51
|
Weyant KB, Mills DC, DeLisa MP. Engineering a new generation of carbohydrate-based vaccines. Curr Opin Chem Eng 2018; 19:77-85. [PMID: 30568873 DOI: 10.1016/j.coche.2017.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent advances in chemical synthesis, conjugation chemistry, engineered biosynthesis, and formulation design have spawned a new generation of vaccines that incorporate carbohydrate antigens. By providing better immunity against a variety of pathogens or malignant cells and lowering the cost of production, these developments overcome many of the limitations associated with conventional vaccines involving polysaccharides. Moreover, the resulting vaccine candidates are shedding light on how the immune system responds to carbohydrates and providing mechanistic insight that can help guide future vaccine design. Here, we review recent engineering efforts to develop and manufacture carbohydrate-based vaccines that are efficacious, durable, and cost-effective.
Collapse
Affiliation(s)
- Kevin B Weyant
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Dominic C Mills
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA.,Comparative Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA.,Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
52
|
Baek JY, Geissner A, Rathwell DCK, Meierhofer D, Pereira CL, Seeberger PH. A modular synthetic route to size-defined immunogenic Haemophilus influenzae b antigens is key to the identification of an octasaccharide lead vaccine candidate. Chem Sci 2017; 9:1279-1288. [PMID: 29675174 PMCID: PMC5887106 DOI: 10.1039/c7sc04521b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023] Open
Abstract
A Haemophilus influenzae b vaccine lead antigen was identified by the immunological evaluation of chemically precisely defined capsular polysaccharide repeating unit oligosaccharides.
The first glycoconjugate vaccine using isolated glycans was licensed to protect children from Haemophilus influenzae serotype b (Hib) infections. Subsequently, the first semisynthetic glycoconjugate vaccine using a mixture of antigens derived by polymerization targeted the same pathogen. Still, a detailed understanding concerning the correlation between oligosaccharide chain length and the immune response towards the polyribosyl-ribitol-phosphate (PRP) capsular polysaccharide that surrounds Hib remains elusive. The design of semisynthetic and synthetic Hib vaccines critically depends on the identification of the minimally protective epitope. Here, we demonstrate that an octasaccharide antigen containing four repeating disaccharide units resembles PRP polysaccharide in terms of immunogenicity and recognition by anti-Hib antibodies. Key to this discovery was the development of a modular synthesis that enabled access to oligosaccharides up to decamers. Glycan arrays containing the synthetic oligosaccharides were used to analyze anti-PRP sera for antibodies. Conjugates of the synthetic antigens and the carrier protein CRM197, which is used in licensed vaccines, were employed in immunization studies in rabbits.
Collapse
Affiliation(s)
- J Y Baek
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ;
| | - A Geissner
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| | - D C K Rathwell
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| | - D Meierhofer
- Max-Planck Institute for Molecular Genetics (MPIMG) , 14195 Berlin , Germany
| | - C L Pereira
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ;
| | - P H Seeberger
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| |
Collapse
|
53
|
Fiebig T, Litschko C, Freiberger F, Bethe A, Berger M, Gerardy-Schahn R. Efficient solid-phase synthesis of meningococcal capsular oligosaccharides enables simple and fast chemoenzymatic vaccine production. J Biol Chem 2017; 293:953-962. [PMID: 29187601 DOI: 10.1074/jbc.ra117.000488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Neisseria meningitidis serogroups A and X are among the leading causes of bacterial meningitis in the African meningitis belt. Glycoconjugate vaccines, consisting of an antigenic carrier protein coupled to the capsular polysaccharide of the bacterial pathogen, are the most effective strategy for prevention of meningococcal disease. However, the distribution of effective glycoconjugate vaccines in this region is limited by the high cost of cultivating pathogens and purification of their capsular polysaccharides. Moreover, chemical approaches to synthesize oligosaccharide antigens have proven challenging. In the current study, we present a chemoenzymatic approach for generating tailored oligosaccharide fractions ready for activation and coupling to the carrier protein. In a first step, the elongation modes of recombinant capsular polymerases from Neisseria meningitidis serogroups A (CsaB) and X (CsxA) were characterized. We observed that CsaB is a distributive enzyme, and CsxA is a processive enzyme. Sequence comparison of these two stealth family proteins revealed a C-terminal extension in CsxA, which conferred processivity because of the existence of a second product-binding site. Deletion of the C-terminal domain converted CsxA into a distributive enzyme, allowing facile control of product length by adjusting the ratio of donor to acceptor sugars. Solid-phase fixation of the engineered capsular polymerases enabled rapid production of capsular polysaccharides with high yield and purity. In summary, the tools developed here provide critical steps toward reducing the cost of conjugate vaccine production, which will increase access in regions with the greatest need. Our work also facilitates efforts to study the relationship between oligosaccharide size and antigenicity.
Collapse
Affiliation(s)
- Timm Fiebig
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Christa Litschko
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Friedrich Freiberger
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Andrea Bethe
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Monika Berger
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
54
|
Emmadi M, Khan N, Lykke L, Reppe K, G Parameswarappa S, Lisboa MP, Wienhold SM, Witzenrath M, Pereira CL, Seeberger PH. A Streptococcus pneumoniae Type 2 Oligosaccharide Glycoconjugate Elicits Opsonic Antibodies and Is Protective in an Animal Model of Invasive Pneumococcal Disease. J Am Chem Soc 2017; 139:14783-14791. [PMID: 28945368 DOI: 10.1021/jacs.7b07836] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Invasive pneumococcal diseases (IPDs) remain the leading cause of vaccine-preventable childhood death, even though highly effective pneumococcal conjugate vaccines (PCVs) are used in national immunization programs in many developing countries. Licensed PCVs currently cover only 13 of the over 90 serotypes of Streptococcus pneumoniae (Sp), so nonvaccine serotypes are a major obstacle to the effective control of IPD. Sp serotype 2 (ST2) is such a nonvaccine serotype that is the main cause of IPD in many countries, including Nepal, Bangladesh, and Guatemala. Glycoconjugate vaccines based on synthetic oligosaccharides instead of isolated polysaccharides offer an attractive alternative to the traditional process for PCV development. To prevent the IPDs caused by ST2, we identified an effective ST2 neoglycoconjugate vaccine candidate that was identified using a medicinal chemistry approach. Glycan microarrays containing a series of synthetic glycans resembling portions of the ST2 capsular polysaccharide (CPS) repeating unit were used to screen human and rabbit sera and identify epitope hits. Synthetic hexasaccharide 2, resembling one repeating unit (RU) of ST2 CPS, emerged as a hit from the glycan array screens. Vaccination with neoglycoconjugates consisting of hexasaccharide 2 coupled to carrier protein CRM197 stimulates a T-cell-dependent B-cell response that induced CPS-specific opsonic antibodies in mice, resulting in killing of encapsulated bacteria by phagocytic activity. Subcutaneous immunization with neoglycoconjugate protected mice from transnasal challenge with the highly virulent ST2 strain NCTC 7466 by reducing the bacterial load in lung tissue and blood.
Collapse
Affiliation(s)
- Madhu Emmadi
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Naeem Khan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Lennart Lykke
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin , Charitéplatz 1, 10117 Berlin, Germany
| | - Sharavathi G Parameswarappa
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Marilda P Lisboa
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin , Charitéplatz 1, 10117 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin , Charitéplatz 1, 10117 Berlin, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, D-14195 Berlin, Germany
| |
Collapse
|