51
|
Sun Q, Zhang S, Huang W, Wang R, Chen Z, Cai Z, Lin Z. 4-Mercaptobenzoic acid as a MALDI matrix for highly sensitive analysis of metals. Analyst 2021; 146:1543-1547. [PMID: 33565552 DOI: 10.1039/d1an00022e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
4-Mercaptobenzoic acid (MBA) is introduced as a matrix for laser desorption/ionization time-of-flight mass spectrometry (MS) analysis of metals, exhibiting matrix-interference-free background, greatly enhanced MS signal intensity, and excellent reproducibility. The developed method was successfully extended for the rapid screening and sensitive determination of ultratrace metals in fine particulate matter (PM2.5).
Collapse
Affiliation(s)
- Qianqian Sun
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Weini Huang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Ran Wang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zihan Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zongwei Cai
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, P. R. China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
52
|
Kou X, Tong L, Huang S, Chen G, Zhu F, Ouyang G. Recent advances of covalent organic frameworks and their application in sample preparation of biological analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
53
|
Lv Y, Qin X, Hu K, Huang Y, Zhao S. Hybrid MoS 2/g-C 3N 4-assisted LDI mass spectrometry for rapid detection of small molecules and polyethylene glycols and direct determination of uric acid in complicated biological samples. Mikrochim Acta 2021; 188:5. [PMID: 33389155 DOI: 10.1007/s00604-020-04675-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
A novel matrix-assisted laser desorption/ionization time-of-flight mass spectrometric method (MALDI-TOF MS) for determination of highly sensitive small molecular compounds was developed based on molybdenum disulfide nanosheets hybridized with ultrathin graphitic carbon nitride (MoS2/g-C3N4) as the matrix. With this approach, the synergistic effects of MoS2 and g-C3N4 enhance the UV absorption of MoS2/g-C3N4, increase both desorption and ionization efficiency in LDI MS, and induce higher signal-to-noise ratio of analytes when compared with the bare MoS2 and g-C3N4 matrix in the determination of amino acids, antibiotics, neutral oligosaccharides, uric acid, and polyethylene glycols (PEGs). The detection limits of these small molecular compounds are in the ranges 0.1 to 10 μg mL-1, 1*10-3 to 1.0 μg mL-1, 1.0 to 10 μg mL-1, and 2*10-4 μg mL-1, respectively, and the polydispersity index of these PEGs is less than 1.02. Moreover, high salt tolera`nce and homogeneous deposition on the spot results in good reproducibility. The relative standard deviations (RSDs) of shot-to-shot and spot-to-spot (n = 15) of these compounds are less than 10.1% and 12.5%, respectively. With MoS2/g-C3N4, the uric acid in complicated biological samples can be directly determined in combination with LDI-TOF MS. We synthesized MoS2/g-C3N4 nanohybrid as an efficient matrix for MALDI-TOF MS analysis of small molecules as well as quantitative detection of uric acid in human urine.
Collapse
Affiliation(s)
- Yuanxia Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xiaohuan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Kun Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| |
Collapse
|
54
|
Yue B, Liu J, Li G, Wu Y. Synthesis of magnetic metal organic framework/covalent organic framework hybrid materials as adsorbents for magnetic solid-phase extraction of four endocrine-disrupting chemicals from milk samples. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8909. [PMID: 32726878 DOI: 10.1002/rcm.8909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Endocrine-disrupting chemicals (EDCs), widespread and easily ingested through the simple food chain, have been suggested to pose potential carcinogenic threats to human health. Considering food safety and public health, it is urgent to establish a sensitive and effective method to enrich and determine EDCs in food samples. METHODS Novel hybrid nanocomposites Fe3 O4 @A-TpBD@NH2 -MIL-125(Ti) were synthesized through the formation of amide bonds. The as-prepared Fe3 O4 were innovatively encapsulated with 4-aminobenzoic acid functionalized COF(A-TpBD) to generate bare carboxyl (-COOH), which formed amide bonds with the NH2 -MIL-125(Ti), generating well-defined and hierarchical hybrid materials. The Fe3 O4 @A-TpBD@NH2 -MIL-125(Ti) materials were used as the adsorbents for magnetic solid-phase extraction (MSPE) coupled with high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) to enrich and determine EDCs (E1, E2, E3 and BPA) from milk samples. RESULTS Fe3 O4 @A-TpBD@NH2 -MIL-125(Ti) exhibited improved adsorption efficiency and selectivity based on π-π stacking interaction, hydrogen bonding, electrostatic interaction, and the interaction between the hydroxyl group in EDCs and titanium ions (IV, [Ti]4+ ). Under the optimized conditions, Fe3 O4 @A-TpBD@NH2 -MIL-125(Ti)-based MSPE coupled with HPLC/MS/MS showed good linearity with correlation coefficient (R2 ) ≥0.9983 and high sensitivity with limits of detection (LODs) in the range of 0.37-0.85 μg/L. Moreover, the developed method was successfully employed to detect EDCs in milk samples. CONCLUSIONS Fe3 O4 @A-TpBD@NH2 -MIL-125(Ti) possess good adsorption capability and selectivity for EDCs. In addition, the proposed MSPE-HPLC/MS/MS method based on Fe3 O4 @A-TpBD@NH2 -MIL-125(Ti) is effective and sensitive for the determination of EDCs in real samples, which can be used as a robust alternative method to monitor EDCs in complex matrices.
Collapse
Affiliation(s)
- Bing Yue
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100050, China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100050, China
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
55
|
Chang Z, Liang Y, Wang S, Qiu L, Lu Y, Feng L, Sui Z, Chen Q. A novel fluorescent covalent organic framework containing boric acid groups for selective capture and sensing of cis-diol molecules. NANOSCALE 2020; 12:23748-23755. [PMID: 33231248 DOI: 10.1039/d0nr06110g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to specific formation of five-membered or six-membered cyclic esters between boric acid groups and cis-diol molecules, boric acid bearing fluorescent materials can not only selectively capture but also specifically identify cis-diol substances. In this work, a novel covalent organic framework containing boric acid groups (COF-BA) was prepared through post-modification via the aza-Diels-Alder cycloaddition reaction. COF-BA with good stability, a permanent pore structure, a high specific surface area (606 m2 g-1) and a uniform pore size (2.59 nm) exhibited unique selectivity toward the cis-diol guest molecule 1,2-dihydroxyanthracene-9,10-dione (1,2-Doa) with a high adsorption capacity of 177.95 mg g-1. However, as for the isomers of 1,2-Doa (1,4-dihydroxyanthracene-9,10-dione and 2,6-dihydroxyanthracene-9,10-dione), the corresponding uptake capacities are distinctively decreased to 40.86 mg g-1 and 3.05 mg g-1, respectively. It is worth noting that the COF-BA can be recovered and recycled. Moreover, because the formation of the quinoline enhanced the conjugation effect of the COF skeleton, it was unexpectedly found that COF-BA possessed an intrinsic fluorescence property and could be used as an optical sensor for 1,2-Doa.
Collapse
Affiliation(s)
- Zhaosen Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Li H, Li T, Shi X, Xu G. Recent development of nanoparticle-assisted metabolites analysis with mass spectrometry. J Chromatogr A 2020; 1636:461785. [PMID: 33340742 DOI: 10.1016/j.chroma.2020.461785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Metabolomics systematically studies the changes of metabolites in biological systems in the temporal or spatial dimensions. It is a challenging task for comprehensive analysis of metabolomics because of diverse physicochemical properties and wide concentration distribution of metabolites. Used as enrichment sorbents, chemoselective probes, chromatographic stationary phases, MS ionization matrix, nanomaterials play excellent roles in improving the selectivity, separation performance, detection sensitivity and identification efficiency of metabolites when mass spectrometry is employed as the detection technique. This review summarized the recent development of nanoparticle-assisted metabolites analysis in terms of assisting the pretreatment of biological samples, improving the separation performance and enhancing the MALDI-MS detection.
Collapse
Affiliation(s)
- Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Ting Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
57
|
Guan Q, Wang GB, Zhou LL, Li WY, Dong YB. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. NANOSCALE ADVANCES 2020; 2:3656-3733. [PMID: 36132748 PMCID: PMC9419729 DOI: 10.1039/d0na00537a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/08/2023]
Abstract
Cancer nanomedicine is one of the most promising domains that has emerged in the continuing search for cancer diagnosis and treatment. The rapid development of nanomaterials and nanotechnology provide a vast array of materials for use in cancer nanomedicine. Among the various nanomaterials, covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility. In this comprehensive review, recent developments and key achievements of COFs are provided, including their structural design, synthesis methods, nanocrystallization, and functionalization strategies. Subsequently, a systematic overview of the potential oncotherapy applications achieved till date in the fast-growing field of COFs is provided with the aim to inspire further contributions and developments to this nascent but promising field. Finally, development opportunities, critical challenges, and some personal perspectives for COF-based cancer therapeutics are presented.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
58
|
Li Z, Huo P, Gong C, Deng C, Pu S. Boric-acid-modified Fe 3O 4@PDA@UiO-66 for enrichment and detection of glucose by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem 2020; 412:8083-8092. [PMID: 32914398 DOI: 10.1007/s00216-020-02935-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/11/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Herein, boric-acid-modified multifunctional Zr-based metal-organic frameworks (denoted as Fe3O4@PDA@B-UiO-66) were synthesized by hydrothermal reaction and surface modification. Compared to traditional matrix, Fe3O4@PDA@B-UiO-66 has the advantages of high ionization efficiency, high surface area, low matrix background, porous structure, and numerous boric-acid-active sites. By combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Fe3O4@PDA@B-UiO-66 was used as an adsorbent and matrix for enrichment and detection of glucose, based on a specific reaction between boric acid and glucose. The limit of detection was 58.5 nM. The proposed method provides a simple and efficient approach for the sensitive and quantitative detection of glucose in complex samples based on MALDI-TOF MS. Design and synthesis of boric-acid-modified multifunctional magnetic metal-organic frameworks (designated as Fe3O4@PDA@B-UiO-66) applied as adsorbent and matrix for the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis of glucose in complex biosamples.
Collapse
Affiliation(s)
- Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China. .,Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Panpan Huo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Chunhui Deng
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
59
|
Li G, Wen A, Liu J, Wu D, Wu Y. Facile extraction and determination of organophosphorus pesticides in vegetables via magnetic functionalized covalent organic framework nanocomposites. Food Chem 2020; 337:127974. [PMID: 32920274 DOI: 10.1016/j.foodchem.2020.127974] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 11/27/2022]
Abstract
Facile enrichment and determination of trace organophosphorus pesticides (OPPs) in foods has been a constantly pursuing goal in food safety field. Herein, Zr4+-immobilized covalent organic frameworks (Fe3O4@COF@Zr4+) have been first constructed and utilized as the powerful adsorbents for magnetic solid-phase extraction (MSPE) of OPPs. Owing to the π-π stacking interaction, hydrogen bonding and Zr4+-phosphate coordination reaction, the composites exhibited excellent selectivity and superior affinity to OPPs. Under optimized conditions, the proposed MSPE method coupled with GC-FPD showed good linearity (R2 ≥ 0.9990) and yielded low limits of detection (0.7-3.0 μg kg-1) for OPPs. Moreover, the developed method was successfully employed for the quantitation of OPPs in spiked vegetable samples and obtained satisfactory recoveries in the range of 87-121% with the relative standard deviations (RSDs) ≤ 8.9%. These results demonstrated that the prepared nanoparticles hold unique advantages for trace OPPs analysis in foodstuffs.
Collapse
Affiliation(s)
- Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Aying Wen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
60
|
High-throughput screening of bisphenols using magnetic covalent organic frameworks as a SELDI-TOF-MS probe. Mikrochim Acta 2020; 187:370. [DOI: 10.1007/s00604-020-04340-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
|
61
|
Liu B, Liu J, Huang D, Wei J, Di D. Boric acid modified macroporous adsorption resin and its adsorption properties for catechol compounds. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
62
|
Yang CH, Chang JS, Lee DJ. Chemically stable covalent organic framework as adsorbent from aqueous solution: A mini-review. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Sulphonate functionalized covalent organic framework-based magnetic sorbent for effective solid phase extraction and determination of fluoroquinolones. J Chromatogr A 2020; 1612:460651. [DOI: 10.1016/j.chroma.2019.460651] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022]
|
64
|
Ouyang D, Luo K, Ma W, Wu J, Li J, He Y, Cai Z, Lin Z. A spherical covalent-organic framework for enhancing laser desorption/ionization mass spectrometry for small molecule detection. Analyst 2020; 145:3125-3130. [DOI: 10.1039/d0an00171f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A spherical vinyl-functionalized covalent-organic framework (COF-V) was prepared at room temperature by a facile method and applied as a novel substrate for surface-enhanced laser desorption/ionization mass spectrometry (SELDI-MS).
Collapse
Affiliation(s)
- Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Kailong Luo
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Wende Ma
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Jie Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Jing Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- Hong Kong
- P. R. China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
65
|
Ji SL, Qian HL, Yang CX, Zhao X, Yan XP. Thiol-Ene Click Synthesis of Phenylboronic Acid-Functionalized Covalent Organic Framework for Selective Catechol Removal from Aqueous Medium. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46219-46225. [PMID: 31738503 DOI: 10.1021/acsami.9b17324] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report a thiol-ene click strategy for the preparation of a novel phenylboronic acid-functionalized covalent organic framework (COF) for selective removal of catechol in aqueous solution. Vinyl-functionalized 2,5-diallyloxyterephthalaldehyde (Da-V) was prepared as a building ligand. Da-V was then condensed with 1,3,5-tris(4-aminophenyl)benzene (Tab) to give a vinyl-functionalized COF DhaTab-V. Subsequently, 4-mercaptophenylboronic acid (4-MPBA) was covalently linked on DhaTab-V via thiol-ene click reaction to give phenylboronic acid-functionalized COF DhaTab-PBA. The adsorption isotherms, energetics and kinetics, and reusability of DhaTab-PBA for the adsorption and removal of catechol from aqueous solution were investigated in detail. This phenylboronic acid-functionalized COF is promising as sorbent for selective removal of catechol from aqueous medium with large adsorption capacity and good reusability.
Collapse
Affiliation(s)
- Shi-Lei Ji
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | | | - Cheng-Xiong Yang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | | | | |
Collapse
|
66
|
He H, Guo Z, Wen Y, Xu S, Liu Z. Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds. Anal Chim Acta 2019; 1090:1-22. [DOI: 10.1016/j.aca.2019.08.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
|
67
|
Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosens Bioelectron 2019; 145:111699. [PMID: 31563802 DOI: 10.1016/j.bios.2019.111699] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/16/2023]
Abstract
Covalent organic frameworks (COFs), as an emerging class of porous crystalline polymers, are built by the combination of the light elements through the strong covalent bonds. In the past decade, COFs have been reported to show plenty of unique properties (such as ordered channels, large specific surface area, highly tunable porosity, optional building blocks, predictable and stable structure, and abundant functional groups), and have been widely applied in multiple fields. Recently, to further improve the potential performances of COFs and extend their applicability, a number of COFs with various functionalities have been successfully developed through the functionalization modification. In this review, we summarized the advanced design and construction of functionalized COFs, including COFs with post-synthetic modification, COFs-based composites (e.g. COFs-metal nanoparticles composites, COFs-metal oxide nanoparticles composites, COFs-MOFs composites, and COFs-enzyme composites), and molecularly imprinted COFs. Impressively, the applications of functionalized COFs to sensing also have been comprehensively summarized, including colorimetric sensing, fluorescent sensing, electrochemical sensing, and other sensing (such as quartz crystal microbalance (QCM) sensing, photoelectrochemical sensing, and humidity sensing). In the end, future opportunities and challenges in this promising field are tentatively proposed.
Collapse
|
68
|
Liu X, Huang D, Lai C, Zeng G, Qin L, Wang H, Yi H, Li B, Liu S, Zhang M, Deng R, Fu Y, Li L, Xue W, Chen S. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem Soc Rev 2019; 48:5266-5302. [DOI: 10.1039/c9cs00299e] [Citation(s) in RCA: 386] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent advances in covalent organic frameworks (COFs) as a smart sensing material are summarized and highlighted.
Collapse
|