51
|
Aptasensors for pesticide detection. Biosens Bioelectron 2019; 130:174-184. [PMID: 30738246 DOI: 10.1016/j.bios.2019.01.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022]
Abstract
Pesticide contamination has become one of the most serious problems of public health in the world, due to their wide application in agriculture industry to guarantee the crop yield and quality. The detection of pesticide residues plays an important role in food safety management and environment protection. However, the conventional detection methodologies cannot realize highly sensitive, selective and on-site detection, which limits their applications. Aptamers are short single-stranded oligonucleotides (RNA or DNA) selected by SELEX method, which can selectively bind to their targets with high affinity. Compared with the commonly used antibodies or enzymes in designing biosensors, aptamers exhibit better stability, low molecular weight, easy modification and low cost, and were regarded as excellent candidates for developing aptasensors for pesticide detection. In this review, application of aptamers for pesticide detection was reviewed. Firstly, aptamers specifically bind to various pesticides were first summarized. Secondly, the progresses and highlights of developing aptasensors for highly-sensitive and selective detection of pesticide residues were systematically provided. Finally, the present challenges and future perspectives for developing novel highly-effective aptasensor for the detection of pesticide residues were discussed.
Collapse
|
52
|
Magnetic-core@dual-functional-shell nanocomposites with peroxidase mimicking properties for use in colorimetric and electrochemical sensing of hydrogen peroxide. Mikrochim Acta 2018; 186:20. [PMID: 30552515 DOI: 10.1007/s00604-018-3116-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
Abstract
A self-sacrificing catalytic method is described for the preparation of magnetic core/dual-functional-shell nanocomposites composed of magnetite, gold and Prussian Blue (type Fe3O4@Au-PB). Two reaction pathways are integrated. The first involves chemical dissolution of Fe3O4 (the self-sacrificing step) by acid to release ferrous ions which then reacts with hexacyanoferrate(IV) to generate PB in the proximity of the magntic nanoparticles (MNPs). The second involves the reduction of tetrachloroaurate by hydroxylamine to generate gold under the catalytic effect of the MNPs. At the end, the MNPs@Au-PB nanocomposite is formed. This method exploits both the chemical reactivity and catalytic effect of the MNPs in a single step. The multi-function material was applied (a) in an optical assay for H2O2; (b) in an amperometric assay for H2O2; (c) in an enzymatic choline assay using immobilized choline oxidase. The limit of electrochemical detection of H2O2 (at a potential as low as 50 mV) is 1.1 μM which is comparable or better than most analogous methods. The sensors display superior performance compared to the use of conventional core@single-shell (MNPs@PB) nanomaterials. Graphical abstract A self-sacrificing catalytic method is described to prepare magnetic core/dual-functional-shell nanocomposites composed of magnetic nanoparticle, gold and Prussian Blue (type MNP@Au-PB). The nanocomposites work well as candidates to develop colorimetric and electrochemical sensors of H2O2 with superior performance to analogues.
Collapse
|
53
|
A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Biosens Bioelectron 2018; 127:207-214. [PMID: 30611108 DOI: 10.1016/j.bios.2018.12.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022]
Abstract
This work describes a hybrid electrochemical sensor for highly sensitive detection of pesticide cypermethrin (CYP). Firstly, Ag and N co-doped zinc oxide (Ag-N@ZnO) was produced by sol-gel method, and then Ag-N@ZnO was ultrasonically supported on activated carbon prepared from coconut husk (Ag-N@ZnO/CHAC). Finally, a layer of molecularly imprinted polymer (MIP) was in situ fabricated on glassy carbon electrode by electro-polymerization, with dopamine and resorcinol as dual functional monomers (DM), CYP acting as template (DM-MIP-Ag-N@ZnO/CHAC). Morphological features, composition information and electrochemical properties of DM-MIP-Ag-N@ZnO/CHAC were investigated in detail. It is worth to mention that for the first time response surface method was used to investigate the effect of double monomers and to optimize the ratio between template and monomers. Compared with typical one-monomer involving MIP, the MIP prepared with dual functional monomers (DMMIP) of monomers showed higher response and better selectivity. Under the optimal conditions, a calibration curve of current shift versus concentration of CYP was obtained in the range of 2 × 10-13~8 × 10-9 M, and the developed sensor gave a remarkably low detection limit (LOD) of 6.7 × 10-14 M (S/N = 3). Determination of CYP in real samples was conducted quickly and accurately with our sensor. The DMMIP-Ag-N@ZnO/CHAC electrochemical sensor proposed in this paper has great potential in food safety, drug residue determination and environmental monitoring.
Collapse
|
54
|
Cui L, Hu J, Li CC, Wang CM, Zhang CY. An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Biosens Bioelectron 2018; 122:168-174. [DOI: 10.1016/j.bios.2018.09.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022]
|
55
|
Uhlirova D, Stankova M, Docekalova M, Hosnedlova B, Kepinska M, Ruttkay-Nedecky B, Ruzicka J, Fernandez C, Milnerowicz H, Kizek R. A Rapid Method for the Detection of Sarcosine Using SPIONs/Au/CS/SOX/NPs for Prostate Cancer Sensing. Int J Mol Sci 2018; 19:E3722. [PMID: 30467297 PMCID: PMC6320840 DOI: 10.3390/ijms19123722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sarcosine is an amino acid that is formed by methylation of glycine and is present in trace amounts in the body. Increased sarcosine concentrations in blood plasma and urine are manifested in sarcosinemia and in some other diseases such as prostate cancer. For this purpose, sarcosine detection using the nanomedicine approach was proposed. In this study, we have prepared superparamagnetic iron oxide nanoparticles (SPIONs) with different modified surface area. Nanoparticles (NPs) were modified by chitosan (CS), and sarcosine oxidase (SOX). SPIONs without any modification were taken as controls. Methods and Results: The obtained NPs were characterized by physicochemical methods. The size of the NPs determined by the dynamic light scattering method was as follows: SPIONs/Au/NPs (100⁻300 nm), SPIONs/Au/CS/NPs (300⁻700 nm), and SPIONs/Au/CS/SOX/NPs (600⁻1500 nm). The amount of CS deposited on the NP surface was found to be 48 mg/mL for SPIONs/Au/CS/NPs and 39 mg/mL for SPIONs/Au/CS/SOX/NPs, and repeatability varied around 10%. Pseudo-peroxidase activity of NPs was verified using sarcosine, horseradish peroxidase (HRP) and 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. For TMB, all NPs tested evinced substantial pseudo-peroxidase activity at 650 nm. The concentration of SPIONs/Au/CS/SOX/NPs in the reaction mixture was optimized to 0⁻40 mg/mL. Trinder reaction for sarcosine detection was set up at 510 nm at an optimal reaction temperature of 37 °C and pH 8.0. The course of the reaction was linear for 150 min. The smallest amount of NPs that was able to detect sarcosine was 0.2 mg/well (200 µL of total volume) with the linear dependence y = 0.0011x - 0.0001 and the correlation coefficient r = 0.9992, relative standard deviation (RSD) 6.35%, limit of detection (LOD) 5 µM. The suggested method was further validated for artificial urine analysis (r = 0.99, RSD 21.35%, LOD 18 µM). The calculation between the detected and applied concentrations showed a high correlation coefficient (r = 0.99). NPs were tested for toxicity and no significant growth inhibition was observed in any model system (S. cerevisiae, S. aureus, E. coli). The hemolytic activity of the prepared NPs was similar to that of the phosphate buffered saline (PBS) control. The reaction system was further tested on real urine specimens. Conclusion: The proposed detection system allows the analysis of sarcosine at micromolar concentrations and to monitor changes in its levels as a potential prostate cancer marker. The whole system is suitable for low-cost miniaturization and point-of-care testing technology and diagnostic systems. This system is simple, inexpensive, and convenient for screening tests and telemedicine applications.
Collapse
Affiliation(s)
- Dagmar Uhlirova
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic.
| | - Martina Stankova
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic.
| | - Michaela Docekalova
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic.
| | - Bozena Hosnedlova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Branislav Ruttkay-Nedecky
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | - Josef Ruzicka
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK.
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Rene Kizek
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic.
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| |
Collapse
|
56
|
Li CC, Hu J, Lu M, Zhang CY. Quantum dot-based electrochemical biosensor for stripping voltammetric detection of telomerase at the single-cell level. Biosens Bioelectron 2018; 122:51-57. [PMID: 30240966 DOI: 10.1016/j.bios.2018.09.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022]
Abstract
Human telomerase is responsible for the maintenance of chromosome end structures and is a valuable biomarker for malignant growth. However, the accurate measurement of telomerase activity at the single-cell level has remained a great challenge. Here we develop a simple quantum dot (QD)-based electrochemical biosensor for stripping voltammetric detection of telomerase activity at the single-cell level. We designed a thiol-modified capture DNA which may be immobilized on the gold electrode by the gold-sulfur bond. The presence of telomerase enables the addition of the telomere repeats of (TTAGGG)n to the 3' end of the primer, accompanied by the incorporation of abundant biotins in the extension product with the assistance of the biotin-tagged dATP. The subsequent hybridization of extension product with the capture DNA and the addition of streptavidin-coated QDs induce the assembly of large amounts of QDs onto the electrode via specific biotin-streptavidin binding. After the acidic dissolution of QDs, the released Cd (II) can be simply quantified by anodic stripping voltammetry (ASV). Due to the introduction of large amounts of QDs by telomerase-induced primer extension reaction and the synergistic signal amplification induced by the release of Cd (II) from the QDs, this biosensor can detect telomerase activity at the single-cell level without the involvement of any thermal cycling and extra enzymes for signal amplification. Moreover, this assay exhibits a large dynamic range over four orders of magnitude and it is very simple without the involvement of specific hairpin probe design and complicated labelling, holding great potential in point-of-need testing.
Collapse
Affiliation(s)
- Chen-Chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China
| | - Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China
| | - Mengfei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
57
|
Liu R, Wang C, Hu J, Su Y, Lv Y. DNA-templated copper nanoparticles: Versatile platform for label-free bioassays. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
58
|
Ma J, Li D, Zhong L, Du F, Tan J, Yang J, Peng X. Synthesis and characterization of biofunctional quaternized xylan-Fe2O3 core/shell nanocomposites and modification with polylysine and folic acid. Carbohydr Polym 2018; 199:382-389. [PMID: 30143142 DOI: 10.1016/j.carbpol.2018.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
The aims of this study are to prepare quaternized xylan-Fe2O3 (QX-Fe2O3) core/shell nanocomposites and explore their potential application in the biomedical fields. γ-Fe2O3 nanoparticles synthesized by a facile solvothermal process are coated with QX via reverse microemulsion method and further modified by polylysine (PLL) and folic acid (FA) to prepare PLL-QX-Fe2O3 and FA-QX-Fe2O3 nanoparticles. An obvious strong absorption of γ-Fe2O3 at 580 cm-1 in the spectra of QX-Fe2O3 is observed, the Fe element content of QX-Fe2O3 is 30-75 μg/mL and the saturation magnetization of QX-Fe2O3 nanoparticles is 1.49 emu/g. The γ-Fe2O3 and QX-Fe2O3 nanoparticles are of regular sphericity with diameter of 50-100 nm and 60-150 nm, respectively. The highest zeta potential of QX-Fe2O3 nanoparticles is -41 mV, and the PLL-QX-Fe2O3 nanoparticles have a positive potential with a maximum value of 45.2 mV. In addition, FA-QX-Fe2O3 showed excellent performance in T2-weighted Magnetic Resonance (MR) imaging with an r2 value of 190 mM-1S-1. Each nanocomposite has its own inherent properties, which contributes to its versatile utilization and application potential.
Collapse
Affiliation(s)
- Jiliang Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510641 PR China
| | - Dan Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000 PR China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510641 PR China.
| | - Fan Du
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510641 PR China
| | - Jiewen Tan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510641 PR China
| | - Jie Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510641 PR China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510641 PR China.
| |
Collapse
|
59
|
Wang M, Yang L, Hu B, Liu J, He L, Jia Q, Song Y, Zhang Z. Bimetallic NiFe oxide structures derived from hollow NiFe Prussian blue nanobox for label-free electrochemical biosensing adenosine triphosphate. Biosens Bioelectron 2018; 113:16-24. [PMID: 29709777 DOI: 10.1016/j.bios.2018.04.050] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022]
Abstract
We designed and constructed a novel aptasensor based on the porous nanostructured bimetallic NiFe-oxides embedded with the mesoporous carbon (represented by NiOxFeOy@mC) for sensitively detecting adenosine triphosphate (ATP), of which the porous NiOxFeOy@mC was derived from the hollow NiFe Prussian blue analogue (hollow NiFe PBA) by calcinating under high temperature. Owning to the excellent electrochemical activity originated from the metal oxides and mesoporous carbon and the strong binding interaction between the aptamer strands and the nanostructure hybrid, the formed porous NiOxFeOy@mC composite calcinated at 900 °C exhibited superior sensitivity toward ATP determination in comparison with other porous nanocubes obtained at 500 and 700 °C. The proposed aptasensor not only revealed a wide linear range from 5.0 fg·mL-1 to 5.0 ng mL-1 with a extremely low detection limit of 0.98 fg·mL-1 (1.62 fM) (S/N = 3), but also displayed high selectivity towards other interferences, good stability and reproducibility, and acceptable applicability. Therefore, this proposed approach provides a promising platform for ultra-sensitive detection of ATP, further having the potential applications on diagnosis of ATP-related diseases.
Collapse
Affiliation(s)
- Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Longyu Yang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Jiameng Liu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Qiaojuan Jia
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
60
|
Manakasettharn S, Takahashi A, Kawamoto T, Noda K, Sugiyama Y, Nakamura T. Highly Sensitive and Exceptionally Wide Dynamic Range Detection of Ammonia Gas by Indium Hexacyanoferrate Nanoparticles Using FTIR Spectroscopy. Anal Chem 2018; 90:4856-4862. [DOI: 10.1021/acs.analchem.8b00359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Supone Manakasettharn
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Akira Takahashi
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Tohru Kawamoto
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Keiko Noda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Yutaka Sugiyama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Tohru Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
61
|
Feng Y, Sakaki M, Kim JH, Huang J, Kajiyoshi K. Novel Prussian-blue-analogue microcuboid assemblies and their derived catalytic performance for effective reduction of 4-nitrophenol. NEW J CHEM 2018. [DOI: 10.1039/c8nj04958k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Novel Co–Fe PBA microcuboids (MCBs) were solvothermally synthesized in the presence of PVP for the first time, and the cuboid-derived catalyst, CoFe/NC-MCBs, showed excellent catalytic performance for the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Yongqiang Feng
- Research Laboratory of Hydrothermal Chemistry
- Faculty of Science and Technology
- Kochi University
- Kochi
- Japan
| | - Masoud Sakaki
- Research Laboratory of Hydrothermal Chemistry
- Faculty of Science and Technology
- Kochi University
- Kochi
- Japan
| | - Jae-hyun Kim
- Research Laboratory of Hydrothermal Chemistry
- Faculty of Science and Technology
- Kochi University
- Kochi
- Japan
| | - Jianfeng Huang
- School of Materials Science & Engineering
- Shaanxi University of Science & Technology
- Xi'an
- P. R. China
| | - Koji Kajiyoshi
- Research Laboratory of Hydrothermal Chemistry
- Faculty of Science and Technology
- Kochi University
- Kochi
- Japan
| |
Collapse
|
62
|
Lee H, Hwang J, Park Y, Kwon D, Lee S, Kang I, Jeon S. Immunomagnetic separation and size-based detection of Escherichia coli O157 at the meniscus of a membrane strip. RSC Adv 2018; 8:26266-26270. [PMID: 35541965 PMCID: PMC9082759 DOI: 10.1039/c8ra04739a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023] Open
Abstract
We developed a facile method for the detection of pathogenic bacteria using gold-coated magnetic nanoparticle clusters (Au@MNCs) and porous nitrocellulose strips. Au@MNCs were synthesized and functionalized with half-fragments of Escherichia coli O157 antibodies. After the nanoparticles were used to capture E. coli O157 in milk and dispersed in a buffer solution, one end of a test strip was dipped into the solution. Due to the size difference between the E. coli–Au@MNC complexes (approximately 1 μm) and free Au@MNCs (approximately 180 nm), only E. coli–Au@MNC complexes accumulated at the meniscus of the test strip and induced a color change. The color intensity of the meniscus was proportional to the E. coli concentration, and the detection limit for E. coli in milk was 103 CFU mL−1 by the naked eye. The presence of E. coli–Au@MNC complexes at the meniscus was confirmed using a real-time PCR assay. The developed method was highly selective for E. coli when compared with Salmonella typhimurium, Listeria monocytogenes, and Staphylococcus aureus. E. coli–Au/MNC complexes accumulate at the meniscus of the test strip where the flow velocity reaches a maximum.![]()
Collapse
Affiliation(s)
- Hyeonjeong Lee
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Jeongin Hwang
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Yunsung Park
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Donghoon Kwon
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sanghee Lee
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Inseok Kang
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| |
Collapse
|