51
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
52
|
Facile preparation of polyvinylidene fluoride substrate supported thin film composite polyamide nanofiltration: Effect of substrate pore size. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
53
|
Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
54
|
Sun PF, Yang Z, Song X, Lee JH, Tang CY, Park HD. Interlayered Forward Osmosis Membranes with Ti 3C 2T x MXene and Carbon Nanotubes for Enhanced Municipal Wastewater Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13219-13230. [PMID: 34314168 DOI: 10.1021/acs.est.1c01968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Forward osmosis (FO) hybrid systems have the potential to simultaneously recover nutrients and water from wastewater. However, the lack of membranes with high permeability and selectivity has limited the development and scale-up of these hybrid systems. In this study, we fabricated a novel thin-film nanocomposite membrane featuring an interlayer of Ti3C2Tx MXene intercalated with carbon nanotubes (M/C-TFNi). Owing to the enhanced confinement effect on interfacial degassing and increased amine monomer sorption by the interlayer, the resulting M/C-TFNi FO membrane has a greater degree of cross-linking and roughness. In comparison with the thin-film composite (TFC) membrane without an interlayered structure, the M/C-TFNi membrane attained a water flux that was four times higher and a lower specific salt flux. Notably, the M/C-TFNi membrane exhibited excellent concentration efficiency for real municipal wastewater and enhanced rejection of ammonia nitrogen, which breaks the permeability-selectivity upper bound. This study provides a new avenue for the rational design and development of high-performance FO membranes for environmental applications.
Collapse
Affiliation(s)
- Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jeong Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea
| |
Collapse
|
55
|
Wei Y, Yang Z, Wang L, Yu Y, Yang H, Jin H, Lu P, Wang Y, Wu D, Li Y, Tang CY. Facile ZIF–8 nanocrystals interlayered solvent–resistant thin–film nanocomposite membranes for enhanced solvent permeance and rejection. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
56
|
Lu Y, Wang R, Zhu Y, Wang Z, Fang W, Lin S, Jin J. Two-dimensional fractal nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane. Proc Natl Acad Sci U S A 2021; 118:e2019891118. [PMID: 34493646 PMCID: PMC8449408 DOI: 10.1073/pnas.2019891118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we report the emergence of two-dimensional (2D) branching fractal structures (BFS) in the nanoconfinement between the active and the support layer of a thin-film-composite polyamide (TFC-PA) nanofiltration membrane. These BFS are crystal dendrites of NaCl formed when salts are either added to the piperazine solution during the interfacial polymerization process or introduced to the nascently formed TFC-PA membrane before drying. The NaCl dosing concentration and the curing temperature have an impact on the size of the BFS but not on the fractal dimension (∼1.76). The BFS can be removed from the TFC-PA membranes by simply dissolving the crystal dendrites in deionized water, and the resulting TFC-PA membranes have substantially higher water fluxes (three- to fourfold) without compromised solute rejection. The flux enhancement is believed to be attributable to the distributed reduction in physical binding between the PA active layer and the support layer, caused by the exertion of crystallization pressure when the BFS formed. This reduced physical binding leads to an increase in the effective area for water transport, which, in turn, results in higher water flux. The BFS-templating method, which includes the interesting characteristics of 2D crystal dendrites, represents a facile, low-cost, and highly practical method of enhancing the performance of the TFC-PA nanofiltration membrane without having to alter the existing infrastructure of membrane fabrication.
Collapse
Affiliation(s)
- Yang Lu
- International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831
| | - Yuzhang Zhu
- International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
| | - Zhenyi Wang
- International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wangxi Fang
- International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831;
| | - Jian Jin
- International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
- Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
57
|
Tian J, Chang H, Gao S, Zong Y, Van der Bruggen B, Zhang R. Direct generation of an ultrathin (8.5 nm) polyamide film with ultrahigh water permeance via in-situ interfacial polymerization on commercial substrate membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119450] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
58
|
Impact of pilot-scale PSF substrate surface and pore structural properties on tailoring seawater reverse osmosis membrane performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
59
|
Imbrogno A, Schäfer AI. Micropollutants breakthrough curve phenomena in nanofiltration: Impact of operational parameters. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
60
|
Zhao B, Guo Z, Wang H, Wang L, Qian Y, Long X, Ma C, Zhang Z, Li J, Zhang H. Enhanced water permeance of a polyamide thin-film composite nanofiltration membrane with a metal-organic framework interlayer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119154] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
61
|
Does interfacial vaporization of organic solvent affect the structure and separation properties of polyamide RO membranes? J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119173] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
62
|
Jiao C, Song X, Zhang X, Sun L, Jiang H. MOF-Mediated Interfacial Polymerization to Fabricate Polyamide Membranes with a Homogeneous Nanoscale Striped Turing Structure for CO 2/CH 4 Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18380-18388. [PMID: 33844496 DOI: 10.1021/acsami.1c03737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Control of the surface morphology of polyamide membranes fabricated by interfacial polymerization is of great importance in dictating the separation performance. Herein, polyamide membranes with a specific nanoscale striped Turing structure are generated through facile addition of Zr-based metal-organic framework UiO-66-NH2 in the aqueous triethylenetetramine phase. Interestingly, accompanied by the degradation of UiO-66-NH2 in aqueous solution, an intermediate complex is in situ formed through the strong interaction between the Zr metal center and the amine group from triethylenetetramine, which can lower amine diffusion and induce a local interfacial reaction, contributing to the generation of a homogeneous nanoscale striped Turing structure. The resulting membranes are used for CO2/CH4 gas separation. Compared with the parent polyamide membrane displaying a CO2/CH4 selectivity of 43.1 and a CO2 permeance of 31.5 GPU, the membrane with 0.02 wt % of UiO-66-NH2 introduced into the aqueous phase shows a higher CO2/CH4 selectivity of 58.3, along with a CO2 permeance of 27.1 GPU. Additionally, when 0.1 wt % of UiO-66-NH2 is incorporated into the aqueous phase, the membrane exhibits a combination of a higher CO2/CH4 selectivity and an enhanced CO2 permeance in contrast with the parent polyamide membrane.
Collapse
Affiliation(s)
- Chengli Jiao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiangju Song
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoqian Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lixian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Heqing Jiang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
63
|
Song X, Guiga W, Rousseau B, Jonquieres A, Weil R, Grzelka M, Waeytens J, Dazzi A, Dragoe D, Fargues C. Experimental Characterization of Commercial and Synthesized Aromatic Polyamide Films for Reverse Osmosis Membranes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuefan Song
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91300 Massy, France
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Wafa Guiga
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91300 Massy, France
- Le Cnam, 75005 Paris, France
| | - Bernard Rousseau
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Anne Jonquieres
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Raphaël Weil
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, UMR 8502, 91405 Orsay, France
| | - Marion Grzelka
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, UMR 8502, 91405 Orsay, France
| | - Jehan Waeytens
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, 1050 Bruxelles, Belgique
| | - Alexandre Dazzi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux UMR 8182, 91405 Orsay, France
| | - Claire Fargues
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91300 Massy, France
| |
Collapse
|
64
|
Wei Y, Wang Y, Wang L, Yang H, Jin H, Lu P, Li Y. Simultaneous phase-inversion and crosslinking in organic coagulation bath to prepare organic solvent forward osmosis membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
65
|
Zhang X, Liu ZP, Xu ZL, Cheng FY, Ma XH, Xu XR. Thin-film composite membranes fabricated directly on a large-porous ceramic support using poly (4-styrenesulfonic acid) as a scaffold for ethanol dehydration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
66
|
Xu D, Zhu X, Luo X, Guo Y, Liu Y, Yang L, Tang X, Li G, Liang H. MXene Nanosheet Templated Nanofiltration Membranes toward Ultrahigh Water Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1270-1278. [PMID: 33372511 DOI: 10.1021/acs.est.0c06835] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The demand for thin-film composite (TFC) nanofiltration membranes with superior permeance and high rejection is gradually increasing for seawater desalination and brackish water softening. However, improving the membrane permeance remains a great challenge due to the formation of excrescent polyamide in the substrate pores and thick polyamide film. Herein, we fabricated a high-performance TFC nanofiltration membrane via a classical interfacial polymerization reaction on a two-dimensional lamellar layer of transition-metal carbides (MXene). The MXene layer promoted the absorption of the reactive monomer, and higher amine monomer concentration facilitated the self-sealing and self-termination of interfacial polymerization to generate a thinner outer polyamide film from 68 to 20 nm. The almost nonporous lamellar interface inhibited the formation of inner polyamide in the substrate pores. In addition, the MXene lamellar layer could be eliminated by mild oxidation after interfacial polymerization to avoid imparted additional hydraulic resistance. The resulting TFC membrane conferred a high rejection above 96% for Na2SO4 and excellent permeance of 45.7 L·m-2·h-1·bar-1, which was almost 4.5 times higher than that of the control membrane (10.2 L·m-2·h-1·bar-1). This research provides a feasible strategy for fabricating a high-performance nanofiltration membrane using two-dimensional nanosheets as a templated interface.
Collapse
Affiliation(s)
- Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xuewu Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yuanqing Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yatao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Liu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
67
|
Drisya KT, Edely M, Solís-López M, Jantrania A, Auguste S, Rousseau A, Casteneda H, Velumani S, Kassiba A. Structural features and morphology of titanium dioxide–bismuth vanadate heterojunctions. CrystEngComm 2021. [DOI: 10.1039/d1ce00982f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium dioxide TiO2 (TO) and bismuth vanadate BiVO4 (BVO) are promising photoactive semiconducting oxides for heterogeneous photocatalysis devoted to water treatment, pollutant degradation and water splitting processes.
Collapse
Affiliation(s)
- K. T. Drisya
- Department of Electrical Engineering (SEES), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Ciudad de México, C.P 07360, Mexico
- Institute of Molecules and Materials of Le Mans UMR-CNRS 6283, Le Mans University, 70285 Le Mans, France
| | - M. Edely
- Institute of Molecules and Materials of Le Mans UMR-CNRS 6283, Le Mans University, 70285 Le Mans, France
| | - M. Solís-López
- Department of Electrical Engineering (SEES), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Ciudad de México, C.P 07360, Mexico
| | - A. Jantrania
- Department of Biological and Agricultural Engineering, Agrilife Extension, Texas A & M University, College Station, Texas 77843, USA
| | - S. Auguste
- Institute of Molecules and Materials of Le Mans UMR-CNRS 6283, Le Mans University, 70285 Le Mans, France
| | - A. Rousseau
- Institute of Molecules and Materials of Le Mans UMR-CNRS 6283, Le Mans University, 70285 Le Mans, France
| | - H. Casteneda
- Department of Materials Science and Engineering, Texas A&M University, College Station, 77802, Texas, USA
| | - S. Velumani
- Department of Electrical Engineering (SEES), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Ciudad de México, C.P 07360, Mexico
| | - A. Kassiba
- Institute of Molecules and Materials of Le Mans UMR-CNRS 6283, Le Mans University, 70285 Le Mans, France
| |
Collapse
|
68
|
Yang Z, Sun PF, Li X, Gan B, Wang L, Song X, Park HD, Tang CY. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15563-15583. [PMID: 33213143 DOI: 10.1021/acs.est.0c05377] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The separation properties of polyamide reverse osmosis and nanofiltration membranes, widely applied for desalination and water reuse, are constrained by the permeability-selectivity upper bound. Although thin-film nanocomposite (TFN) membranes incorporating nanomaterials exhibit enhanced water permeance, their rejection is only moderately improved or even impaired due to agglomeration of nanomaterials and formation of defects. A novel type of TFN membranes featuring an interlayer of nanomaterials (TFNi) has emerged in recent years. These novel TFNi membranes show extraordinary improvement in water flux (e.g., up to an order of magnitude enhancement) along with better selectivity. Such enhancements can be achieved by a wide selection of nanomaterials, ranging from nanoparticles, one-/two-dimensional materials, to interfacial coatings. The use of nanostructured interlayers not only improves the formation of polyamide rejection layers but also provides an optimized water transport path, which enables TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. Furthermore, TFNi membranes can potentially enhance the removal of heavy metals and micropollutants, which is critical for many environmental applications. This review critically examines the recent developments of TFNi membranes and discusses the underlying mechanisms and design criteria. Their potential environmental applications are also highlighted.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| |
Collapse
|
69
|
Yang Z, Wang F, Guo H, Peng LE, Ma XH, Song XX, Wang Z, Tang CY. Mechanistic Insights into the Role of Polydopamine Interlayer toward Improved Separation Performance of Polyamide Nanofiltration Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11611-11621. [PMID: 32786553 DOI: 10.1021/acs.est.0c03589] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Interlayered thin-film nanocomposite membranes (TFNi) are an emerging type of membranes with great potential to overcome the permeability-selectivity upper bound of conventional thin-film composite (TFC) nanofiltration and reverse osmosis membranes. However, the exact roles of the interlayer and the corresponding mechanisms leading to enhanced separation performance of TFNi membranes remain poorly understood. This study reports a polydopamine (PDA)-intercalated TFNi nanofiltration membrane (PA-PSF2, PDA coating time of 2 h) that possessed nearly an order of magnitude higher water permeance (14.8 ± 0.4 Lm-2 h-1 bar-1) than the control TFC membrane (PA-PFS0, 2.4 ± 0.5 Lm-2 h-1 bar-1). The TFNi membrane further showed enhanced rejection toward a wide range of inorganic salts and small organic molecules (including antibiotics and endocrine disruptors). Detailed mechanistic investigation reveals that the membrane separation performance was enhanced due to both the direct "gutter" effect of the PDA interlayer and its indirect effects resulting from enhanced polyamide formation on the PDA-coated substrate, with the "gutter" effect playing a more dominant role. This study provides a mechanistic and comprehensive framework for the future development of TFNi membranes.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Fei Wang
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Hao Guo
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Lu Elfa Peng
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Xiao-Hua Ma
- School of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Xiao-Xiao Song
- Center for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chuyang Y Tang
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| |
Collapse
|