51
|
Liu H, Wang L, Gao H, Qi H, Gao Q, Zhang C. Aggregation-Induced Enhanced Electrochemiluminescence from Organic Nanoparticles of Donor-Acceptor Based Coumarin Derivatives. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44324-44331. [PMID: 29171261 DOI: 10.1021/acsami.7b15434] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Organic nanoparticles (NPs) from donor-acceptor based coumarin derivatives, 6-[4-(N,N-diphenylamino)phenyl]-3-ethoxycarbonyl coumarin (DPA-CM), with an average size of 5.82 nm, were synthesized by a facile reprecipitation method using water as a poor solvent and tetrahydrofuran as a good solvent. Red-shifted absorption, blue-shifted photoluminescence emission, and aggregation-induced enhanced electrochemiluminescence (ECL) emission were observed for the DPA-CM NPs in aqueous solution compared with the original DPA-CM in organic solution. The aggregation-induced enhanced ECL emission is ascribed to the combined effects of the small size of the DPA-CM NPs, the restricted conformational relaxation in the NPs, and the good stability of the cationic radical of DPA-CM. A strong and stable ECL emission is obtained at the DPA-CM NPs modified glassy carbon electrode in the presence of tri-n-propylamine, and the ECL intensity of the DPA-CM NPs modified electrode is quenched linearly in the range of 0.05-50 μM with detection limit of 0.04, 0.2, and 0.4 μM for ascorbic acid, uric acid, and dopamine, respectively. This work shows an example of donor-acceptor based organic NPs as ECL emitters and their analytical applications to monitor biomolecules.
Collapse
Affiliation(s)
- Huiwen Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, PR China
| | - Lifen Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, PR China
| | - Hongfang Gao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, PR China
| | - Honglan Qi
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, PR China
| | - Qiang Gao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, PR China
| | - Chengxiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, PR China
| |
Collapse
|
52
|
Feng Y, Wang N, Ju H. Highly Efficient Electrochemiluminescence of Cyanovinylene-Contained Polymer Dots in Aqueous Medium and Its Application in Imaging Analysis. Anal Chem 2017; 90:1202-1208. [DOI: 10.1021/acs.analchem.7b03821] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yaqiang Feng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ningning Wang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
53
|
Sun F, Wang Z, Feng Y, Cheng Y, Ju H, Quan Y. Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosens Bioelectron 2017; 100:28-34. [PMID: 28850825 DOI: 10.1016/j.bios.2017.08.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/04/2017] [Accepted: 08/21/2017] [Indexed: 01/02/2023]
Abstract
This work designed a three-component polymer for the preparation of polymer dots (Pdots). The polymer contained 9-(diphenylmethylene)-9H-fluorene (DPF), 9,9-dioctyl-9H-fluorene (DOF) and 1,1'-binaphthyl moieties, and was synthesized via Pd-catalyzed Suzuki reaction. It exhibited obvious yellow-colored aggregation-induced emission (AIE) for fluorescence enhancement at 543nm via an intramolecular fluorescence resonance energy transfer from DOF moiety to DPF moiety. The Pdots prepared by nanoprecipitation could be conveniently cast on electrode surface and showed a stable anodic electrochemiluminescence (ECL) emission in the presence of triethylamine as a co-reactant. The ECL emission could be effectively quenched by rhodamine B via resonance energy transfer, which led to an "off-on" switch for the design of ECL sensing methodology. Using Pb2+ as a target model, an ECL aptasensor for the detection of trace Pb2+ was proposed, which showed a linear range of 100pM to 1.0μM with a detection limit down to 38.0pM This work demonstrated the first Pdots prepared with AIE-active polymer for highly efficient ECL sensing.
Collapse
Affiliation(s)
- Feng Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Ziyu Wang
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Yaqiang Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Yixiang Cheng
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yiwu Quan
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
54
|
Yang H, Zhang Y, Li L, Zhang L, Lan F, Yu J. Sudoku-like Lab-on-Paper Cyto-Device with Dual Enhancement of Electrochemiluminescence Intermediates Strategy. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01194] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hongmei Yang
- Institute
for Advanced Interdisciplinary Research, ‡School of Chemistry and Chemical
Engineering, and §Shandong Provincial Key Laboratory of Preparation and Measurement
of Building Materials, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- Institute
for Advanced Interdisciplinary Research, ‡School of Chemistry and Chemical
Engineering, and §Shandong Provincial Key Laboratory of Preparation and Measurement
of Building Materials, University of Jinan, Jinan 250022, China
| | - Li Li
- Institute
for Advanced Interdisciplinary Research, ‡School of Chemistry and Chemical
Engineering, and §Shandong Provincial Key Laboratory of Preparation and Measurement
of Building Materials, University of Jinan, Jinan 250022, China
| | - Lina Zhang
- Institute
for Advanced Interdisciplinary Research, ‡School of Chemistry and Chemical
Engineering, and §Shandong Provincial Key Laboratory of Preparation and Measurement
of Building Materials, University of Jinan, Jinan 250022, China
| | - Feifei Lan
- Institute
for Advanced Interdisciplinary Research, ‡School of Chemistry and Chemical
Engineering, and §Shandong Provincial Key Laboratory of Preparation and Measurement
of Building Materials, University of Jinan, Jinan 250022, China
| | - Jinghua Yu
- Institute
for Advanced Interdisciplinary Research, ‡School of Chemistry and Chemical
Engineering, and §Shandong Provincial Key Laboratory of Preparation and Measurement
of Building Materials, University of Jinan, Jinan 250022, China
| |
Collapse
|
55
|
Feng Y, Sun F, Wang N, Lei J, Ju H. Ru(bpy)32+ Incorporated Luminescent Polymer Dots: Double-Enhanced Electrochemiluminescence for Detection of Single-Nucleotide Polymorphism. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01603] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yaqiang Feng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Feng Sun
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ningning Wang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
56
|
Affiliation(s)
- Jingwei Sun
- Department of Materials Chemistry; Huzhou University; Huzhou 313000 P.R. China
| | - Hao Sun
- Department of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 P.R. China
| | - Ziqi Liang
- Department of Materials Science; Fudan University; Shanghai 200433 P.R. China
| |
Collapse
|
57
|
Fu X, Tan X, Yuan R, Chen S. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex. Biosens Bioelectron 2017; 90:61-68. [DOI: 10.1016/j.bios.2016.11.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
|
58
|
Chen H, Zhang H, Yuan R, Chen S. Novel Double-Potential Electrochemiluminescence Ratiometric Strategy in Enzyme-Based Inhibition Biosensing for Sensitive Detection of Organophosphorus Pesticides. Anal Chem 2017; 89:2823-2829. [DOI: 10.1021/acs.analchem.6b03883] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hongmei Chen
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Han Zhang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Shihong Chen
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
59
|
Yu J, Rong Y, Kuo CT, Zhou XH, Chiu DT. Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Anal Chem 2017; 89:42-56. [PMID: 28105818 PMCID: PMC5682631 DOI: 10.1021/acs.analchem.6b04672] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiangbo Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yu Rong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Ting Kuo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xing-Hua Zhou
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
60
|
Affiliation(s)
- Lingling Li
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Ying Chen
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
61
|
Liang Y, Gao W, Peng X, Deng X, Sun C, Wu H, He B. Near infrared light responsive hybrid nanoparticles for synergistic therapy. Biomaterials 2016; 100:76-90. [PMID: 27244691 DOI: 10.1016/j.biomaterials.2016.05.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 02/04/2023]
Abstract
A near infrared (NIR) light responsive chromophore 7-(diethylamino)-4-(hydroxymethyl)-2H-chromen-2-one (DEACM) was synthesized and incorporated to β-cyclodextrins with cRGD functionalized poly(ethylene glycol), the amphiphiles were coordinated with Au nanorods or nanoparticles to load anticancer drug doxorubicin (DOX) for fabricating hybrid nanoparticles. The π-π stacking interaction between DEACM and DOX was formed in the hybrid nanoparticles, which contributed to the high drug loading content. The Au nanorods or nanoparticles enhanced the photosolvolysis of DEACM under the irradiation of NIR with 808 nm wavelength and triggered the accelerated drug release from the nanoparticles. The drug loaded hybrid nanoparticles with NIR irradiation exhibited efficient inhibition effect on the proliferation of 4T1 breast cancer cells in vitro. The in vivo anticancer activity study on breast cancer bearing mice revealed that the hybrid nanoparticles containing Au nanorods exhibited excellent anticancer activity under the irradiation of 808 nm wavelength NIR with 800 mW.
Collapse
Affiliation(s)
- Yan Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China.
| | - Xinyu Peng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xin Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Changzhen Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
62
|
Jiang X, Wang H, Wang H, Yuan R, Chai Y. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay. Anal Chem 2016; 88:9243-50. [PMID: 27529728 DOI: 10.1021/acs.analchem.6b02501] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the present work, we first found that mercury ion (Hg(2+)) has an efficient quenching effect on the electrochemiluminescence (ECL) of N-(aminobutyl)-N-(ethylisoluminol) (ABEI). Since we were inspired by this discovery, an aptamer-based ECL sensor was fabricated based on a Hg(2+) triggered signal switch coupled with an exonuclease I (Exo I)-stimulated target recycling amplification strategy for ultrasensitive determination of Hg(2+) and mucin 1 (MUC1). Concretely, the ECL intensity of ABEI-functionalized silver nanoparticles decorated graphene oxide nanocomposite (GO-AgNPs-ABEI) was initially enhanced by ferrocene labeled ssDNA (Fc-S1) (first signal switch "on" state) in the existence of H2O2. With the aid of aptamer, assistant ssDNA (S2) and full thymine (T) bases ssDNA (S3) modified Au nanoparticles (AuNPs-S2-S3) were immobilized on the sensing surface through the hybridization reaction. Then, via the strong and stable T-Hg(2+)-T interaction, an abundance of Hg(2+) was successfully captured on the AuNPs-S2-S3 and effectively inhibited the ECL reaction of ABEI (signal switch "off" state). Finally, the signal switch "on" state was executed by utilizing MUC1 as an aptamer-specific target to bind aptamer, leading to the large decrease of the captured Hg(2+). To further improve the sensitivity of the aptasensor, Exo I was implemented to digest the binded aptamer, which resulted in the release of MUC1 for achieving target recycling with strong detectable ECL signal even in a low level of MUC1. By integrating the quenching effect of Hg(2+) to reduce the background signal and target recycling for signal amplification, this proposed ECL aptasensor was successfully used to detect Hg(2+) and MUC1 sensitively with a wide linear response.
Collapse
Affiliation(s)
- Xinya Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR of China
| | - Huijun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR of China
| | - Haijun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR of China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR of China
| |
Collapse
|