51
|
Huang X, Zhang L, Wei L, Wang M, Li B, Guo B, Ma M. One-Pot Derivatization for Wide-Scope Detection of Nucleobases and Deoxyribosides in Natural Medicinal Foods with Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10200-10212. [PMID: 32853523 DOI: 10.1021/acs.jafc.0c03328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new chemical labeling-based LC-MS/MS approach was developed for quantitative profiling of nine canonical bases and deoxynucleosides (dNs) in natural products. Using 2-bromo-1-(4-dimethylamino-phenyl)-ethaone (BrDPE) as the tagging reagent, a previously unexploited N-alkylpyrimidine derivative (Nad) was created for one-pot labeling of widescope nucleobases via a flexible bromophilic substitution under mild conditions. The derivatization notably improved the LC-MS detection sensitivity by 31-107 fold, enabling a fast dilute-and-shoot analysis of highly diluted samples. The optimized and validated method demonstrated satisfactory accuracy (87-107%), precision (RSDs < 7.5%), and recovery (89-105%) for matrix-matched standard addition. The method was applied to simultaneously determine all target analytes and four uncanonical analogues and base-modified species in seven traditional health foods, which differ in contents by up to 600-fold for discrimination among samples. Further, the base-labeled Nads exhibit a unique fragmentation signature that could be used for untargeted screening of nucleobase-containing metabolites by simplified LC-MS/MS workflow to improve quality evaluation of natural medicinal products.
Collapse
Affiliation(s)
- Xingrong Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Lu Zhang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Lijuan Wei
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Meiling Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Bowen Li
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
| |
Collapse
|
52
|
Hu J, Chen SE, Zhu S, Jia W, Sun J, Zhao XE, Liu H. 13-Plex UHPLC-MS/MS Analysis of Hexanal and Heptanal Using Multiplex Tags Chemical Isotope Labeling Technology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1965-1973. [PMID: 32840365 DOI: 10.1021/jasms.0c00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a new series of chemical isotope labeling reagents, levofloxacin-hydrazide-based mass tags (LHMTs) named as LHMT359/360/361/362/363/364/365/366/373/375/376/378/379/381 were first designed and synthesized for the high-throughput analysis of potential biomarkers containing hexanal and heptanal of lung cancer. We exploited a new core structure of levofloxacin-d3, which significantly enhanced the multiplexing capability. Among them, LHMT359 was used for labeling standard compounds as internal standards for quantification. Using LHMT373-heptanal as dummy template, dummy magnetic molecularly imprinted polymers (DMMIPs) were prepared for magnetic dispersive solid-phase extraction after derivatization procedure. Other 12 LHMTs were established for high-throughput labeling hexanal and heptanal in human serum samples. The presynthesized DMMIPs can selectively extract LHMTs-derivatives of hexanal and heptanal from equally mixed derivatization solutions. The enriched derivatives of hexanal and heptanal were quantified by ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). A single UHPLC-MS/MS run enabled simultaneously quantifying hexanal and heptanal from 12 serum samples only within 2 min. The limits of detection were all 0.5 pM for hexanal and heptanal. The accuracies from human serum samples ranged from -10.2% to +11.0% with the intra- and interday precisions less than 11.3%. Meanwhile, this method was successfully applied for the analysis of hexanal and heptanal in serum samples from healthy people and lung cancer patients. The results show that this method has the significant advantages of high sensitivity, accuracy, selectivity, and analysis-throughput. The method application indicates that the developed method is promising in the screening of suspected lung cancer patients.
Collapse
Affiliation(s)
- Jingwen Hu
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Shi-En Chen
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Shuyun Zhu
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Wenhui Jia
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, P. R. China
| | - Xian-En Zhao
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
53
|
Accelerating Electrochemical Reactions in a Voltage‐Controlled Interfacial Microreactor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
54
|
Cheng H, Tang S, Yang T, Xu S, Yan X. Accelerating Electrochemical Reactions in a Voltage-Controlled Interfacial Microreactor. Angew Chem Int Ed Engl 2020; 59:19862-19867. [PMID: 32725670 DOI: 10.1002/anie.202007736] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 11/10/2022]
Abstract
Microdroplet chemistry is attracting increasing attention for accelerated reactions at the solution-air interface. We report herein a voltage-controlled interfacial microreactor that enables acceleration of electrochemical reactions which are not observed in bulk or conventional electrochemical cells. The microreactor is formed at the interface of the Taylor cone in an electrospray emitter with a large orifice, thus allowing continuous contact of the electrode and the reactants at/near the interface. As a proof-of-concept, electrooxidative C-H/N-H coupling and electrooxidation of benzyl alcohol were shown to be accelerated by more than an order of magnitude as compared to the corresponding bulk reactions. The new electrochemical microreactor has unique features that allow i) voltage-controlled acceleration of electrochemical reactions by voltage-dependent formation of the interfacial microreactor; ii) "reversible" electrochemical derivatization; and iii) in situ mechanistic study and capture of key radical intermediates when coupled with mass spectrometry.
Collapse
Affiliation(s)
- Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| |
Collapse
|
55
|
Derivatization-based magnetic dummy molecularly imprinted polymers integrated with 4-plex stable isotope labeling derivatization strategy for specific and rapid determination of L-hydroxyproline in human serum. Anal Chim Acta 2020; 1127:57-68. [DOI: 10.1016/j.aca.2020.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
|
56
|
Guan S, Armbruster MR, Huang T, Edwards JL, Bythell BJ. Isomeric Differentiation and Acidic Metabolite Identification by Piperidine-Based Tagging, LC-MS/MS, and Understanding of the Dissociation Chemistries. Anal Chem 2020; 92:9305-9311. [PMID: 32466643 DOI: 10.1021/acs.analchem.0c01640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We demonstrate a method for facile differentiation of acidic, isomeric metabolites by attaching high proton affinity, piperidine-based chemical tags to each carboxylic acid group. These tags attach with high efficiency to the analytes, increase the signal, and result in the formation of multiply-charged cations. We illustrate the present approach with citrate and isocitrate, which are isomeric metabolites each containing three carboxylic acid groups. We observe a 20-fold increase in signal-to-noise for citrate and an 8-fold increase for isocitrate as compared to detection of the untagged analytes in negative mode. Collision-induced dissociation of the triply tagged, triply charged analytes results in distinct tandem mass spectra. The phenylene spacer groups limit proton mobility and enable access to structurally informative C-C bond cleavage reactions. Modeling of the gas-phase structures and dissociation chemistry of these triply charged analyte ions highlights the importance of hydroxyl proton mobilization in this low proton mobility environment. Tandem mass spectrometric analyses of deuterated congeners and MS3 spectra are consistent with the proposed fragment ion structures and mechanisms of formation. Direct evidence that these chemistries are more generally applicable is provided by subsequent analyses of doubly tagged, doubly charged malate ions. Future work will focus on applying these methods to identify new metabolites and development of general rules for structural determination of tagged metabolites with multiple charges.
Collapse
Affiliation(s)
- Shanshan Guan
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri, 1 University Blvd, St. Louis, Missouri 63121, United States
| | - Michael R Armbruster
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63102, United States
| | - Tianjiao Huang
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63102, United States
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63102, United States
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri, 1 University Blvd, St. Louis, Missouri 63121, United States
| |
Collapse
|
57
|
Multiplexed derivatization strategy-based dummy molecularly imprinted polymers as sorbents for magnetic dispersive solid phase extraction of globotriaosylsphingosine prior to UHPLC-MS/MS quantitation. Mikrochim Acta 2020; 187:373. [DOI: 10.1007/s00604-020-04341-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
|
58
|
Chen J, Tian Y, Zhang YX, Xu FG. Chemoselective Probes Serving as Promising Derivatization Tools in Targeted Metabolomics Research. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00125-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
59
|
Quadruplex stable isotope derivatization strategy for the determination of panaxadiol and panaxatriol in foodstuffs and medicinal materials using ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2020; 1616:460794. [DOI: 10.1016/j.chroma.2019.460794] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/07/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
|
60
|
Zhu S, Wang X, Zheng Z, Zhao XE, Bai Y, Liu H. Synchronous measuring of triptolide changes in rat brain and blood and its application to a comparative pharmacokinetic study in normal and Alzheimer's disease rats. J Pharm Biomed Anal 2020; 185:113263. [PMID: 32203895 DOI: 10.1016/j.jpba.2020.113263] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Triptolide, a major active ingredient of Tripterygium wilfordii Hook F, provides anti-inflammatory and neuroprotective activities. In this study, a microwave-assisted stable isotope labeling derivatization-magnetic dispersive solid phase extraction (MA-SILD-MDSPE) combined with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the determination of the triptolide in rat microdialysates. A pair of SILD reagents (d0-/d3-3-N-methyl-2'-carboxyl Rhodamine 6G, d0-/d3-MCR6G) were used to label triptolide in real samples and standards under mild conditions. The introduction of SILD reagents enhanced the sensitivity of MS/MS detection and ensured accurate quantification. A novel molecularly imprinted polymer coating with d0-MCR6G labeled triptolide as template was firstly synthesized by precipitation polymerization method, and used to selectively extract the labeled triptolides from complex matrices. The purified d0-/d3-MCR6G-triptolides were determined by UHPLC-MS/MS analysis. Using the proposed method, a good linearity (R2>0.995), low limits of detection (LOD, 0.45-0.50 pg/mL) and quantification (LOQ, 3.0 pg/mL) were achieved. The intra- and inter-day precision and accuracy were within the acceptable ranges. No significant matrix effect was observed. The derivatization efficiency was more than 96 %. The validated method was successfully applied to a comparative pharmacokinetic study of triptolide synchronously in brain and blood of normal and Alzheimer's disease rats by in vivo microdialysis sampling technique.
Collapse
Affiliation(s)
- Shuyun Zhu
- Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xin Wang
- Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Taian, 271018, China
| | - Xian-En Zhao
- Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
61
|
Liu FL, Qi CB, Cheng QY, Ding JH, Yuan BF, Feng YQ. Diazo Reagent Labeling with Mass Spectrometry Analysis for Sensitive Determination of Ribonucleotides in Living Organisms. Anal Chem 2019; 92:2301-2309. [PMID: 31845797 DOI: 10.1021/acs.analchem.9b05122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ribonucleotide analogues and their related phosphorylated metabolites play critical roles in tumor metabolism. However, determination of the endogenous ribonucleotides from the complex biological matrix is still a challenge due to their high structural similarity and high polarity that will lead to the low retention and low detection sensitivities by liquid chromatogram mass spectrometry analysis. In this study, we developed the diazo reagent labeling strategy with mass spectrometry analysis for sensitive determination of ribonucleotides in the living organism. A pair of light and heavy stable isotope labeling reagents, 2-(diazomethyl)-N-methyl-N-phenyl-benzamide (2-DMBA) and d5-2-(diazomethyl)-N-methyl-N-phenyl-benzamide (d5-2-DMBA), were synthesized to label ribonucleotides. 2-DMBA showed high specificity and high efficiency for the labeling of ribonucleotides. Our results demonstrated that the detection sensitivities of 12 ribonucleotides increased by 17-174-fold upon 2-DMBA labeling. The obtained limits of detection (LODs) of ribonucleotides ranged from 0.07 fmol to 0.41 fmol. Using this method, we achieved the sensitive and accurate detection of ribonucleotides from only a few cells (8 cells). To the best of our knowledge, this is the highest detection sensitivity for ribonucleotides ever reported. In addition, we found that the contents of almost all of these ribonucleotides were significantly increased in human breast carcinoma tissues compared to tumor-adjacent normal tissues, suggesting that endogenous ribonucleotides may play certain functional roles in the regulation of cancer development and formation. This method also can be potentially applied in the analysis of phosphorylated compounds.
Collapse
Affiliation(s)
- Fei-Long Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China.,Hubei Cancer Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430079 , China
| | - Qing-Yun Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Jiang-Hui Ding
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
62
|
Kuo TH, Dutkiewicz EP, Pei J, Hsu CC. Ambient Ionization Mass Spectrometry Today and Tomorrow: Embracing Challenges and Opportunities. Anal Chem 2019; 92:2353-2363. [DOI: 10.1021/acs.analchem.9b05454] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ewelina P. Dutkiewicz
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jiying Pei
- School of Marine Sciences, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
63
|
Qi C, Ding J, Yuan B, Feng Y. Analytical methods for locating modifications in nucleic acids. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
64
|
Chen L, Capone DL, Jeffery DW. Analysis of Potent Odour-Active Volatile Thiols in Foods and Beverages with a Focus on Wine. Molecules 2019; 24:molecules24132472. [PMID: 31284416 PMCID: PMC6650874 DOI: 10.3390/molecules24132472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Certain volatile thiols are some of the most potent odour-active molecules that are found in nature. Thiols play significant roles in the aroma qualities of a range of foods and beverages, including wine, with extremely low odour detection thresholds (nanogram per litre range). A fundamental understanding of their formation, fate, and impact essentially depends on the development of suitable analytical methods. The analysis of volatile thiols in foods and beverages is a challenging task when considering (1) the complexity of food and beverage matrices and (2) that thiols are highly reactive, low molecular-weight volatiles that are generally present at trace to ultra-trace concentrations. For the past three decades, the analytical evaluation of volatile thiols has been intensively performed in various foods and beverages, and many novel techniques related to derivatisation, isolation, separation, and detection have been developed, particularly by wine researchers. This review aims to provide an up-to-date overview of the major analytical methodologies that are proposed for potent volatile thiol analysis in wine, foods, and other beverages. The analytical challenges for thiol analysis in foods and beverages are outlined, and the main analytical methods and recent advances in methodology are summarised and evaluated for their strengths and limitations. The key analytical aspects reviewed include derivatisation and sample preparation techniques, chromatographic separation, mass spectrometric detection, matrix effects, and quantitative analysis. In addition, future perspectives on volatile thiol research are also suggested.
Collapse
Affiliation(s)
- Liang Chen
- Department of Wine and Food Science, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
| | - Dimitra L Capone
- Department of Wine and Food Science, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia
| | - David W Jeffery
- Department of Wine and Food Science, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia.
- Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
65
|
Huang T, Rabus JM, Bythell BJ, Edwards JL. Fragmentation of Multi-charged Derivatized Lysine Using Nanospray CID Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1158-1162. [PMID: 30993635 DOI: 10.1007/s13361-019-02154-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
We demonstrate increasing the charge state of small molecules using derivatized lysine as our model system. Lysine is chemically tagged with three tertiary amines which enables efficient production of highly charged analytes. A +3 charge state is obtained from direct infusion nanoelectrospray conditions. Collisional activation of the +3 derivatized lysine yielded structurally informative product ions corresponding to cleavages across the analyte backbone and within the proton affinity tags. This suggests a role for multi-charging of metabolites in both targeted MRM analyses and untargeted analyses to help identify novel metabolites. Density functional calculations aid peak assignment and rationalization of structure-property relationships. Graphical Abstract.
Collapse
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St Louis, MO, 63102, USA
| | - Jordan M Rabus
- Department of Chemistry and Biochemistry, University of Missouri St Louis, 1 University Blvd., 421 Benton Hall, St Louis, MO, 63121, USA
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, University of Missouri St Louis, 1 University Blvd., 421 Benton Hall, St Louis, MO, 63121, USA
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St Louis, MO, 63102, USA.
| |
Collapse
|
66
|
Li Z, Wang Y, Cheng Y. Mass Spectrometry-Sensitive Probes Coupled with Direct Analysis in Real Time for Simultaneous Sensing of Chemical and Biological Properties of Botanical Drugs. Anal Chem 2019; 91:9001-9009. [DOI: 10.1021/acs.analchem.9b01251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhenhao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Engineering Research Center of Rare Medicinal Plants, Wuyi 321200, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|