51
|
Xiao X, Han X, Wang LG, Long F, Ma XL, Xu CC, Ma XB, Wang CX, Liu ZY. Anaerobically photoreductive degradation by CdS nanocrystal: Biofabrication process and bioelectron-driven reaction coupled with Shewanella oneidensis MR-1. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
52
|
Cui D, Cui MH, Liang B, Liu WZ, Tang ZE, Wang AJ. Mutual effect between electrochemically active bacteria (EAB) and azo dye in bio-electrochemical system (BES). CHEMOSPHERE 2020; 239:124787. [PMID: 31526987 DOI: 10.1016/j.chemosphere.2019.124787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/24/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Herein, the mutual effect between azo dye and the performance of electrochemically active bacteria (EAB) is investigated in detail, which is crucial to understand and control the bio-electrochemical systems (BESs) operation for azo dye containing wastewater treatment. EAB is enriched at controlled potential of -0.2 V vs Ag/AgCl in single-chamber BESs. Over 95% azo dye (alizarin yellow R (AYR)) was decolorized regardless of the initial AYR concentration ranging from 30 to 120 mg/L within 24 h. The fastest decolorization rate was obtained at AYR initial concentration of 70 mg/L, which was 4.25 times greater in the closed circuit BESs than that in the open circuit one. 16S rRNA gene based microbial community analysis showed that Geobacter was dominant in EAB with relative abundance increased from 77.98% (0 mg/L AYR) to 92.22% (70 mg/L AYR), indicating that azo dye selectively boosts the growth of exoelectrogens in electrode biofilm communities. Under electricity stimulation, extracellular process can be mutually conducted by azo dye compounds, which is favorable for accelerating reaction rate and avoiding of significant toxic effect on EAB.
Collapse
Affiliation(s)
- Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Zi-En Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| |
Collapse
|
53
|
Zhang Q, Xie X, Liu Y, Zheng X, Wang Y, Cong J, Yu C, Liu N, Sand W, Liu J. Co-metabolic degradation of refractory dye: A metagenomic and metaproteomic study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113456. [PMID: 31784270 DOI: 10.1016/j.envpol.2019.113456] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Fructose was utilized as an additional co-substrate to systematically investigate the molecular mechanism of its boosting effect for the degradation of refractory dye reactive black 5 (RB5) by a natural bacterial flora DDMZ1. A decolorizing rate of 98% was measured for sample YE + FRU(200) (with 3 g/L fructose additionally to yeast extract medium, 10% (v/v) inoculation size of flora DDMZ1, 200 mg/L RB5) after 48 h. This result was 21% and 77%, respectively, higher than those of samples with only yeast extract or only fructose. Fructose was found to significantly stimulated both intracellular and extracellular azoreductase secretion causing enhanced activity. Metagenomic sequencing technology was used to analyze the functional potential of genes. A label-free quantitative proteomic approach further confirmed the encoding of functional proteins by the candidate genes. Subsequently, the molecular mechanism of RB5 degradation by candidate genes and functional proteins of the dominant species were proposed. This study provides important perspectives to the molecular mechanism of co-metabolic degradation of refractory pollutants by a natural bacterial flora.
Collapse
Affiliation(s)
- Qingyun Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yiqin Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chengzhi Yu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg, 09599, Germany; Biofilm Centre, University Duisburg-Essen, Essen, Germany
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
54
|
FRET-based fluorescent nanoprobe platform for sorting of active microorganisms by functional properties. Biosens Bioelectron 2019; 148:111832. [PMID: 31706173 DOI: 10.1016/j.bios.2019.111832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
Fluorescence-activated cell sorting (FACS) has rarely been applied to screening of microorganisms because of poor detection resolution, which is compromised by poor stability, toxicity, or interference from background fluorescence of the fluorescence sensors used. Here, a fluorescence-based rapid high-throughput cell sorting method was first developed using a fluorescence resonance energy transfer (FRET) fluorescent nanoprobe NP-RA, which was constructed by coating a silica nanoparticle with Rhodamine B and methyl-red (an azo dye). Rhodamine B (inner layer) is the FRET donor and methyl-red (outer layer) is the acceptor. This ready-to-use NP-RA is non-fluorescent, but fluoresces once the outer layer is degraded by microorganisms. In our experiment, NP-RA was ultrasensitive to model strain Shewanella decolorationis S12, showing a broad detection range from 8.0 cfu/mL to 8.7 × 108 cfu/mL under confocal laser scanning microscopy, and from 1.1 × 107 to 9.36 × 108 cfu/mL under a fluorometer. In addition, NP-RA bioimaging can clearly identify other azo-respiring cells in the microbial community, including Bosea thiooxidans DSM 9653 and Lysinibacillus pakistanensis NCCP-54. Furthermore, the fluorescent probe NP-RA is compatible with downstream FACS so that azo-respiring cells can be rapidly sorted out directly from an artificial microbial community. To our knowledge, no fluorescent nanoprobe has yet been designed for tracking and sorting azo-respiration functional microorganisms.
Collapse
|
55
|
Xie X, Zheng X, Yu C, Zhang Q, Wang Y, Cong J, Liu N, He Z, Yang B, Liu J. Highly efficient biodegradation of reactive blue 19 under the activation of tea residue by a newly screened mixed bacterial flora DDMY2. RSC Adv 2019; 9:24791-24801. [PMID: 35528667 PMCID: PMC9069888 DOI: 10.1039/c9ra04507d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/28/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, a newly screened mixed bacterial flora DDMY2 had high decolorization capacity for anthraquinone dye reactive blue 19 (RB19) and the decolorization efficiency of 300 mg L-1 RB19 could reach up to 98% within 48 h in the presence of tea residue. Results indicated that RB19 could be efficiently decolorized by flora DDMY2 in wide ranges of pH values (5.0-9.0), temperatures (30-40 °C) and initial dye concentrations (50-500 mg L-1) under the activation of tea residue. Concentration of tea residue had been proved to significantly impact the decolorization performance. UV-vis spectrophotometry, Fourier transform infrared spectrometry and liquid chromatography/time-of-flight/mass spectrometry analysis showed three identified degradation products and the possible degradation pathway of RB19 was speculated. High-throughput sequencing analysis revealed the community structures of bacterial flora before and after domestication by tea residue. Based on the result, it was inferred that unclassified_o_Pseudomonadales, Brevibacillus, Stenotrophomonas and Bordetella activated by tea residue were responsible for the excellent decolorization performance. Results of this research deepen our understanding of the biodegradation process of anthraquinone dyes by bacterial flora and broaden the knowledge of utilizing tea residue as a bioactivator in biological treatment.
Collapse
Affiliation(s)
- Xuehui Xie
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| | - Xiulin Zheng
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Chengzhi Yu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Qingyun Zhang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Yiqin Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Junhao Cong
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University Suzhou Anhui 234000 China
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University Changsha 410083 P. R. China
| | - Bo Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University 2999# North Renmin Road, Songjiang District Shanghai 201620 China +86-21-67792522
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| |
Collapse
|
56
|
Zhao G, Li E, Li J, Liu F, Liu F, Xu M. Goethite Hinders Azo Dye Bioreduction by Blocking Terminal Reductive Sites on the Outer Membrane of Shewanella decolorationis S12. Front Microbiol 2019; 10:1452. [PMID: 31293561 PMCID: PMC6604703 DOI: 10.3389/fmicb.2019.01452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 01/21/2023] Open
Abstract
Iron (hydr)oxides are the most ubiquitous Fe(III)-containing minerals in the near-surface environments and can regulate organic pollutant biotransformation by participating in bacterial extracellular electron transfer under anaerobic conditions. Mechanisms described so far are based on their redox properties in bacterial extracellular respiration. Here, we find that goethite, a typical iron (hydr)oxide, inhibits the bioreduction of different polar azo dyes by Shewanella decolorationis S12 not through electron competition, but by the contact of its surface Fe(III) with the bacterial outer surface. Through the combined results of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy, two-dimensional correlation spectroscopy, and confocal laser scanning microscope, we found that the outer membrane proteins MtrC and OmcA of strain S12 are key binding sites for goethite surface. Meanwhile, they were identified as the important reductive terminals for azo dyes. These results suggest that goethite may block the terminal reductive sites of azo dyes on the bacterial outer membrane to inhibit their bioreduction. This discovered role of goethite in bioreduction provides new insight into the microbial transformation processes of organic pollutants in iron (hydr)oxide-containing environments.
Collapse
Affiliation(s)
- Gang Zhao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Enze Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Jianjun Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Feifei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Fei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| |
Collapse
|
57
|
Zhang Q, Xie X, Liu Y, Zheng X, Wang Y, Cong J, Yu C, Liu N, Liu J, Sand W. Fructose as an additional co-metabolite promotes refractory dye degradation: Performance and mechanism. BIORESOURCE TECHNOLOGY 2019; 280:430-440. [PMID: 30784993 DOI: 10.1016/j.biortech.2019.02.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
In this work, the performance and mechanism for the boosting effects of fructose as an additional co-metabolite towards the biological treatment of reactive black 5 were systematically investigated. A decolorization efficiency of 98% was obtained in sample FRU200 (with 3 g/L fructose added based on 3 g/L yeast extract), which was 21% higher than that without fructose. Several intermediates with low molecular weight generated in sample FRU200 and different metabolic pathways were deduced. The bacterial community structure significantly changed due to fructose addition. Label-free quantitative proteomic approach suggested that several up-regulated proteins in sample FRU200 might play essential roles during the degradation. Furthermore, the mechanisms of RB5 degradation by proteins/enzymes of the dominant species in flora DDMZ1 were proposed. This work deepens our understanding of the molecular and ecological mechanism of fructose as co-metabolite enhancing the biodegradation of refractory organic pollutants by a natural bacterial flora.
Collapse
Affiliation(s)
- Qingyun Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiqin Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengzhi Yu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg 09599, Germany; Biofilm Centre, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
58
|
Zhao Y, An H, Feng J, Ren Y, Ma J. Impact of Crystal Types of AgFeO 2 Nanoparticles on the Peroxymonosulfate Activation in the Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4500-4510. [PMID: 30888156 DOI: 10.1021/acs.est.9b00658] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A simple co-precipitation method was developed to synthesize AgFeO2 nanoparticles (NPs) with hexagonal 2H and 3R polytypes coexistence. The ratio of 2H and 3R types in AgFeO2 NPs were regulated by controlling the calcination temperature (300, 400, and 500 °C). Such AgFeO2 NPs were used as heterogeneous catalysts to activate peroxymonosulfate (PMS) for the removal of Orange I (OI) in the water. External water conditions effects and the stability of AgFeO2 NPs were investigated. The catalytic performance of AgFeO2 NPs was found to be significantly enhanced with the increasing content of 2H-AgFeO2. 1O2, O2•-, SO4•-, and •OH were identified as the dominating reactive oxygen species (ROSs) participated in the catalytic process. The electron transfer of Ag0/Ag+ and Fe2+/Fe3+ cycles facilitated the decomposition of PMS to generate ROSs. The surface hydroxyl groups (-OH) were regarded as the catalytic active sites. The higher 2H-AgFeO2 content in AgFeO2 NPs promoted the concentration of surface hydroxyl groups ( C-OH) and the reactivity of AgFeO2 NPs for PMS activation. Based on theoretical calculations, the 2H-AgFeO2 (004) plane with more Fe sites was more conducive to binding with the -OH compared to the 3R-AgFeO2 (012) plane, ascribed to the stronger adsorption energy and shorter Fe-O bond length between 2H-AgFeO2 and -OH.
Collapse
|
59
|
Xie X, Liu N, Yang F, Zhang Q, Zheng X, Wang Y, Liu J. Comparative study of antiestrogenic activity of two dyes after Fenton oxidation and biological degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:416-424. [PMID: 30142608 DOI: 10.1016/j.ecoenv.2018.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
In present study, two methods (Fenton oxidation and biological degradation) were used to degrade azo dye (Reactive Black 5, RB5) and anthraquinone dye (Remazol Brilliant Blue R, RBBR). The changes of antiestrogenic activities of these two dyes through two degradation methods were detected using the yeast two-hybrid assay method. Fluorescence spectroscopy together with gas chromatography-mass spectrometry (GC-MS) method was performed to analyze the metabolites of RB5 and RBBR after Fenton oxidation and biological degradation. Results indicated that by Fenton oxidation, the decolorization of RB5 and RBBR were 99.31% and 96.62%, respectively, which were much higher than that by biological degradation. Dissolved organic carbon (DOC) reduction rates of RB5 and RBBR after Fenton oxidation were also much higher than that after biological degradation. By Fenton oxidation, the antiestrogenic activities of RB5 and RBBR all decreased below detection limit after degradation, while by biological degradation all of them increased significantly after degradation. Fluorescence spectroscopy analysis and GC-MS analysis confirmed the degradation effects of RB5 and RBBR by these two degradation methods. In addition, fluorescence spectroscopy analysis revealed that the metabolites humic acid-like substances might contribute to the increasing of antiestrogenic activity of RB5 and RBBR after biological degradation.
Collapse
Affiliation(s)
- Xuehui Xie
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Education District, Suzhou, Anhui 234000, PR China.
| | - Fang Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Qingyun Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xiulin Zheng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yiqiin Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jianshe Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
60
|
Zhao H, Zhang C, Wang Y, Chen W, Alvarez PJJ. Self-Damaging Aerobic Reduction of Graphene Oxide by Escherichia coli: Role of GO-Mediated Extracellular Superoxide Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12783-12791. [PMID: 30277752 DOI: 10.1021/acs.est.8b03753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microbial reduction of graphene oxide (GO) under aerobic conditions is poorly understood despite its critical role in changing GO toxicity and environmental fate. Here we show that 20 mg/L GO interacts with the membrane-bound cytochrome c of E. coli in saline, shuttling electrons from the respiratory chain to extracellular molecular oxygen. This results in the formation of superoxide anions (O2•-), which in turn reduce GO in 30 min. The critical role of superoxide was demonstrated by impeding GO reduction upon addition of superoxide dismutase, or by carrying out experiments under strictly anaerobic conditions that preclude O2•- formation. Coating GO with bovine serum albumin also stopped GO reduction, which indicates the need for direct contact between GO and the cell membrane. Cell death was observed as a consequence of GO bioreduction. Apparently, electron shuttling by GO (via membrane contact) interrupts the respiratory chain and induces oxidative stress, as indicated by a 20% decrease in electron transport activity and an increase in intracellular reactive oxygen species. This novel antimicrobial mechanism could be relevant to assess GO stability and biocompatibility, and informs potential applications for microbial control.
Collapse
Affiliation(s)
- Huiru Zhao
- College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Chengdong Zhang
- School of Environment , Beijing Normal University , Beijing 100857 , China
| | - Yaqi Wang
- College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Wei Chen
- College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
61
|
Zhao C, Zheng H, Sun Y, Zhang S, Liang J, Liu Y, An Y. Evaluation of a novel dextran-based flocculant on treatment of dye wastewater: Effect of kaolin particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:243-254. [PMID: 29859440 DOI: 10.1016/j.scitotenv.2018.05.286] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Graft modified flocculants have recently received increasing attention in the field of water treatment as they have the combinative advantages of synthetic and natural polymeric flocculants. In this work, surface-active monomer benzyl(methacryloyloxyethyl)dimethylammonium chloride (BMDAC) was selected to graft on dextran (DX) with high molecular weight (10.3 × 106 g/mol) produced through enzyme-catalyzed process in order to remove dissolved dyes from wastewater. The flocculant (DAB) was fabricated by ultrasound initiated polymerization technique, and the structure characterization of FTIR, 1H/12C NMR, XRD and XPS spectrum confirmed the successful grafting. Then the Congo red (CR) removal efficiency by DAB was optimized based on the flocculation conditions, including wastewater initial pH, flocculant dosage and initial dye concentration. The effect of suspended solids on the removal of dyes was evaluated in kaolin-CR simulated wastewater. The results indicated that the optimal removal efficiency of CR was 68.1% and 88.2% in single CR and kaolin-CR flocculation system, respectively. The improvement of removal efficiency was attributed to the fact that partial CR molecules were adsorbed onto kaolin particles before flocculation, and were synergistically flocculated accompanied by kaolin particles. Finally, the flocculation mechanism was discussed by a detailed investigation of the zeta potentials, FTIR and XPS spectra of flocs, which can provide important reference for optimizing the flocculation conditions and designing novel high-performance flocculants.
Collapse
Affiliation(s)
- Chuanliang Zhao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Yongjun Sun
- Jiangsu Key Laboratory of Industrial Water-Conservation & Emission Reduction, College of Environment, Nanjing Tech University, Nanjing 211800, China
| | - Shixin Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jianjun Liang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yongzhi Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yanyan An
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
62
|
Li Q, Feng X, Lu X, Li T, Han X, Xiao X, Wu X, Liu Z, Yang M, Feng Y. Combined intra- and extracellular reduction involved in the anaerobic biodecolorization of cationic azo dye by Shewanella oneidensis MR-1. CHEMOSPHERE 2018; 211:701-708. [PMID: 30098566 DOI: 10.1016/j.chemosphere.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Microbial reduction decolorization is a promising strategy for cationic azo dye pollution remediation, but the reduction mechanism is unclear yet. In this work, the anaerobic reduction decolorization mechanism of cationic red X-GRL (X-GRL) by Shewanella oneidensis MR-1 (MR-1) was investigated from both intracellular and extracellular aspects. The exogenous additional riboflavin treatment test was used to analyze the extracellular reduction mechanism of X-GRL, and the actual role of riboflavin during the reduction of X-GRL was identified by three-dimensional fluorescence analysis for the first time. The proteinase K and the electron competitor treatment tests were used to analyze the intracellular reduction mechanism of X-GRL. Moreover, the effect of external environment on the reduction mechanism of X-GRL was elucidated by the decolorization performance of MR-1 wild type and its mutants, ΔomcA/mtrC, ΔmtrA, ΔmtrB and ΔcymA, under different external pH conditions. The results indicated that X-GRL could be decolorized by MR-1 in both extracellular and intracellular spaces. The extracellular decolorization of X-GRL could be caused by Mtr respiratory pathway or the indirect reduction of riboflavin, while the intracellular decolorization might occur due to the intracellular reduction depending on CymA pathway and a NADH-dependent reduction catalyzed by intracellular azoreductases. Furthermore, the proportion of extracellular decolorization decreased, whereas that of intracellular decolorization increased as the environmental pH rose.
Collapse
Affiliation(s)
- Qian Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaoli Feng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xuerong Lu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tingting Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xue Han
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiang Xiao
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangyang Wu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoying Liu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mingfeng Yang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
63
|
Wang Z, Yin Q, Gu M, He K, Wu G. Enhanced azo dye Reactive Red 2 degradation in anaerobic reactors by dosing conductive material of ferroferric oxide. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:226-234. [PMID: 29890419 DOI: 10.1016/j.jhazmat.2018.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Effect of dosing ferroferric oxide (Fe3O4) on the anaerobic treatment of azo dye Reactive Red 2 (RR2) was investigated in two anaerobic sequencing batch reactors (ASBRs). System performance, dye degradation pathways, and microbial activities and structure were examined. The addition of Fe3O4 significantly improved treatment efficiency, with the removal efficiency of RR2 increased by 116%, the maximum methane (CH4) yield potential and the peak CH4 production rate improved by 7.7% and 22.3%, and the lag phase shortened by 39.6%, respectively. The activity of the electron transport system was significantly enhanced by dosing Fe3O4, with the maximum value increased by 77% and conductivity of the anaerobic sludge increased by 178%. According to the proposed pathway for the degradation of RR2, the degradation products from complete cleavage of the NN bond in RR2 were obtained at the presence of Fe3O4, while were absent without Fe3O4. At high initial dye concentrations, the dosage of Fe3O4 alleviated the inhibition to microbes by RR2, and high degradation rate and removal efficiency were maintained. The microbial community structure changed during the long-term acclimation with the dosage of Fe3O4. Paludibacter, Trichococcus and Methanosarcina were predominant and their relative abundances increased with the addition of Fe3O4.
Collapse
Affiliation(s)
- Zhongzhong Wang
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Qidong Yin
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Mengqi Gu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Kai He
- Research Centre for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Guangxue Wu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|