
- Centre for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - S Koljenović
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
79
|
Wu C, Gleysteen J, Teraphongphom NT, Li Y, Rosenthal E. In-vivo optical imaging in head and neck oncology: basic principles, clinical applications and future directions. Int J Oral Sci 2018; 10:10. [PMID: 29555901 PMCID: PMC5944254 DOI: 10.1038/s41368-018-0011-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 12/29/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023] Open
Abstract
Head and neck cancers become a severe threat to human's health nowadays and represent the sixth most common cancer worldwide. Surgery remains the first-line choice for head and neck cancer patients. Limited resectable tissue mass and complicated anatomy structures in the head and neck region put the surgeons in a dilemma between the extensive resection and a better quality of life for the patients. Early diagnosis and treatment of the pre-malignancies, as well as real-time in vivo detection of surgical margins during en bloc resection, could be leveraged to minimize the resection of normal tissues. With the understanding of the head and neck oncology, recent advances in optical hardware and reagents have provided unique opportunities for real-time pre-malignancies and cancer imaging in the clinic or operating room. Optical imaging in the head and neck has been reported using autofluorescence imaging, targeted fluorescence imaging, high-resolution microendoscopy, narrow band imaging and the Raman spectroscopy. In this study, we reviewed the basic theories and clinical applications of optical imaging for the diagnosis and treatment in the field of head and neck oncology with the goal of identifying limitations and facilitating future advancements in the field.
Collapse
Affiliation(s)
- Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - John Gleysteen
- Department of Otolaryngology, University of Tennessee Health Science Center, 38163, Memphis, TN, USA
| | | | - Yi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Eben Rosenthal
- Department of Otolaryngology and Radiology, Stanford University, 94305, Stanford, CA, USA.
| |
Collapse
|
80
|
Wang J, Zheng W, Lin K, Huang Z. Characterizing biochemical and morphological variations of clinically relevant anatomical locations of oral tissue in vivo with hybrid Raman spectroscopy and optical coherence tomography technique. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28985038 DOI: 10.1002/jbio.201700113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 05/08/2023]
Abstract
This study aims to characterize biochemical and morphological variations of the clinically relevant anatomical locations of in vivo oral tissue (ie, alveolar process, lateral tongue and floor of the mouth) by using hybrid Raman spectroscopy (RS) and optical coherence tomography (OCT) technique. A total of 1049 in vivo fingerprint (FP: 800-1800 cm-1 ) and high wavenumber (HW: 2800-3600 cm-1 ) Raman spectra were acquired from different oral tissue (alveolar process = 331, lateral tongue = 339 and floor of mouth = 379) of 26 normal subjects in the oral cavity under the OCT imaging guidance. The total Raman dataset were split into 2 parts: 80% for training and 20% for testing. Tissue optical attenuation coefficients of alveolar process, lateral tongue and the floor of the mouth were derived from OCT images, revealing the inter-anatomical morphological differences; while RS uncovers subtle FP/HW Raman spectral differences among different oral tissues that can be attributed to the differences in inter- and intra-cellular proteins, lipids, DNA and water structures and conformations, enlightening biochemical variability of different oral tissues at the molecular level. Partial least squares-discriminant analysis implemented on the training dataset show that the integrated tissue optical attenuation coefficients and FP/HW Raman spectra provide diagnostic sensitivities of 99.6%, 82.3%, 50.2%, and specificities of 97.0%, 75.1%, 92.1%, respectively, which are superior to using either RS (sensitivities of 90.2%, 77.5%, 48.8%, and specificities of 95.8%, 72.1%, 88.8%) or optical attenuation coefficients derived from OCT (sensitivities of 75.0%, 78.2%, 47.2%, and specificities of 96.2%, 67.7%, 85.0%) for the differentiation among alveolar process, lateral tongue and the floor of the mouth. Furthermore, the diagnostic algorithms applied to the independent testing dataset based on hybrid RS-OCT technique gives predictive diagnostic sensitivities of 100%, 76.5%, 51.3%, and specificities of 95.1%, 77.6%, 89.6%, respectively, for the classifications among alveolar process, lateral tongue and the floor of the mouth, which performs much better than either RS or optical attenuation coefficient derived from OCT imaging. This work suggests that inter-anatomical morphological and biochemical variability are significant which should be considered as an important parameter in the interpretation and rendering of hybrid RS-OCT technique for oral tissue diagnosis and characterization.
Collapse
Affiliation(s)
- Jianfeng Wang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Kan Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| |
Collapse
|
81
|
Barroso EM, Ten Hove I, Bakker Schut TC, Mast H, van Lanschot CGF, Smits RWH, Caspers PJ, Verdijk R, Noordhoek Hegt V, Baatenburg de Jong RJ, Wolvius EB, Puppels GJ, Koljenović S. Raman spectroscopy for assessment of bone resection margins in mandibulectomy for oral cavity squamous cell carcinoma. Eur J Cancer 2018; 92:77-87. [PMID: 29428867 DOI: 10.1016/j.ejca.2018.01.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/22/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the potential of Raman spectroscopy for detection of oral cavity squamous cell carcinoma (OCSCC) in bone resection surfaces during mandibulectomy. MATERIALS & METHODS Raman mapping experiments were performed on fresh mandible resection specimens from patients treated with mandibulectomy for OCSCC. A tumour detection algorithm was created based on water concentration and the high-wavenumber range (2800 cm-1-3050 cm-1) of the Raman spectra. RESULTS Twenty-six ex vivo Raman mapping experiments were performed on 26 fresh mandible resection specimens obtained from 22 patients. The algorithm was applied on an independent test set and showed an accuracy of 95%, a sensitivity of 95%, and a specificity of 87%. CONCLUSION These results form the basis for further development of a Raman spectroscopy tool as an objective method for intraoperative assessment of bone resection margins.
Collapse
Affiliation(s)
- Elisa M Barroso
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ivo Ten Hove
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Tom C Bakker Schut
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Hetty Mast
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Cornelia G F van Lanschot
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Roeland W H Smits
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Peter J Caspers
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Rob Verdijk
- Department of Pathology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Vincent Noordhoek Hegt
- Department of Pathology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Gerwin J Puppels
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Senada Koljenović
- Department of Pathology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
82
|
de Carvalho LFDCES, Saito Nogueira M. New insights of Raman spectroscopy for oral clinical applications. Analyst 2018; 143:6037-6048. [DOI: 10.1039/c8an01363b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oral injuries are currently diagnosed by histopathological analysis of biopsy, which is an invasive procedure and does not give immediate results.
Collapse
|
83
|
Baker MJ, Byrne HJ, Chalmers J, Gardner P, Goodacre R, Henderson A, Kazarian SG, Martin FL, Moger J, Stone N, Sulé-Suso J. Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. Analyst 2018; 143:1735-1757. [DOI: 10.1039/c7an01871a] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review examines the state-of-the-art of clinical applications of infrared absorption and Raman spectroscopy, outstanding challenges, and progress towards translation.
Collapse
Affiliation(s)
- Matthew J. Baker
- WestCHEM
- Technology and Innovation Centre
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow G1 1RD
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| | | | - Peter Gardner
- Manchester Institute of Biotechnology (MIB)
- University of Manchester
- Manchester
- UK
| | - Royston Goodacre
- Manchester Institute of Biotechnology (MIB)
- University of Manchester
- Manchester
- UK
| | - Alex Henderson
- Manchester Institute of Biotechnology (MIB)
- University of Manchester
- Manchester
- UK
| | - Sergei G. Kazarian
- Department of Chemical Engineering
- Imperial College London
- South Kensington Campus
- London
- UK
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences
- University of Central Lancashire
- Preston PR1 2HE
- UK
| | - Julian Moger
- Biomedical Physics
- School of Physics and Astronomy
- University of Exeter
- Exeter EX4 4QL
- UK
| | - Nick Stone
- Biomedical Physics
- School of Physics and Astronomy
- University of Exeter
- Exeter EX4 4QL
- UK
| | - Josep Sulé-Suso
- Institute for Science and Technology in Medicine
- Keele University
- Guy Hilton Research Centre
- Stoke on Trent ST4 7QB
- UK
| |
Collapse
|
84
|
Raman spectroscopic analysis of oral cells in the high wavenumber region. Exp Mol Pathol 2017; 103:255-262. [DOI: 10.1016/j.yexmp.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/18/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
|
85
|
Lin K, Zheng W, Lim CM, Huang Z. Real-time In vivo Diagnosis of Nasopharyngeal Carcinoma Using Rapid Fiber-Optic Raman Spectroscopy. Am J Cancer Res 2017; 7:3517-3526. [PMID: 28912892 PMCID: PMC5596440 DOI: 10.7150/thno.16359] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/23/2017] [Indexed: 12/17/2022] Open
Abstract
We report the utility of a simultaneous fingerprint (FP) (i.e., 800-1800 cm-1) and high-wavenumber (HW) (i.e., 2800-3600 cm-1) fiber-optic Raman spectroscopy developed for real-time in vivo diagnosis of nasopharyngeal carcinoma (NPC) at endoscopy. A total of 3731 high-quality in vivo FP/HW Raman spectra (normal=1765; cancer=1966) were acquired in real-time from 204 tissue sites (normal=95; cancer=109) of 95 subjects (normal=57; cancer=38) undergoing endoscopic examination. FP/HW Raman spectra differ significantly between normal and cancerous nasopharyngeal tissues that could be attributed to changes of proteins, lipids, nucleic acids, and the bound water content in NPC. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with leave-one subject-out, cross-validation (LOO-CV) were implemented to develop robust Raman diagnostic models. The simultaneous FP/HW Raman spectroscopy technique together with PCA-LDA and LOO-CV modeling provides a diagnostic accuracy of 93.1% (sensitivity of 93.6%; specificity of 92.6%) for nasopharyngeal cancer identification, which is superior to using either FP (accuracy of 89.2%; sensitivity of 89.9%; specificity of 88.4%) or HW (accuracy of 89.7%; sensitivity of 89.0%; specificity of 90.5%) Raman technique alone. Further receiver operating characteristic (ROC) analysis reconfirms the best performance of the simultaneous FP/HW Raman technique for in vivo diagnosis of NPC. This work demonstrates for the first time that simultaneous FP/HW fiber-optic Raman spectroscopy technique has great promise for enhancing real-time in vivo cancer diagnosis in the nasopharynx during endoscopic examination.
Collapse
|
86
|
Malik A, Sahu A, Singh SP, Deshmukh A, Chaturvedi P, Nair D, Nair S, Murali Krishna C. In vivo Raman spectroscopy-assisted early identification of potential second primary/recurrences in oral cancers: An exploratory study. Head Neck 2017; 39:2216-2223. [DOI: 10.1002/hed.24884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/21/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Akshat Malik
- Head and Neck Surgical Oncology, Tata Memorial Center; Mumbai India
| | - Aditi Sahu
- Chilakapati Laboratory, Advanced Center for Training, Research, and Education in Cancer (ACTREC), Tata Memorial Center; Navi Mumbai India
| | - S. P. Singh
- Chilakapati Laboratory, Advanced Center for Training, Research, and Education in Cancer (ACTREC), Tata Memorial Center; Navi Mumbai India
| | - Atul Deshmukh
- Chilakapati Laboratory, Advanced Center for Training, Research, and Education in Cancer (ACTREC), Tata Memorial Center; Navi Mumbai India
| | | | - Deepa Nair
- Head and Neck Surgical Oncology, Tata Memorial Center; Mumbai India
| | - Sudhir Nair
- Head and Neck Surgical Oncology, Tata Memorial Center; Mumbai India
| | - C. Murali Krishna
- Chilakapati Laboratory, Advanced Center for Training, Research, and Education in Cancer (ACTREC), Tata Memorial Center; Navi Mumbai India
| |
Collapse
|
87
|
Hoesli RC, Orringer DA, McHugh JB, Spector ME. Coherent Raman Scattering Microscopy for Evaluation of Head and Neck Carcinoma. Otolaryngol Head Neck Surg 2017; 157:448-453. [PMID: 28397572 DOI: 10.1177/0194599817700388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective We aim to describe a novel, label-free, real-time imaging technique, coherent Raman scattering (CRS) microscopy, for histopathological evaluation of head and neck cancer. We evaluated the ability of CRS microscopy to delineate between tumor and nonneoplastic tissue in tissue samples from patients with head and neck cancer. Study Design Prospective case series. Setting Tertiary care medical center. Subjects and Methods Patients eligible were surgical candidates with biopsy-proven, previously untreated head and neck carcinoma and were consented preoperatively for participation in this study. Tissue was collected from 50 patients, and after confirmation of tumor and normal specimens by hematoxylin and eosin (H&E), there were 42 tumor samples and 42 normal adjacent controls. Results There were 42 confirmed carcinoma specimens on H&E, and CRS microscopy identified 37 as carcinoma. Of the 42 normal specimens, CRS microscopy identified 40 as normal. This resulted in a sensitivity of 88.1% and specificity of 95.2% in distinguishing between neoplastic and nonneoplastic images. Conclusion CRS microscopy is a unique label-free imaging technique that can provide rapid, high-resolution images and can accurately determine the presence of head and neck carcinoma. This holds potential for implementation into standard practice, allowing frozen margin evaluation even at institutions without a histopathology laboratory.
Collapse
Affiliation(s)
- Rebecca C Hoesli
- 1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Daniel A Orringer
- 2 Department of Neurosurgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jonathan B McHugh
- 3 Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Matthew E Spector
- 1 Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
88
|
Meksiarun P, Ishigaki M, Huck-Pezzei VAC, Huck CW, Wongravee K, Sato H, Ozaki Y. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging. Sci Rep 2017; 7:44890. [PMID: 28327648 PMCID: PMC5361160 DOI: 10.1038/srep44890] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.
Collapse
Affiliation(s)
- Phiranuphon Meksiarun
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Mika Ishigaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Verena A C Huck-Pezzei
- Institute of Analytical Chemistry and Radiochemistry, CCB - Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB - Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kanet Wongravee
- Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Pathumwan, Bangkok, 10330 Thailand
| | - Hidetoshi Sato
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
89
|
Sarkar A, Sengupta S, Mukherjee A, Chatterjee J. Fourier transform infra-red spectroscopic signatures for lung cells' epithelial mesenchymal transition: A preliminary report. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:809-816. [PMID: 27810772 DOI: 10.1016/j.saa.2016.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/23/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Infra red (IR) spectral characterization can provide label-free cellular metabolic signatures of normal and diseased circumstances in a rapid and non-invasive manner. Present study endeavoured to enlist Fourier transform infra red (FTIR) spectroscopic signatures for lung normal and cancer cells during chemically induced epithelial mesenchymal transition (EMT) for which global metabolic dimension is not well reported yet. Occurrence of EMT was validated with morphological and immunocytochemical confirmation. Pre-processed spectral data was analyzed using ANOVA and principal component analysis-linear discriminant analysis (PCA-LDA). Significant differences observed in peak area corresponding to biochemical fingerprint (900-1800cm-1) and high wave-number (2800-3800cm-1) regions contributed to adequate PCA-LDA segregation of cells undergoing EMT. The findings were validated by re-analysis of data using another in-house built binary classifier namely vector valued regularized kernel approximation (VVRKFA), in order to understand EMT progression. To improve the classification accuracy, forward feature selection (FFS) tool was employed in extracting potent spectral signatures by eliminating undesirable noise. Gradual increase in classification accuracy with EMT progression of both cell types indicated prominence of the biochemical alterations. Rapid changes in cellular metabolome noted in cancer cells within first 24h of EMT induction along with higher classification accuracy for cancer cell groups in comparison to normal cells might be attributed to inherent differences between them. Spectral features were suggestive of EMT triggered changes in nucleic acid, protein, lipid and bound water contents which can emerge as the useful markers to capture EMT related cellular characteristics.
Collapse
Affiliation(s)
- Atasi Sarkar
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Sanghamitra Sengupta
- Department of Biochemistry, Calcutta University, Ballygunge, Kolkata 700019, West Bengal, India
| | - Anirban Mukherjee
- Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
90
|
Demonstration of the Protein Involvement in Cell Electropermeabilization using Confocal Raman Microspectroscopy. Sci Rep 2017; 7:40448. [PMID: 28102326 PMCID: PMC5244372 DOI: 10.1038/srep40448] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/06/2016] [Indexed: 01/14/2023] Open
Abstract
Confocal Raman microspectroscopy was used to study the interaction between pulsed electric fields and live cells from a molecular point of view in a non-invasive and label-free manner. Raman signatures of live human adipose-derived mesenchymal stem cells exposed or not to pulsed electric fields (8 pulses, 1 000 V/cm, 100 μs, 1 Hz) were acquired at two cellular locations (nucleus and cytoplasm) and two spectral bands (600–1 800 cm−1 and 2 800–3 100 cm−1). Vibrational modes of proteins (phenylalanine and amide I) and lipids were found to be modified by the electropermeabilization process with a statistically significant difference. The relative magnitude of four phenylalanine peaks decreased in the spectra of the pulsed group. On the contrary, the relative magnitude of the amide I band at 1658 cm−1 increased by 40% when comparing pulsed and control group. No difference was found between the control and the pulsed group in the high wavenumber spectral band. Our results reveal the modification of proteins in living cells exposed to pulsed electric fields by means of confocal Raman microspectroscopy.
Collapse
|
91
|
Azan A, Caspers PJ, Bakker Schut TC, Roy S, Boutros C, Mateus C, Routier E, Besse B, Planchard D, Seck A, Kamsu Kom N, Tomasic G, Koljenović S, Noordhoek Hegt V, Texier M, Lanoy E, Eggermont AMM, Paci A, Robert C, Puppels GJ, Mir LM. A Novel Spectroscopically Determined Pharmacodynamic Biomarker for Skin Toxicity in Cancer Patients Treated with Targeted Agents. Cancer Res 2016; 77:557-565. [PMID: 27836854 DOI: 10.1158/0008-5472.can-16-1733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/14/2016] [Accepted: 10/02/2016] [Indexed: 11/16/2022]
Abstract
Raman spectroscopy is a noninvasive and label-free optical technique that provides detailed information about the molecular composition of a sample. In this study, we evaluated the potential of Raman spectroscopy to predict skin toxicity due to tyrosine kinase inhibitors treatment. We acquired Raman spectra of skin of patients undergoing treatment with MEK, EGFR, or BRAF inhibitors, which are known to induce severe skin toxicity; for this pilot study, three patients were included for each inhibitor. Our algorithm, based on partial least squares-discriminant analysis (PLS-DA) and cross-validation by bootstrapping, discriminated to variable degrees spectra from patient suffering and not suffering cutaneous adverse events. For MEK and EGFR inhibitors, discriminative power was more than 90% in the viable epidermis skin layer; whereas for BRAF inhibitors, discriminative power was 71%. There was a 81.5% correlation between blood drug concentration and Raman signature of skin in the case of EGFR inhibitors and viable epidermis skin layer. Our results demonstrate the power of Raman spectroscopy to detect apparition of skin toxicity in patients treated with tyrosine kinase inhibitors at levels not detectable via dermatological inspection and histological evaluation. Cancer Res; 77(2); 557-65. ©2016 AACR.
Collapse
Affiliation(s)
- Antoine Azan
- UMR 8203, CNRS, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.
| | - Peter J Caspers
- Center for Optical Diagnostics & Therapy, Department of Dermatology, Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.,RiverD International B.V. Rotterdam, the Netherlands
| | - Tom C Bakker Schut
- Center for Optical Diagnostics & Therapy, Department of Dermatology, Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.,RiverD International B.V. Rotterdam, the Netherlands
| | - Séverine Roy
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Céline Boutros
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Christine Mateus
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Emilie Routier
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - David Planchard
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Atmane Seck
- Department of Pharmacology and Drug Analysis, Gustave Roussy, Villejuif, France
| | - Nyam Kamsu Kom
- UMR 981, INSERM, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Gorana Tomasic
- Department of Pathology, Gustave Roussy, Villejuif, France
| | - Senada Koljenović
- Department of Pathology, Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | | | - Matthieu Texier
- UMR 1018, INSERM, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Emilie Lanoy
- UMR 1018, INSERM, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Alexander M M Eggermont
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,Faculty of Medicine, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Angelo Paci
- UMR 8203, CNRS, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,Department of Pharmacology and Drug Analysis, Gustave Roussy, Villejuif, France
| | - Caroline Robert
- Department of Medical Oncology, Gustave Roussy, Villejuif, France.,UMR 981, INSERM, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Gerwin J Puppels
- Center for Optical Diagnostics & Therapy, Department of Dermatology, Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.,RiverD International B.V. Rotterdam, the Netherlands
| | - Lluis M Mir
- UMR 8203, CNRS, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
92
|
Suganya S. AA, Kochurani KJ, Nair MG, Louis JM, Sankaran S, Rajagopal R, Kumar KS, Abraham P, P. G. B, Sebastian P, Somananthan T, Maliekal TT. TM1-IR680 peptide for assessment of surgical margin and lymph node metastasis in murine orthotopic model of oral cancer. Sci Rep 2016; 6:36726. [PMID: 27827443 PMCID: PMC5101486 DOI: 10.1038/srep36726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/20/2016] [Indexed: 11/08/2022] Open
Abstract
Treatment outcome after surgical removal in oral carcinoma is poor due to inadequate methodologies available for marking surgical margins. Even though some methodologies for intraoperative margin assessment are under clinical and preclinical trials for other solid tumours, a promising modality for oral cancer surgery is not developed. Fluorescent-based optical imaging using Near Infrared (NIR) dyes tagged to tumour specific target will be an optimal tool for this purpose. One such target, Gastrin Releasing Peptide Receptor (GRPR) was selected for the study, and its binding peptide, TM1-IR680, was tested for its efficacy for surgical margin prediction in murine orthotopic model of oral cancer, derived from primary samples. Here, for the first time in a preclinical analysis, we show that the size and margin of oral cancer can be predicted, as revealed by 3D-imaging. Interestingly, the peptide was sensitive enough to detect lymph nodes that harboured dispersed tumour cells before colonization, which was impossible to identify by conventional histopathology. We recommend the use of TM1-NIR dyes alone or in combination with other technologies to improve the clinical outcome of oral cancer surgery.
Collapse
Affiliation(s)
- Annie A. Suganya S.
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - K. J. Kochurani
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Madhumathy G. Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Jiss Maria Louis
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Santhosh Sankaran
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - R. Rajagopal
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - K. Santhosh Kumar
- Chemical Biology Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Parvin Abraham
- Chemical Biology Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Balagopal P. G.
- Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, Kerala, 695011, India
| | - Paul Sebastian
- Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, Kerala, 695011, India
| | - Thara Somananthan
- Division of Pathology, Regional Cancer Centre, Thiruvananthapuram, Kerala, 695011, India
| | - Tessy Thomas Maliekal
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
93
|
Lin K, Zheng W, Lim CM, Huang Z. Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:3705-3715. [PMID: 27699131 PMCID: PMC5030043 DOI: 10.1364/boe.7.003705] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 05/05/2023]
Abstract
We assess the clinical utility of a unique simultaneous fingerprint (FP) (i.e., 800-1800 cm-1) and high-wavenumber (HW) (i.e., 2800-3600 cm-1) fiber-optic Raman spectroscopy for in vivo diagnosis of laryngeal cancer at endoscopy. A total of 2124 high-quality in vivo FP/HW Raman spectra (normal = 1321; cancer = 581) were acquired from 101 tissue sites (normal = 71; cancer = 30) of 60 patients (normal = 44; cancer = 16) undergoing routine endoscopic examination. FP/HW Raman spectra differ significantly between normal and cancerous laryngeal tissue that could be attributed to changes of proteins, lipids, nucleic acids, and the bound water content in the larynx. Partial least squares-discriminant analysis and leave-one tissue site-out, cross-validation were employed on the in vivo FP/HW tissue Raman spectra acquired, yielding a diagnostic accuracy of 91.1% (sensitivity: 93.3% (28/30); specificity: 90.1% (64/71)) for laryngeal cancer identification, which is superior to using either FP (accuracy: 86.1%; sensitivity: 86.7% (26/30); specificity: 85.9% (61/71)) or HW (accuracy: 84.2%; sensitivity: 76.7% (23/30); specificity: 87.3% (62/71)) Raman technique alone. Further receiver operating characteristic analysis reconfirms the best performance of the simultaneous FP/HW Raman technique for laryngeal cancer diagnosis. We demonstrate for the first time that the simultaneous FP/HW Raman spectroscopy technique can be used for improving real-time in vivo diagnosis of laryngeal carcinoma during endoscopic examination.
Collapse
Affiliation(s)
- Kan Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117576 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 119260 Singapore
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117576 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 119260 Singapore
| | - Chwee Ming Lim
- Department of Otolaryngology, Head and Neck Surgery, National University of Singapore and National University Health System, 119074 Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117576 Singapore
| |
Collapse
|
94
|
Barroso EM, Smits RWH, van Lanschot CGF, Caspers PJ, Ten Hove I, Mast H, Sewnaik A, Hardillo JA, Meeuwis CA, Verdijk R, Noordhoek Hegt V, Baatenburg de Jong RJ, Wolvius EB, Bakker Schut TC, Koljenović S, Puppels GJ. Water Concentration Analysis by Raman Spectroscopy to Determine the Location of the Tumor Border in Oral Cancer Surgery. Cancer Res 2016; 76:5945-5953. [PMID: 27530325 DOI: 10.1158/0008-5472.can-16-1227] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Adequate resection of oral cavity squamous cell carcinoma (OCSCC) means complete tumor removal with a clear margin of more than 5 mm. For OCSCC, 85% of the surgical resections appear inadequate. Raman spectroscopy is an objective and fast tool that can provide real-time information about the molecular composition of tissue and has the potential to provide an objective and fast intraoperative assessment of the entire resection surface. A previous study demonstrated that OCSCC can be discriminated from healthy surrounding tissue based on the higher water concentration in tumor. In this study, we investigated how the water concentration changes across the tumor border toward the healthy surrounding tissue on freshly excised specimens from the oral cavity. Experiments were performed on tissue sections from 20 patients undergoing surgery for OCSCC. A transition from a high to a lower water concentration, from tumor (76% ± 8% of water) toward healthy surrounding tissue (54% ± 24% of water), takes place over a distance of about 4 to 6 mm across the tumor border. This was accompanied by an increase of the heterogeneity of the water concentration in the surrounding healthy tissue. The water concentration distributions between the regions were significantly different (P < 0.0001). This new finding highlights the potential of Raman spectroscopy for objective intraoperative assessment of the resection margins. Cancer Res; 76(20); 5945-53. ©2016 AACR.
Collapse
Affiliation(s)
- Elisa M Barroso
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Roeland W H Smits
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Cornelia G F van Lanschot
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J Caspers
- Center for Optical Diagnostics & Therapy, Department of Dermatology, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands. RiverD International BV, Rotterdam, The Netherlands
| | - Ivo Ten Hove
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Hetty Mast
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Aniel Sewnaik
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - José A Hardillo
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Cees A Meeuwis
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Rob Verdijk
- Department of Pathology, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | | | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology & Head and Neck Surgery, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Eppo B Wolvius
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Tom C Bakker Schut
- Center for Optical Diagnostics & Therapy, Department of Dermatology, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands. RiverD International BV, Rotterdam, The Netherlands.
| | - Senada Koljenović
- Department of Pathology, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Gerwin J Puppels
- Center for Optical Diagnostics & Therapy, Department of Dermatology, Cancer Institute, Erasmus MC, Rotterdam, The Netherlands. RiverD International BV, Rotterdam, The Netherlands
| |
Collapse
|
95
|
Giannios P, Toutouzas KG, Matiatou M, Stasinos K, Konstadoulakis MM, Zografos GC, Moutzouris K. Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies. Sci Rep 2016; 6:27910. [PMID: 27297034 PMCID: PMC4906272 DOI: 10.1038/srep27910] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/20/2016] [Indexed: 02/07/2023] Open
Abstract
The refractive index is an optical constant that plays a significant role in the description of light-matter interactions. When it comes to biological media, refraction is understudied despite recent advances in the field of bio-optics. In the present article, we report on the measurement of the refractive properties of freshly excised healthy and cancerous human liver samples, by use of a prism-coupling technique covering the visible and near-infrared spectral range. Novel data on the wavelength-dependent complex refractive index of human liver tissues are presented. The magnitude of the real and imaginary part of the refractive index is correlated with hepatic pathology. Notably, the real index contrast is pointed out as a marker of discrimination between normal liver tissue and hepatic metastases. In view of the current progress in optical biosensor technologies, our findings may be exploited for the development of novel surgical and endoscopic tools.
Collapse
Affiliation(s)
- Panagiotis Giannios
- Laboratory of Electronic Devices and Materials, Department of Electronic Engineering, Technological Educational Institution of Athens, Athens, Greece
| | - Konstantinos G Toutouzas
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, Athens, Greece
| | - Maria Matiatou
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, Athens, Greece
| | - Konstantinos Stasinos
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, Athens, Greece
| | - Manousos M Konstadoulakis
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, Athens, Greece
| | - George C Zografos
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, Athens, Greece
| | - Konstantinos Moutzouris
- Laboratory of Electronic Devices and Materials, Department of Electronic Engineering, Technological Educational Institution of Athens, Athens, Greece
| |
Collapse
|
96
|
Eklouh-Molinier C, Happillon T, Bouland N, Fichel C, Diébold MD, Angiboust JF, Manfait M, Brassart-Pasco S, Piot O. Investigating the relationship between changes in collagen fiber orientation during skin aging and collagen/water interactions by polarized-FTIR microimaging. Analyst 2016; 140:6260-8. [PMID: 26120602 DOI: 10.1039/c5an00278h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upon chronological aging, human skin undergoes structural and molecular modifications, especially at the level of type I collagen. This macromolecule is one of the main dermal structural proteins and presents several age-related alterations. It exhibits a triple helical structure and assembles itself to form fibrils and fibers. In addition, water plays an important role in stabilizing the collagen triple helix by forming hydrogen-bonds between collagen residues. However, the influence of water on changes of dermal collagen fiber orientation with age has not been yet understood. Polarized-Fourier Transform Infrared (P-FTIR) imaging is an interesting biophotonic approach to determine in situ the orientation of type I collagen fibers, as we have recently shown by comparing skin samples of different ages. In this work, P-FTIR spectral imaging was performed on skin samples from two age groups (35- and 38-year-old on the one hand, 60- and 66-year-old on the other hand), and our analyses were focused on the effect of H2O/D2O substitution. Spectral data were processed with fuzzy C-means (FCM) clustering in order to distinguish different orientations of collagen fibers. We demonstrated that the orientation was altered with aging, and that D2O treatment, affecting primarily highly bound water molecules, is more marked for the youngest skin samples. Collagen-bound water-related spectral markers were also highlighted. Our results suggest a weakening of water/collagen interactions with age. This non-destructive and label-free methodology allows us to understand better the importance of bound water in collagen fiber orientation alterations occurring with skin aging. Obtaining such structural information could find benefits in dermatology as well as in cosmetics.
Collapse
Affiliation(s)
- Christophe Eklouh-Molinier
- Equipe MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Banerjee S, Chatterjee S, Anura A, Chakrabarty J, Pal M, Ghosh B, Paul RR, Sheet D, Chatterjee J. Global spectral and local molecular connects for optical coherence tomography features to classify oral lesions towards unravelling quantitative imaging biomarkers. RSC Adv 2016. [DOI: 10.1039/c5ra24117k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The biopsy based diagnosis of oral precancers like leukoplakia (OLK) and submucous fibrosis (OSF) as well as squamous cell carcinoma (OSCC) suffers from observer specific variability.
Collapse
Affiliation(s)
- Satarupa Banerjee
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| | - Swarnadip Chatterjee
- Advanced Technology Development Centre
- Indian Institute of Technology
- Kharagpur
- India
| | - Anji Anura
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| | | | - Mousumi Pal
- Department of Oral and Maxillofacial Pathology
- Guru Nanak Institute of Dental Science and Research
- Kolkata
- India
| | - Bhaskar Ghosh
- Department of ENT & Head Neck Surgery
- Medical College
- Kolkata
- India
| | - Ranjan Rashmi Paul
- Department of Oral and Maxillofacial Pathology
- Guru Nanak Institute of Dental Science and Research
- Kolkata
- India
| | - Debdoot Sheet
- Department of Electrical Engineering
- Indian Institute of Technology
- Kharagpur
- India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- India
| |
Collapse
|
98
|
Wang J, Lin K, Zheng W, Ho KY, Teh M, Yeoh KG, Huang Z. Fiber-optic Raman spectroscopy for in vivo diagnosis of gastric dysplasia. Faraday Discuss 2016; 187:377-392. [DOI: 10.1039/c5fd00151j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
This study aims to assess the clinical utility of a rapid fiber-optic Raman spectroscopy technique developed for enhancingin vivodiagnosis of gastric precancer during endoscopic examination. We have developed a real-time fiber-optic Raman spectroscopy system capable of simultaneously acquiring both fingerprint (FP) (i.e., 800–1800 cm−1) and high-wavenumber (HW) (i.e., 2800–3600 cm−1) Raman spectra from gastric tissuein vivoat endoscopy. A total of 5792 high-qualityin vivoFP/HW Raman spectra (normal (n= 5160); dysplasia (n= 155), and adenocarcinoma (n= 477)) were acquired in real-time from 441 tissue sites (normal (n= 396); dysplasia (n= 11), and adenocarcinoma (n= 34)) of 191 gastric patients (normal (n= 172); dysplasia (n= 6), and adenocarcinoma (n= 13)) undergoing routine endoscopic examinations. Partial least squares discriminant analysis (PLS-DA) together with leave-one-patient-out cross validation (LOPCV) were implemented to develop robust spectral diagnostic models. The FP/HW Raman spectra differ significantly between normal, dysplasia and adenocarcinoma of the stomach, which can be attributed to changes in proteins, lipids, nucleic acids, and the bound water content. PLS-DA and LOPCV show that the fiber-optic FP/HW Raman spectroscopy provides diagnostic sensitivities of 96.0%, 81.8% and 88.2%, and specificities of 86.7%, 95.3% and 95.6%, respectively, for the classification of normal, dysplastic and cancerous gastric tissue, superior to either the FP or HW Raman techniques alone. Further dichotomous PLS-DA analysis yields a sensitivity of 90.9% (10/11) and specificity of 95.9% (380/396) for the detection of gastric dysplasia using FP/HW Raman spectroscopy, substantiating its clinical advantages over white light reflectance endoscopy (sensitivity: 90.9% (10/11), and specificity: 51.0% (202/396)). This work demonstrates that the fiber-optic FP/HW Raman spectroscopy technique has great promise for enhancingin vivodiagnosis of gastric precancer during routine endoscopic examination.
Collapse
Affiliation(s)
- Jianfeng Wang
- Optical Bioimaging Laboratory
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| | - Kan Lin
- Optical Bioimaging Laboratory
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| | - Wei Zheng
- Optical Bioimaging Laboratory
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| | - Khek Yu Ho
- Department of Medicine
- Yong Loo Lin School of Medicine
- National University of Singapore
- National University Health System
- Singapore 119260
| | - Ming Teh
- Department of Pathology
- Yong Loo Lin School of Medicine
- National University of Singapore
- National University Health System
- Singapore 119074
| | - Khay Guan Yeoh
- Department of Medicine
- Yong Loo Lin School of Medicine
- National University of Singapore
- National University Health System
- Singapore 119260
| | - Zhiwei Huang
- Optical Bioimaging Laboratory
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| |
Collapse
|
99
|
Diagnostic, Prognostic, and Predictive Molecular Biomarkers and the Utility of Molecular Imaging in Common Gastrointestinal Tumors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:890805. [PMID: 26618179 PMCID: PMC4649066 DOI: 10.1155/2015/890805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/03/2022]
|
100
|
Abstract
Raman spectroscopy is increasingly investigated for cancer diagnosis. As the potential of the technique is explored and realized, it is slowly making its way into clinics. There are more reports in recent years showing promise that it can help clinicians for cancer diagnosis. However, a number of challenges remain to be overcome, especially in vivo cancer diagnosis. In this article, the recent progress of the technique toward clinical cancer diagnosis is discussed from a critical perspective.
Collapse
|