51
|
Zhang X, Wang G, Wang T, Chen J, Feng C, Yun S, Cheng Y, Cheng F, Cao J. Selenomethionine alleviated fluoride-induced toxicity in zebrafish (Danio rerio) embryos by restoring oxidative balance and rebuilding inflammation homeostasis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106019. [PMID: 34788727 DOI: 10.1016/j.aquatox.2021.106019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Fish are target organisms that are extremely susceptible to fluoride pollution, and an increase in fluoride load will damage multiple systems of fish. Selenomethionine (Se-Met) at low levels has been reported to alleviate oxidative damage and inflammation caused by toxic substances, but whether it can alleviate fluoride-induced toxicity in zebrafish embryos has not been elucidated. In this study, the intervention effects of Se-Met on developmental toxicity, oxidative stress and inflammation in zebrafish embryos exposed to fluoride were determined. Our results showed that fluoride accumulated in larvae and induced developmental toxicity in zebrafish embryos, caused oxidative damage and apoptosis, increased significantly the MPO and LZM activities and the levels of the inflammation-related genes IL-1β, IL-6, TNF-α, IL-10 and TGF-β. Moreover, fluoride significantly increased the levels of ERK2, JNK, p38 and p65 in MAPKs and NF-κB pathways. Se-Met-treatment alleviated the adverse effects induced by fluoride, and all of the above indicators induced by fluoride returned to near control levels with increasing concentrations and time. However, treatment with Se-Met-alone also markedly increased the levels of IL-6, TNF-α, IL-10, TGF-β, ERK2 and JNK. In short, these data demonstrated that Se-Met-could alleviate fluoride-induced toxicity in zebrafish embryos by restoring oxidative balance and rebuilding inflammation homeostasis, although low levels of Se-Met-alone had certain toxic effects on zebrafish embryos. Taken together, Se-Met-plays an important role in preventing toxic damage induced by fluoride in zebrafish embryos, although it has certain toxic effects.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Guodong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China; School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shaojun Yun
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yanfen Cheng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Feier Cheng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
52
|
Liu H, Li X, Lei H, Li D, Chen H, Schlenk D, Yan B, Yongju L, Xie L. Dietary Seleno-l-methionine Alters the Microbial Communities and Causes Damage in the Gastrointestinal Tract of Japanese Medaka Oryzias latipes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16515-16525. [PMID: 34874707 DOI: 10.1021/acs.est.1c04533] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excess dietary seleno-l-methionine (Se-Met) induces various adverse effects in fish inhabiting the Se-contaminated environments. However, there is an extreme paucity of data on the effects of excess dietary Se-Met on the microbiota in the gastrointestinal (GI) tract in fish. In this study, Japanese medaka Oryzias latipes (three months old) were fed the Se-Met enriched diets at environmentally relevant concentrations: 2.90 (Control: (C), 6.69 (L), 11.89 (M), and 27.05 (H) μg Se/g dw) for 60 d. Histopathological, high throughput sequencing, and biochemical approaches were used to investigate the alterations in histology and microbial communities of the GI tract, enzymatic activity, and transcripts of closely related genes. The results showed that the fish weight was reduced at ∼13% from the L and H treatments. Decreased height and thickness of villus in the GI tract were observed in the H treatment. Meanwhile, the level of D-lactate and activity of diamine oxidase (DAO), protease, and lipase were inhibited in the H treatment. The transcripts of the genes related to the inflammation (i.e., IL-1β and IL-8) were elevated, while those of the genes related to the intestinal barrier (i.e., cdh1, ZO-1, ocln, and cldn7) were inhibited in the H treatment. In addition, alpha diversity at the genus level was higher in the L treatment than the control, and the composition of the microbial community was altered by dietary Se-Met. Furthermore, 5 genera (Rhodobacter, Cloacibacterium, Bdellovibrio, Shinella, and Aeromonas) exhibited the largest variation in abundance among treatments. This study has demonstrated that excess dietary Se-Met inhibits growth, causes hispathological damage to the GI tract, and alters the composition of the microbial community in Oryzias latipes.
Collapse
Affiliation(s)
- Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92507, United States
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Luo Yongju
- Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|