51
|
Nakama T, Takezawa Y, Shionoya M. Site-specific polymerase incorporation of consecutive ligand-containing nucleotides for multiple metal-mediated base pairing. Chem Commun (Camb) 2021; 57:1392-1395. [PMID: 33438690 DOI: 10.1039/d0cc07771b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzymatic method has been developed for the synthesis of DNA oligomers containing consecutive artificial ligand-type nucleotides. Three hydroxypyridone ligand-containing nucleotides forming CuII-mediated unnatural base pairs were continuously incorporated at a pre-specified position by a lesion-bypass Dpo4 polymerase. This enzymatic synthesis was applied to the development of a CuII-responsive DNAzyme. Accordingly, this research will open new routes for the construction of metal-responsive DNA architectures that are manipulated by multiple metal-mediated base pairing.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
52
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
53
|
Abstract
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Collapse
Affiliation(s)
- Nils Klöcker
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, D-48149 Münster, Germany.
| | | | | |
Collapse
|
54
|
Ondruš M, Sýkorová V, Bednárová L, Pohl R, Hocek M. Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Res 2020; 48:11982-11993. [PMID: 33152081 PMCID: PMC7708046 DOI: 10.1093/nar/gkaa999] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
A set of modified 2'-deoxyribonucleoside triphosphates (dNTPs) bearing a linear or branched alkane, indole or phenyl group linked through ethynyl or alkyl spacer were synthesized and used as substrates for polymerase synthesis of hypermodified DNA by primer extension (PEX). Using the alkyl-linked dNTPs, the polymerase synthesized up to 22-mer fully modified oligonucleotide (ON), whereas using the ethynyl-linked dNTPs, the enzyme was able to synthesize even long sequences of >100 modified nucleotides in a row. In PCR, the combinations of all four modified dNTPs showed only linear amplification. Asymmetric PCR or PEX with separation or digestion of the template strand can be used for synthesis of hypermodified single-stranded ONs, which are monodispersed polymers displaying four different substituents on DNA backbone in sequence-specific manner. The fully modified ONs hybridized with complementary strands and modified DNA duplexes were found to exist in B-type conformation (B- or C-DNA) according to CD spectral analysis. The modified DNA can be replicated with high fidelity to natural DNA through PCR and sequenced. Therefore, this approach has a promising potential in generation and selection of hypermodified aptamers and other functional polymers.
Collapse
Affiliation(s)
- Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
55
|
Koplūnaitė M, Butkutė K, Meškys R, Tauraitė D. Synthesis of pyrimidine nucleoside and amino acid conjugates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
56
|
Espinasse A, Lembke HK, Cao AA, Carlson EE. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem Biol 2020; 1:333-351. [PMID: 33928252 PMCID: PMC8081287 DOI: 10.1039/d0cb00078g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Angela A. Cao
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
- Department of Medicinal Chemistry, University of Minnesota208 Harvard Street SEMinneapolisMinnesota 55454USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota321 Church St SEMinneapolisMinnesota 55454USA
| |
Collapse
|
57
|
Flamme M, Röthlisberger P, Levi-Acobas F, Chawla M, Oliva R, Cavallo L, Gasser G, Marlière P, Herdewijn P, Hollenstein M. Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate. ACS Chem Biol 2020; 15:2872-2884. [PMID: 33090769 DOI: 10.1021/acschembio.0c00396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expansion of the genetic alphabet with additional, unnatural base pairs (UBPs) is an important and long-standing goal in synthetic biology. Nucleotides acting as ligands for the coordination of metal cations have advanced as promising candidates for such an expansion of the genetic alphabet. However, the inclusion of artificial metal base pairs in nucleic acids mainly relies on solid-phase synthesis approaches, and very little is known about polymerase-mediated synthesis. Herein, we report the selective and high yielding enzymatic construction of a silver-mediated base pair (dImC-AgI-dPurP) as well as a two-step protocol for the synthesis of DNA duplexes containing such an artificial metal base pair. Guided by DFT calculations, we also shed light into the mechanism of formation of this artificial base pair as well as into the structural and energetic preferences. The enzymatic synthesis of the dImC-AgI-dPurP artificial metal base pair provides valuable insights for the design of future, more potent systems aiming at expanding the genetic alphabet.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l’École de Médecine, 75006 Paris, France
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900 Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900 Saudi Arabia
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Philippe Marlière
- University of Paris Saclay, CNRS, iSSB, UEVE, Genopole, 5 Rue Henri Desbrueres, 91030 Evry, France
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat, 3000 Leuven, Belgium
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
58
|
Gray MD, Deore PS, Chung AJ, Van Riesen AJ, Manderville RA, Prabhakar PS, Wetmore SD. Lighting Up the Thrombin-Binding Aptamer G-Quadruplex with an Internal Cyanine-Indole-Quinolinium Nucleobase Surrogate. Direct Fluorescent Intensity Readout for Thrombin Binding without Topology Switching. Bioconjug Chem 2020; 31:2596-2606. [PMID: 33156614 DOI: 10.1021/acs.bioconjchem.0c00530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent nucleobases represent an important class of molecular reporters of nucleic acid interactions. In this work, the advantages of utilizing a noncanonical fluorescent nucleobase surrogate for monitoring thrombin binding by the 15-mer thrombin binding aptamer (TBA) is presented. TBA folds into an antiparallel G-quadruplex (GQ) with loop thymidine (T) residues interacting directly with the protein in the thrombin-TBA complex. In the free GQ, T3 is solvent-exposed and does not form canonical base-pairs within the antiparallel GQ motif. Upon thrombin binding, T3 interacts directly with a hydrophobic protein binding pocket. Replacing T3 with a cyanine-indole-quinolinium (4QI) hemicyanine dye tethered to an acyclic 1,2-propanediol linker is shown to have minimal impact on GQ stability and structure with the internal 4QI displaying a 40-fold increase in emission intensity at 586 nm (excitation 508 nm) compared to the free dye in solution. Molecular dynamics (MD) simulations demonstrate that the 4QI label π-stacks with T4 and T13 within the antiparallel GQ fold, which is supported by strong energy transfer (ET) fluorescence from the GQ (donor) to the 4QI label (acceptor). Thrombin binding to 4QI-TBA diminishes π-stacking interactions between 4QI and the GQ structure to cause a turn-off emission intensity response with an apparent dissociation constant (Kd) of 650 nM and a limit of detection (LoD) of 150 nM. These features highlight the utility of internal noncanonical fluorescent surrogates for monitoring protein binding by GQ-folding aptamers in the absence of DNA topology switching.
Collapse
Affiliation(s)
- Micaela D Gray
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Prashant S Deore
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Andrew J Chung
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Abigail J Van Riesen
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard A Manderville
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Preethi Seelam Prabhakar
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
59
|
Chakrapani A, Vaňková Hausnerová V, Ruiz-Larrabeiti O, Pohl R, Krásný L, Hocek M. Photocaged 5-(Hydroxymethyl)pyrimidine Nucleoside Phosphoramidites for Specific Photoactivatable Epigenetic Labeling of DNA. Org Lett 2020; 22:9081-9085. [PMID: 33156631 DOI: 10.1021/acs.orglett.0c03462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Hydroxymethylcytosine and uracil are epigenetic nucleobases, but their biological roles are still unclear. We present the synthesis of 2-nitrobenzyl photocaged 5-hydroxymethyl-2'-deoxycytidine and uridine 3'-O-phosphoramidites and their use in automated solid-phase synthesis of oligonucleotides (ONs) modified at specific positions. The ONs were used as primers for PCR to construct DNA templates modified in the promoter region that allowed switching of transcription through photochemical uncaging.
Collapse
Affiliation(s)
- Aswathi Chakrapani
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Olatz Ruiz-Larrabeiti
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
60
|
Chasák J, Šlachtová V, Urban M, Brulíková L. Squaric acid analogues in medicinal chemistry. Eur J Med Chem 2020; 209:112872. [PMID: 33035923 DOI: 10.1016/j.ejmech.2020.112872] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
In this review, we summarize the published data on squaric acid analogues with a special focus on their use in medicinal chemistry and as potential drugs. Squaric acid is an interesting small molecule with an almost perfectly square shape, and its analogues have a variety of biological activities that are enabled by the presence of significant H-bond donors and acceptors. Unfortunately, most of these compounds also exhibit reactive functionalities, and this deters the majority of medicinal chemists and pharmacologists from trying to use them in drug development. However, this group of compounds is experiencing a renaissance, and large numbers of them are being tested for antiprotozoal, antibacterial, antifungal, and antiviral activities. The most useful of these compounds exhibited IC50 values in the nanomolar range, which makes them promising drug candidates. In addition to these activities, their interactions with living systems were intensively explored, revealing that squaric acid analogues inhibit various enzymes and often serve as receptor antagonists and that the squaric acid moiety may be used as a non-classical isosteric replacement for other functional groups such as carboxylate. In summary, this review is focused on squaric acid and its analogues and their use in medicinal chemistry and should serve as a guide for other researchers in the field to demonstrate the potential of these compounds based on previous research.
Collapse
Affiliation(s)
- Jan Chasák
- Department of Organic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Veronika Šlachtová
- Department of Organic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Milan Urban
- Medicinal Chemistry, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Lucie Brulíková
- Department of Organic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
61
|
Huang PJ, Liu J. In vitro Selection of Chemically Modified DNAzymes. ChemistryOpen 2020; 9:1046-1059. [PMID: 33101831 PMCID: PMC7570446 DOI: 10.1002/open.202000134] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
DNAzymes are in vitro selected DNA oligonucleotides with catalytic activities. RNA cleavage is one of the most extensively studied DNAzyme reactions. To expand the chemical functionality of DNA, various chemical modifications have been made during and after selection. In this review, we summarize examples of RNA-cleaving DNAzymes and focus on those modifications introduced during in vitro selection. By incorporating various modified nucleotides via polymerase chain reaction (PCR) or primer extension, a few DNAzymes were obtained that can be specifically activated by metal ions such as Zn2+ and Hg2+. In addition, some modifications were introduced to mimic RNase A that can cleave RNA substrates in the absence of divalent metal ions. In addition, single modifications at the fixed regions of DNA libraries, especially at the cleavage junctions, have been tested, and examples of DNAzymes with phosphorothioate and histidine-glycine modified tertiary amine were successfully obtained specific for Cu2+, Cd2+, Zn2+, and Ni2+. Labeling fluorophore/quencher pair right next to the cleavage junction was also used to obtain signaling DNAzymes for detecting various metal ions and cells. Furthermore, we reviewed work on the cleavage of 2'-5' linked RNA and L-RNA substrates. Finally, applications of these modified DNAzymes as biosensors, RNases, and biochemical probes are briefly described with a few future research opportunities outlined at the end.
Collapse
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntario, N2L 3G1Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntario, N2L 3G1Canada
| |
Collapse
|
62
|
Kuba M, Kraus T, Pohl R, Hocek M. Nucleotide-Bearing Benzylidene-Tetrahydroxanthylium Near-IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions. Chemistry 2020; 26:11950-11954. [PMID: 32633433 PMCID: PMC7361531 DOI: 10.1002/chem.202003192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Thymidine triphosphate bearing benzylidene-tetrahydroxanthylium near-IR fluorophore linked to the 5-methyl group via triazole was synthesized through the CuAAC reaction and was used for polymerase synthesis of labelled DNA probes. The fluorophore lights up upon incorporation to DNA (up to 348-times) presumably due to interactions in major groove and the fluorescence further increases in the single-stranded oligonucleotide. The labelled dsDNA senses binding of small molecules and proteins by a strong decrease of fluorescence. The nucleotide was used as a light-up building block in real-time PCR for detection of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Miroslav Kuba
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
63
|
Flamme M, Levi-Acobas F, Hensel S, Naskar S, Röthlisberger P, Sarac I, Gasser G, Müller J, Hollenstein M. Enzymatic Construction of Artificial Base Pairs: The Effect of Metal Shielding. Chembiochem 2020; 21:3398-3409. [PMID: 32673442 DOI: 10.1002/cbic.202000402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Th formation of metal base pairs is a versatile method for the introduction of metal cations into nucleic acids that has been used in numerous applications including the construction of metal nanowires, development of energy, charge-transfer devices and expansion of the genetic alphabet. As an alternative, enzymatic construction of metal base pairs is an alluring strategy that grants access to longer sequences and offers the possibility of using such unnatural base pairs (UBPs) in SELEX experiments for the identification of functional nucleic acids. This method remains rather underexplored, and a better understanding of the key parameters in the design of efficient nucleotides is required. We have investigated the effect of methylation of the imidazole nucleoside (dImnMe TP) on the efficiency of the enzymatic construction of metal base pairs. The presence of methyl substituents on dImTP facilitates the polymerase-driven formation of dIm4Me -AgI -dIm and dIm2Me TP-CrIII -dIm base pairs. Steric factors rather than the basicity of the imidazole nucleobase appear to govern the enzymatic formation of such metal base pairs. We also demonstrate the compatibility of other metal cations rarely considered in the construction of artificial metal bases by enzymatic DNA synthesis under both primer extension reaction and PCR conditions. These findings open up new directions for the design of nucleotide analogues for the development of metal base pairs.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l'École de Médecine, 75006, Paris, France.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Susanne Hensel
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 30, 48149, Münster, Germany
| | - Shuvankar Naskar
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 30, 48149, Münster, Germany
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 30, 48149, Münster, Germany
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
64
|
Matyašovský J, Hocek M. 2-Substituted 2'-deoxyinosine 5'-triphosphates as substrates for polymerase synthesis of minor-groove-modified DNA and effects on restriction endonuclease cleavage. Org Biomol Chem 2020; 18:255-262. [PMID: 31815989 DOI: 10.1039/c9ob02502b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Five 2-substituted 2'-deoxyinosine triphosphates (dRITP) were synthesized and tested as substrates in enzymatic synthesis of minor-groove base-modified DNA. Only 2-methyl and 2-vinyl derivatives proved to be good substrates for Therminator DNA polymerase, whilst all other dRITPs and other tested DNA polymerases did not give full length products in primer extension. The DNA containing 2-vinylhypoxanthine was then further modified through thiol-ene reactions with thiols. Cross-linking reaction between cysteine-containing minor-groove binding dodecapeptide and DNA proceeded thanks to the proximity effect between thiol and vinyl groups inside the minor groove. 2-Substituted dIRTPs and also previously prepared 2-substituted 2'-deoxyadenosine triphosphates (dRATP) were then used for enzymatic synthesis of minor-groove modified DNA to study the effect of minor-groove modifications on cleavage of DNA by type II restriction endonucleases (REs). Although the REs should recognize the sequence through H-bonds in the major groove, some minor-groove modifications also had an inhibiting effect on the cleavage.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.
| | | |
Collapse
|
65
|
Ganz D, Harijan D, Wagenknecht HA. Labelling of DNA and RNA in the cellular environment by means of bioorthogonal cycloaddition chemistry. RSC Chem Biol 2020; 1:86-97. [PMID: 34458750 PMCID: PMC8341813 DOI: 10.1039/d0cb00047g] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Labelling of nucleic acids as biologically important cellular components is a crucial prerequisite for the visualization and understanding of biological processes. Efficient bioorthogonal chemistry and in particular cycloadditions fullfill the requirements for cellular applications. The broadly applied Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC), however, is limited to labellings in vitro and in fixed cells due to the cytotoxicity of copper salts. Currently, there are three types of copper-free cycloadditions used for nucleic acid labelling in the cellular environment: (i) the ring-strain promoted azide-alkyne cycloaddition (SPAAC), (ii) the "photoclick" 1,3-dipolar cycloadditions, and (iii) the Diels-Alder reactions with inverse electron demand (iEDDA). We review only those building blocks for chemical synthesis on solid phase of DNA and RNA and for enzymatic DNA and RNA preparation, which were applied for labelling of DNA and RNA in situ or in vivo, i.e. in the cellular environment, in fixed or in living cells, by the use of bioorthogonal cycloaddition chemistry. Additionally, we review the current status of orthogonal dual and triple labelling of DNA and RNA in vitro to demonstrate their potential for future applications in situ or in vivo.
Collapse
Affiliation(s)
- Dorothée Ganz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Dennis Harijan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
66
|
Yang C, Pohl R, Tichý M, Gurská S, Pavliš P, Džubák P, Hajdúch M, Hocek M. Synthesis, Photophysical Properties, and Biological Profiling of Benzothieno-Fused 7-Deazapurine Ribonucleosides. J Org Chem 2020; 85:8085-8101. [PMID: 32432875 DOI: 10.1021/acs.joc.0c00927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two isomeric series of benzothieno-fused 7-deazapurine (benzo[4',5']thieno[3',2':4,5]- and benzo[4',5']thieno[2',3':4,5]pyrrolo[2,3-d]pyrimidine) ribonucleosides were designed and synthesized. Key steps of the synthesis included the Negishi coupling of zincated dichloropyrimidine with 2- or 3-iodobenzothiophene followed by azidation, thermal or photochemical cyclization, glycosylation, and final functionalization at position 6 through cross-couplings or nucleophilic substitutions. Deprotection gave the final nucleosides, some of which showed moderate cytotoxic and antiviral activity. Most of the free nucleosides showed moderate to strong fluorescence with emission maxima of 362-554 nm. 2'-Deoxyribonucleoside and its 5'-O-triphosphate were also prepared from benzothieno-fused 7-deazaadenine derivative, and the triphosphate was a good substrate for KOD XL DNA polymerase in primer extension synthesis of modified DNA which exerted a weak fluorescence which was slightly enhanced in double-stranded DNA as compared to single-stranded oligonucleotides.
Collapse
Affiliation(s)
- Chao Yang
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Petr Pavliš
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Michal Hocek
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
67
|
Turner MB, Purse BW. Fluorescent Tricyclic Cytidine Analogues as Substrates for Retroviral Reverse Transcriptases. Chempluschem 2020; 85:855-865. [PMID: 32378814 DOI: 10.1002/cplu.202000140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Indexed: 11/05/2022]
Abstract
We report on the ability of the reverse transcriptases (RTs) from avian myeloblastosis virus (AMV), Moloney murine leukemia virus (M-MLV), and human immunodeficiency virus 1 (HIV-1) to generate labeled DNA using the fluorescent tricyclic cytidine analogues d(tC)TP and d(DEA tC)TP as substrates. Michaelis-Menten kinetics for the insertion of these analogues show Vmax /KM from 0.0-5 times that of natural dCTP across from G, depending on the polymerase and whether the template is RNA or DNA. The analogues are prone to misinsertion across from adenosine with both RNA and DNA templates. Elongation after analogue insertion is efficient with RNA templates, but the analogues cause stalling after insertion with DNA templates. A model reverse transcription assay using HIV-1-RT, including RNA-dependent DNA synthesis, degradation of the RNA template by the RT's RNase H activity, and synthesis of a second DNA strand to form fluorescently labeled dsDNA, shows that d(tC)TP and d(DEA tC)TP are compatible with a complete reverse transcription cycle in vitro.
Collapse
Affiliation(s)
- M Benjamin Turner
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Byron W Purse
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
68
|
Röthlisberger P, Levi-Acobas F, Leumann CJ, Hollenstein M. Enzymatic synthesis of biphenyl-DNA oligonucleotides. Bioorg Med Chem 2020; 28:115487. [PMID: 32284226 DOI: 10.1016/j.bmc.2020.115487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022]
Abstract
The incorporation of nucleotides equipped with C-glycosidic aromatic nucleobases into DNA and RNA is an alluring strategy for a number of practical applications including fluorescent labelling of oligonucleotides, expansion of the genetic alphabet for the generation of aptamers and semi-synthetic organisms, or the modulation of excess electron transfer within DNA. However, the generation of C-nucleoside containing oligonucleotides relies mainly on solid-phase synthesis which is quite labor intensive and restricted to short sequences. Here, we explore the possibility of constructing biphenyl-modified DNA sequences using enzymatic synthesis. The presence of multiple biphenyl-units or biphenyl residues modified with electron donors and acceptors permits the incorporation of a single dBphMP nucleotide. Moreover, templates with multiple abasic sites enable the incorporation of up to two dBphMP nucleotides, while TdT-mediated tailing reactions produce single-stranded DNA oligonucleotides with four biphenyl residues appended at the 3'-end.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Institut Pasteur, Department of Genome and Genetics, Paris, France.
| |
Collapse
|
69
|
Krell K, Harijan D, Ganz D, Doll L, Wagenknecht HA. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjug Chem 2020; 31:990-1011. [DOI: 10.1021/acs.bioconjchem.0c00072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katja Krell
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dennis Harijan
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dorothée Ganz
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Larissa Doll
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
70
|
Michel BY, Dziuba D, Benhida R, Demchenko AP, Burger A. Probing of Nucleic Acid Structures, Dynamics, and Interactions With Environment-Sensitive Fluorescent Labels. Front Chem 2020; 8:112. [PMID: 32181238 PMCID: PMC7059644 DOI: 10.3389/fchem.2020.00112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fluorescence labeling and probing are fundamental techniques for nucleic acid analysis and quantification. However, new fluorescent probes and approaches are urgently needed in order to accurately determine structural and conformational dynamics of DNA and RNA at the level of single nucleobases/base pairs, and to probe the interactions between nucleic acids with proteins. This review describes the means by which to achieve these goals using nucleobase replacement or modification with advanced fluorescent dyes that respond by the changing of their fluorescence parameters to their local environment (altered polarity, hydration, flipping dynamics, and formation/breaking of hydrogen bonds).
Collapse
Affiliation(s)
- Benoît Y. Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| | - Dmytro Dziuba
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Mohamed VI Polytechnic University, UM6P, Ben Guerir, Morocco
| | - Alexander P. Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry, Kyiv, Ukraine
- Institute of Physical, Technical and Computer Science, Yuriy Fedkovych National University, Chernivtsi, Ukraine
| | - Alain Burger
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| |
Collapse
|
71
|
Enzymatic Synthesis of Nucleoside Triphosphates and Deoxynucleoside Triphosphates by Surface-Displayed Kinases. Appl Biochem Biotechnol 2019; 190:1271-1288. [PMID: 31745822 DOI: 10.1007/s12010-019-03138-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Nucleoside triphosphates and deoxynucleoside triphosphates are important biochemical molecules. In this study, recombinant Escherichia coli that could display nucleotide kinases (INP-N-NMKases) and acetate kinase (INP-N-ACKase) on the cell surface were constructed by fusing an enzyme (NMKase/ACKase) to the N-terminus of ice nucleation protein (INP-N). By using intact recombinant bacteria cells as a catalyst coupled with an ACKase-catalyzed adenosine-5'-triphosphate (ATP) regeneration system, nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates (dNTPs) could be synthesized efficiently. In a reaction system with 5 mmol/l substrate, the conversion rates of cytidine-5'-triphosphate (CTP) and deoxycytidine-5'-triphosphate (dCTP) were 96% and 93%, respectively, the conversion rate of ATP and deoxyadenosine-5'-triphosphate (dATP) was 96%, the conversion rate of deoxythymidine-5'-triphosphate (dTTP) was 91%, and the conversion rate of uridine-5'-triphosphate (UTP) was 80%. There was no obvious degradation. At 37 °C, the stability of the surface-displayed fusion protein, especially in the presence of the substrate, was significantly improved. Each whole cell could be reused more than 8 times.
Collapse
|
72
|
Gade CR, Sharma NK. Synthesis and biochemical evaluation of Aminopropanolyl-Thymine tri-Phosphate ( ap-TTP). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:730-743. [PMID: 31722606 DOI: 10.1080/15257770.2019.1688831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Deoxyribonucleoside triphosphates (dNTPs) are building blocks for the biosynthesis of DNA. Various modified dNTPs' analogs have synthesized by structural changes of nucleoside's susgar and nucleobases and employed for synthesis of modified DNA. A very few modified dNTPs have prepared from non-sugar nucleoside analogs. This report describes the synthesis of acyclic nucleoside triphosphate (NTP) analog from amino acid L-Serine as aminopropanolyl-thymine triphosphate (ap-TTP) and demonstrate its biochemical evaluation as enzymatic incorporation of ap-TTP into DNA with DNA polymerases with primer extension methods. Alanyl peptide nucleicacids (Ala-PNA) are the analogs of DNA which contains alanyl backbone. Aminopropanolyl - analogs are derivatives of alanyl back bone. Ap-TTP analog is nucleoside triphosphate analog derived from Ala-PNA. Importantly, this report also sheds light on the crystal packing arrangement of alaninyl thymine ester derivative in solid-state and reveals the formation of self-duplex assembly in anti-parallel fashion via reverse Watson-Crick hydrogen bonding and π-π interactions. Hence, ap-TTP is a useful analog which also generates the free amine functional group at the terminal of DNA oligonucleotide after incorporation.
Collapse
Affiliation(s)
- Chandrasekhar Reddy Gade
- National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Khurda, Odisha, India.,HBNI-Mumbai, Mumbai, India.,Indian Institute of Science Education and Research, Karakambadi Rd, Opp Sree Rama Engineering College, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Khurda, Odisha, India.,HBNI-Mumbai, Mumbai, India
| |
Collapse
|
73
|
Ivancová I, Leone DL, Hocek M. Reactive modifications of DNA nucleobases for labelling, bioconjugations, and cross-linking. Curr Opin Chem Biol 2019; 52:136-144. [DOI: 10.1016/j.cbpa.2019.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
|
74
|
Ivancová I, Pohl R, Hubálek M, Hocek M. Squaramate-Modified Nucleotides and DNA for Specific Cross-Linking with Lysine-Containing Peptides and Proteins. Angew Chem Int Ed Engl 2019; 58:13345-13348. [PMID: 31328344 PMCID: PMC6771961 DOI: 10.1002/anie.201906737] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/12/2019] [Indexed: 01/31/2023]
Abstract
Squaramate-linked 2'-deoxycytidine 5'-O-triphosphate was synthesized and found to be good substrate for KOD XL DNA polymerase in primer extension or PCR synthesis of modified DNA. The resulting squaramate-linked DNA reacts with primary amines to form a stable diamide linkage. This reaction was used for bioconjugations of DNA with Cy5 and Lys-containing peptides. Squaramate-linked DNA formed covalent cross-links with histone proteins. This reactive nucleotide has potential for other bioconjugations of nucleic acids with amines, peptides or proteins without need of any external reagent.
Collapse
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 8CZ-12843Prague 2Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 8CZ-12843Prague 2Czech Republic
| |
Collapse
|
75
|
Levi-Acobas F, Katolik A, Röthlisberger P, Cokelaer T, Sarac I, Damha MJ, Leumann CJ, Hollenstein M. Compatibility of 5-ethynyl-2'F-ANA UTP with in vitro selection for the generation of base-modified, nuclease resistant aptamers. Org Biomol Chem 2019; 17:8083-8087. [PMID: 31460550 DOI: 10.1039/c9ob01515a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A modified nucleoside triphosphate bearing two modifications based on a 2'-deoxy-2'-fluoro-arabinofuranose sugar and a uracil nucleobase equipped with a C5-ethynyl moiety (5-ethynyl-2'F-ANA UTP) was synthesized. This nucleotide analog could enzymatically be incorporated into DNA oligonucleotides by primer extension and reverse transcribed to unmodified DNA. This nucleotide could be used in SELEX for the identification of high binding affinity and nuclease resistant aptamers.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Adam Katolik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland and Department of Chemistry, McGill University, 801 Rue Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France and Institut Pasteur, Biomics Platform, C2RT, Paris, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Rue Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| |
Collapse
|
76
|
Ivancová I, Pohl R, Hubálek M, Hocek M. Squaramate‐Modified Nucleotides and DNA for Specific Cross‐Linking with Lysine‐Containing Peptides and Proteins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in Prague Hlavova 8 CZ-12843 Prague 2 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in Prague Hlavova 8 CZ-12843 Prague 2 Czech Republic
| |
Collapse
|