51
|
Bindra AK, Wang D, Zheng Z, Jana D, Zhou W, Yan S, Wu H, Zheng Y, Zhao Y. Self-assembled semiconducting polymer based hybrid nanoagents for synergistic tumor treatment. Biomaterials 2021; 279:121188. [PMID: 34678649 DOI: 10.1016/j.biomaterials.2021.121188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
There is an impending need for the development of carrier-free nanosystems for single laser triggered activation of phototherapy, as such approach can overcome the drawbacks associated with irradiation by two distinct laser sources for avoiding prolonged treatment time and complex treatment protocols. Herein, we developed a self-assembled nanosystem (SCP-CS) consisting of a new semiconducting polymer (SCP) and encapsulated ultrasmall CuS (CS) nanoparticles. The SCP component displays remarkable near infrared (NIR) induced photothermal ability, enhanced reactive oxygen species (ROS) generation, and incredible photoacoustic (PA) signals upon activation by 808 nm laser for phototherapy mediated cancer ablation. The CuS component improves the PA imaging ability of SCP-CS, and also enhances photo-induced chemodynamic efficacy. Attributed to promoted single laser-triggered hyperthermia and enhanced ROS generation, the SCP-CS nanosystem shows effective intracellular uptake and intratumoral accumulation, enhanced tumor suppression with reduced treatment time, and devoid of any noticeable toxicity.
Collapse
Affiliation(s)
- Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zesheng Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Weiqiang Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Suxia Yan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
52
|
Zheng X, Bian S, Liu W, Zhang C, Wu J, Ren H, Zhang W, Lee CS, Wang P. Amphiphilic Diketopyrrolopyrrole Derivatives for Efficient Near-Infrared Fluorescence Imaging and Photothermal Therapy. ACS OMEGA 2021; 6:26575-26582. [PMID: 34661012 PMCID: PMC8515603 DOI: 10.1021/acsomega.1c03947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 05/25/2023]
Abstract
The design and synthesis of single-molecule amphiphilic and multifunctional phototherapeutic agents are important to cancer diagnosis and therapy. In this work, we developed three amphiphilic diketopyrrolopyrrole derivatives (TPADPP, DTPADPP, and TPADDPP) with different donor-acceptor structures and poly(ethylene glycol) side chains. The corresponding nanoparticles (NPs) were obtained via a self-assembly from three amphiphilic DPP derivatives and used as smart phototherapeutic agents for tumor diagnosis and treatment. The three amphiphilic DPP NPs exhibited near-infrared (NIR) emissions and good biocompatibility. Thus, they could be used as fluorescence (FL) imaging agents for guided therapy. DTPADPP NPs and TPADDPP NPs also displayed excellent photothermal performance and high accumulation in the tumor. Owing to these beneficial features, the DTPADPP NPs and TPADDPP NPs synthesized herein are suitable for NIR FL imaging and effective photothermal therapy against the tumor in vivo.
Collapse
Affiliation(s)
- Xiuli Zheng
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuaishuai Bian
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Weimin Liu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Chuangli Zhang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiasheng Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haohui Ren
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjun Zhang
- Center
of Super-Diamond and Advanced Films (COSDAF) & Department of Materials
Science and Engineering, City University
of Hong Kong, Hong Kong SAR 999077, China
| | - Chun-Sing Lee
- Center
of Super-Diamond and Advanced Films (COSDAF) & Department of Materials
Science and Engineering, City University
of Hong Kong, Hong Kong SAR 999077, China
| | - Pengfei Wang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
53
|
Fan J, Li Q, Chen L, Du J, Xue W, Yu S, Su X, Yang Y. Research Progress in the Synthesis of Targeting Organelle Carbon Dots and Their Applications in Cancer Diagnosis and Treatment. J Biomed Nanotechnol 2021; 17:1891-1916. [PMID: 34706792 DOI: 10.1166/jbn.2021.3167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With increasing knowledge about diseases at the histological, cytological to sub-organelle level, targeting organelle therapy has gradually been envisioned as an approach to overcome the shortcomings of poor specificity and multiple toxic side effects on tissues and cell-level treatments using the currently available therapy. Organelle carbon dots (CDs) are a class of functionalized CDs that can target organelles. CDs can be prepared by a "synchronous in situ synthesis method" and "asynchronous modification method." The superior optical properties and good biocompatibility of CDs can be preserved, and they can be used as targeting particles to carry drugs into cells while reducing leakage during transport. Given the excellent organelle fluorescence imaging properties, targeting organelle CDs can be used to monitor the physiological metabolism of organelles and progression of human diseases, which will provide advanced understanding and accurate diagnosis and targeted treatment of cancers. This study reviews the methods used for preparation of targeting organelle CDs, mechanisms of accurate diagnosis and targeted treatment of cancer, as well as their application in the area of cancer diagnosis and treatment research. Finally, the current difficulties and prospects for targeting organelle CDs are prospected.
Collapse
Affiliation(s)
- Jiangbo Fan
- Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Li
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinglei Du
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wenqiang Xue
- Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Yu
- Shanxi Medical University, Taiyuan 030001, China
| | - Xiuqin Su
- Shanxi Medical University, Taiyuan 030001, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
54
|
Ma C, Zhang T, Xie Z. Leveraging BODIPY nanomaterials for enhanced tumor photothermal therapy. J Mater Chem B 2021; 9:7318-7327. [PMID: 34355720 DOI: 10.1039/d1tb00855b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the past ten years, photothermal therapy (PTT) has attracted widespread attention in tumor treatment due to its non-invasiveness and little side effects. PTT utilizes heat produced by photothermal agents under the irradiation of near-infrared light to kill tumor cells. Boron-dipyrromethene (BODIPY), an organic phototherapy agent, has been widely used in tumor phototherapy due to its higher molar extinction coefficient, robust photostability and good phototherapy effect. However, there are some issues in the application of BODIPY for tumor PTT, such as low photothermal conversion efficiency and short absorption wavelength. In this review, we focus on the latest development of BODIPY nanomaterials for overcoming the above problems and enhancing the PTT effect.
Collapse
Affiliation(s)
- Chong Ma
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P. R. China.
| | - Tao Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| |
Collapse
|
55
|
Current Prospects for Treatment of Solid Tumors via Photodynamic, Photothermal, or Ionizing Radiation Therapies Combined with Immune Checkpoint Inhibition (A Review). Pharmaceuticals (Basel) 2021; 14:ph14050447. [PMID: 34068491 PMCID: PMC8151935 DOI: 10.3390/ph14050447] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) causes selective damage to tumor cells and vasculature and also triggers an anti-tumor immune response. The latter fact has prompted the exploration of PDT as an immune-stimulatory adjuvant. PDT is not the only cancer treatment that relies on electromagnetic energy to destroy cancer tissue. Ionizing radiation therapy (RT) and photothermal therapy (PTT) are two other treatment modalities that employ photons (with wavelengths either shorter or longer than PDT, respectively) and also cause tissue damage and immunomodulation. Research on the three modalities has occurred in different “silos”, with minimal interaction between the three topics. This is happening at a time when immune checkpoint inhibition (ICI), another focus of intense research and clinical development, has opened exciting possibilities for combining PDT, PTT, or RT with ICI to achieve improved therapeutic benefits. In this review, we surveyed the literature for studies that describe changes in anti-tumor immunity following the administration of PDT, PTT, and RT, including efforts to combine each modality with ICI. This information, collected all in one place, may make it easier to recognize similarities and differences and help to identify new mechanistic hypotheses toward the goal of achieving optimized combinations and tumor cures.
Collapse
|
56
|
Qin D, Zhang L, Zhu H, Chen J, Wu D, Bouakaz A, Wan M, Feng Y. A Highly Efficient One-for-All Nanodroplet for Ultrasound Imaging-Guided and Cavitation-Enhanced Photothermal Therapy. Int J Nanomedicine 2021; 16:3105-3119. [PMID: 33967577 PMCID: PMC8096805 DOI: 10.2147/ijn.s301734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has attracted considerable attention for cancer treatment as it is highly controllable and minimally invasive. Various multifunctional nanosystems have been fabricated in an "all-in-one" form to guide and enhance PTT by integrating imaging and therapeutic functions. However, the complex fabrication of nanosystems and their high cost limit its clinical translation. MATERIALS AND METHODS Herein, a high efficient "one-for-all" nanodroplet with a simple composition but owning multiple capabilities was developed to achieve ultrasound (US) imaging-guided and cavitation-enhanced PTT. Perfluoropentane (PFP) nanodroplet with a polypyrrole (PPy) shell (PFP@PPy nanodroplet) was synthesized via ultrasonic emulsification and in situ oxidative polymerization. After characterization of the morphology, its photothermal effect, phase transition performance, as well as its capabilities of enhancing US imaging and acoustic cavitation were examined. Moreover, the antitumor efficacy of the combined therapy with PTT and acoustic cavitation via the PFP@PPy nanodroplets was studied both in vitro and in vivo. RESULTS The nanodroplets exhibited good stability, high biocompatibility, broad optical absorption over the visible and near-infrared (NIR) range, excellent photothermal conversion with an efficiency of 60.1% and activatable liquid-gas phase transition performance. Upon NIR laser and US irradiation, the phase transition of PFP cores into microbubbles significantly enhanced US imaging and acoustic cavitation both in vitro and in vivo. More importantly, the acoustic cavitation enhanced significantly the antitumor efficacy of PTT as compared to PTT alone thanks to the cavitation-mediated cell destruction, which demonstrated a substantial increase in cell detachment, 81.1% cell death in vitro and 99.5% tumor inhibition in vivo. CONCLUSION The PFP@PPy nanodroplet as a "one-for-all" theranostic agent achieved highly efficient US imaging-guided and cavitation-enhanced cancer therapy, and has considerable potential to provide cancer theranostics in the future.
Collapse
Affiliation(s)
- Dui Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People’s Republic of China
| | - Lei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Hongrui Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Junjie Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, F-37032, France
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
57
|
Hu Q, He C, Lu Z, Xu L, Fu Z. Mitochondria and Endoplastic Reticulum Targeting Strategy for Enhanced Phototherapy. ACS APPLIED BIO MATERIALS 2021; 4:3015-3026. [PMID: 35014389 DOI: 10.1021/acsabm.1c00155] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To ensure improved efficacy and minimized toxicity of therapeutic molecules, it is generally accepted that specifically delivering them to the subcellular site of their action will be attractive. Phototherapy has received considerable attention because of its noninvasiveness, high temporal-spatial resolution, and minimal drug resistance. As important functional organelles in cells, mitochondria and endoplasmic reticulum (ER) participate in fundamental cellular processes, which make them much more sensitive to reactive oxygen species (ROS) and hyperthermia. Thus, mitochondria- or ER-targeted phototherapy will be rational strategies for synergetic cancer therapy. In this review, we focus on the latest advances in molecules and nanomaterials currently used for mitochondria- and ER-targeted phototherapy.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chao He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuoting Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
58
|
Meng X, Wu Y, Bu W. Functional CT Contrast Nanoagents for the Tumor Microenvironment. Adv Healthc Mater 2021; 10:e2000912. [PMID: 32691929 DOI: 10.1002/adhm.202000912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Understanding the detailed tumor microenvironment (TME) is essential to achieve effective treatment of tumor, because TME has an extremely profound influence on the occurrence, development, invasion, and metastasis of tumor. It is of great significance to realize accurate diagnosis of the TME by using functional computed tomography (CT) contrast nanoagents (FCTNAs). Here, an overview of FCTNAs that respond to the overexpressed receptors, acidic microenvironment, overexpressed glutathione and enzymes, and hypoxia in tumor is provided, and also prospects the advance of novel spectral CT technique to detect the TME precisely. Utilizing FCTNAs is expected to achieve accurate monitoring of the TME and further provide guidance for the effective personalized tumor treatment in clinic.
Collapse
Affiliation(s)
- Xianfu Meng
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| | - Yelin Wu
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Wenbo Bu
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
59
|
Ricciardi L, La Deda M. Recent advances in cancer photo-theranostics: the synergistic combination of transition metal complexes and gold nanostructures. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04329-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractIn this mini review, we highlight advances in the last five years in light-activated cancer theranostics by using hybrid systems consisting of transition metal complexes (TMCs) and plasmonic gold nanostructures (AuNPs). TMCs are molecules with attractive properties and high potential in biomedical application. Due to their antiproliferative abilities, platinum-based compounds are currently first-choice drugs for the treatment of several solid tumors. Moreover, ruthenium, iridium and platinum complexes are well-known for their ability to photogenerate singlet oxygen, a highly cytotoxic reactive species with a key role in photodynamic therapy. Their potential is further extended by the unique photophysical properties, which make TMCs particularly suitable for bioimaging. Recently, gold nanoparticles (AuNPs) have been widely investigated as one of the leading nanomaterials in cancer theranostics. AuNPs—being an inert and highly biocompatible material—represent excellent drug delivery systems, overcoming most of the side effects associated with the systemic administration of anticancer drugs. Furthermore, due to the thermoplasmonic properties, AuNPs proved to be efficient nano-sources of heat for photothermal therapy application. Therefore, the hybrid combination TMC/AuNPs could represent a synergistic merger of multiple functionalities for combinatorial cancer therapy strategies. Herein, we report the most recent examples of TMC/AuNPs systems in in-vitro in-vivo cancer tharanostics application whose effects are triggered by light-exposure in the Vis–NIR region, leading to a spatial and temporal control of the TMC/AuNPs activation for light-mediated precision therapeutics.
Collapse
|
60
|
Ha M, Nam SH, Sim K, Chong SE, Kim J, Kim Y, Lee Y, Nam JM. Highly Efficient Photothermal Therapy with Cell-Penetrating Peptide-Modified Bumpy Au Triangular Nanoprisms using Low Laser Power and Low Probe Dose. NANO LETTERS 2021; 21:731-739. [PMID: 33332127 DOI: 10.1021/acs.nanolett.0c04386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal therapy (PTT) exploits nanomaterials with optimal heat conversion and cellular penetration using near-infrared (NIR) laser irradiation. However, current PTT agents suffer from inefficient heat conversion, poor intracellular delivery, and a high dose of probes along with excessive laser irradiation, causing limited therapeutic outcomes. Here, bumpy Au triangular nanoprisms (BATrisms) are developed for increasing the surface area, improving cell penetration, shifting the absorption peak to the NIR region, and enhancing the photothermal conversion efficiency (∼86%). Further, leucine (L)- and lysine (K)-rich cell-penetrating peptides (LK peptides) were employed to largely improve their cellular uptake efficiency. Importantly, a significant in vivo therapeutic efficacy with LK-BATrisms was demonstrated in a triple-negative breast cancer xenograft mice model. A very small dose of LK-BATrism (2.5 μg Au) was enough to exert antitumor efficacy under very low laser power (808 nm, 0.25 W/cm2), causing minimal tissue damages while very efficiently killing cancer cells.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - So Hee Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Kyunjong Sim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Seung-Eun Chong
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yuna Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
61
|
Gouarderes S, Mingotaud AF, Vicendo P, Gibot L. Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site. Expert Opin Drug Deliv 2020; 17:1703-1726. [PMID: 32838565 DOI: 10.1080/17425247.2020.1814735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Modern comprehensive studies of tumor microenvironment changes allowed scientists to develop new and more efficient strategies that will improve anticancer drug delivery on site. The tumor microenvironment, especially the dense extracellular matrix, has a recognized capability to hamper the penetration of conventional drugs. Development and co-applications of strategies aiming at remodeling the tumor microenvironment are highly demanded to improve drug delivery at the tumor site in a therapeutic prospect. AREAS COVERED Increasing indications suggest that classical physical approaches such as exposure to ionizing radiations, hyperthermia or light irradiation, and emerging ones as sonoporation, electric field or cold plasma technology can be applied as standalone or associated strategies to remodel the tumor microenvironment. The impacts on vasculature and extracellular matrix remodeling of these physical approaches will be discussed with the goal to improve nanotherapeutics delivery at the tumor site. EXPERT OPINION Physical approaches to modulate vascular properties and remodel the extracellular matrix are of particular interest to locally control and improve drug delivery and thus increase its therapeutic index. They are particularly powerful as adjuvant to nanomedicine delivery; the development of these technologies could have extremely widespread implications for cancer treatment.[Figure: see text].
Collapse
Affiliation(s)
- Sara Gouarderes
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| |
Collapse
|