51
|
Bailey ES, Curcic M, Biros J, Erdogmuş H, Bac N, Sacco A. Essential Oil Disinfectant Efficacy Against SARS-CoV-2 Microbial Surrogates. Front Public Health 2021; 9:783832. [PMID: 34970529 PMCID: PMC8712468 DOI: 10.3389/fpubh.2021.783832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Reports of COVID-19 cases potentially attributed to fomite transmission led to the extensive use of various disinfectants to control viral spread. Alternative disinfectants, such as essential oils, have emerged as a potential antimicrobial. Four essential oil blends were tested on three different surfaces inoculated with a coronavirus surrogate, bacteriophage Phi 6, and a bacterial indicator, Staphylococcus aureus. Log10 concentration reductions were analyzed using GraphPad Prism software. Data collected in this study show that the application of dilute essential oil disinfectants using a spray delivery device is an effective way to reduce concentrations of bacterial and viral microorganisms on ceramic, stainless steel, and laminate surfaces. Surrogate viruses were reduced up to 6 log10 PFU and bacterial were reduced up to 4 log10 CFU. Although surfaces are no longer considered a high risk fomite for COVID-19 transmission, the disinfection of microorganisms on surfaces remains an important consideration for high touch areas in hospitals, waiting rooms, etc. The application of spray disinfectants, based on essential oil blends, provides a rapid and effective means to reduce microbial contamination on high-touched surfaces.
Collapse
Affiliation(s)
- Emily S. Bailey
- Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Marina Curcic
- Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Jnev Biros
- Edward E. Whitacre Jr. College of Engineering, Texas Tech University, Lubbock, TX, United States
| | | | - Nurcan Bac
- Edward E. Whitacre Jr. College of Engineering, Texas Tech University, Lubbock, TX, United States
| | - Albert Sacco
- Edward E. Whitacre Jr. College of Engineering, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
52
|
Gibson J, Farnood R, Barbeau B. Kinetics and Monte Carlo simulation of UV disinfection of B. subtilis spores and SARS-CoV-2 in dried saliva droplets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61853-61859. [PMID: 34595717 PMCID: PMC8483804 DOI: 10.1007/s11356-021-16537-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Surfaces can be contaminated by droplets produced through coughing or sneezing. In this exploratory work, the UV disinfection results of Bacillus subtilis spores in dried saliva droplets were fitted to a three-parameter kinetic model (R2 ≥ 0.97). This model has a disinfection rate constant for single organisms and a smaller one for aggregates found in droplets. The fraction of organisms found in aggregates (β) could account for the effects of different-sized droplets in the experimental work. Since a wide spectrum of droplet sizes can be produced, and some of the rate constants were uncertain, Monte Carlo simulation was used to estimate the UV inactivation performance in dried saliva droplets in a variety of conditions. Using conservative distribution for β, the model was applied to the UV disinfection of SARS-CoV-2 in dried saliva droplets. It was shown that a one-log reduction of SARS-CoV-2 was very likely (p>99.9%) and a two-log reduction was probable (p=75%) at a dose of 60 mJ/cm2. Aggregates tend to be variable and limit the log reductions that can be achieved at high UV doses.
Collapse
Affiliation(s)
- John Gibson
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada.
| | - Ramin Farnood
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada
| | - Benoit Barbeau
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
53
|
Boegel SJ, Gabriel M, Sasges M, Petri B, D’Agostino MR, Zhang A, Ang JC, Miller MS, Meunier SM, Aucoin MG. Robust Evaluation of Ultraviolet-C Sensitivity for SARS-CoV-2 and Surrogate Coronaviruses. Microbiol Spectr 2021; 9:e0053721. [PMID: 34668746 PMCID: PMC8528122 DOI: 10.1128/spectrum.00537-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/17/2021] [Indexed: 01/11/2023] Open
Abstract
UV light, more specifically UV-C light at a wavelength of 254 nm, is often used to disinfect surfaces, air, and liquids. In early 2020, at the cusp of the COVID-19 pandemic, UV light was identified as an efficient means of eliminating coronaviruses; however, the variability in published sensitivity data is evidence of the need for experimental rigor to accurately quantify the effectiveness of this technique. In the current study, reliable and reproducible UV techniques have been adopted, including accurate measurement of light intensity, consideration of fluid UV absorbance, and confirmation of uniform dose delivery, including dose verification using an established biological target (T1UV bacteriophage) and a resistant recombinant virus (baculovirus). The experimental results establish the UV sensitivity of SARS-CoV-2, HCoV-229E, HCoV-OC43, and mouse hepatitis virus (MHV) and highlight the potential for surrogate viruses for disinfection studies. All four coronaviruses were found to be easily inactivated by 254 nm irradiation, with UV sensitivities of 1.7, 1.8, 1.7, and 1.2 mJ/cm2/log10 reduction for SARS-CoV-2, HCoV-229E, HCoV-OC43, and MHV, respectively. Similar UV sensitivities for these species demonstrate the capacity for HCoV-OC43, HCoV-229E, and MHV to be considered surrogates for SARS-CoV-2 in UV-inactivation studies, greatly reducing hazards and simplifying procedures for future experimental studies. IMPORTANCE Disinfection of SARS-CoV-2 is of particular importance due to the global COVID-19 pandemic. UV-C irradiation is a compelling disinfection technique because it can be applied to surfaces, air, and water and is commonly used in drinking water and wastewater treatment facilities. UV inactivation depends on the dose received by an organism, regardless of the intensity of the light source or the optical properties of the medium in which it is suspended. The 254 nm irradiation sensitivity was accurately determined using benchmark methodology and a collimated beam apparatus for four coronaviruses (SARS-CoV-2, HCoV-229E, HCoV-OC43, and MHV), a surrogate indicator organism (T1UV), and a resistant recombinant virus (baculovirus vector). Considering the light distribution across the sample surface, the attenuation of light intensity with fluid depth, the optical absorbance of the fluid, and the sample uniformity due to mixing enable accurate measurement of the fundamental inactivation kinetics and UV sensitivity.
Collapse
Affiliation(s)
- S. J. Boegel
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | | | | | - B. Petri
- Trojan Technologies, London, Canada
| | - M. R. D’Agostino
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - A. Zhang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - J. C. Ang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - M. S. Miller
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - S. M. Meunier
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - M. G. Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| |
Collapse
|
54
|
Ma B, Gundy PM, Gerba CP, Sobsey MD, Linden KG. UV Inactivation of SARS-CoV-2 across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-Diode (LED) Sources. Appl Environ Microbiol 2021; 87:e0153221. [PMID: 34495736 PMCID: PMC8552892 DOI: 10.1128/aem.01532-21] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 01/22/2023] Open
Abstract
Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmission during the ongoing COVID-19 global pandemic and in the future. UV devices emitting UVC irradiation (200 to 280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level 3 (BSL3) laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths of 222 to 282 nm from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light-emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL2) during UV disinfection tests. This study provides fundamental information on UVC's action on SARS-CoV-2 and guidance for achieving reliable disinfection performance with UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, public, transportation, and health care settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the ongoing COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222 nm provided the best disinfection performance. Interestingly, 222-nm irradiation has been found to be safe for human exposure up to thresholds that are beyond those effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface-based transmissions.
Collapse
Affiliation(s)
- Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Patricia M. Gundy
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Charles P. Gerba
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Mark D. Sobsey
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karl G. Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
55
|
High Intensity Violet Light (405 nm) Inactivates Coronaviruses in Phosphate Buffered Saline (PBS) and on Surfaces. PHOTONICS 2021. [DOI: 10.3390/photonics8100414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been proven that visible light with a wavelength of about 405 nm exhibits an antimicrobial effect on bacteria and fungi if the irradiation doses are high enough. Hence, the question arises as to whether this violet light would also be suitable to inactivate SARS-CoV-2 coronaviruses. Therefore, a high-intensity light source was developed and applied to irradiate bovine coronaviruses (BCoV), which are employed as SARS-CoV-2 surrogates for safety reasons. Irradiation is performed in virus solutions diluted with phosphate buffered saline and on steel surfaces. Significant virus reduction by several log levels was observed both in the liquid and on the surface within half an hour with average log reduction doses of 57.5 and 96 J/cm2, respectively. Therefore, it can be concluded that 405 nm irradiation has an antiviral effect on coronaviruses, but special attention should be paid to the presence of photosensitizers in the virus environment in future experiments. Technically, visible violet radiation is therefore suitable for coronavirus reduction, but the required radiation doses are difficult to achieve rapidly.
Collapse
|
56
|
Kuzniewski S. Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminated with SARS-CoV-2. REMEDIATION (NEW YORK, N.Y.) 2021; 31:97-110. [PMID: 34539159 PMCID: PMC8441782 DOI: 10.1002/rem.21691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in untreated and treated wastewater and studies have shown that the concentration of SARS-CoV-2 is proportional to the prevalence of the coronavirus disease 2019 (COVID-19) in communities. This article presents a literature review of the prevalence of SARS-CoV-2 in wastewater, its environmental fate, recommended treatment strategies for contaminated wastewater, and treatment challenges to be faced in the future. The environmental fate of SARS-CoV-2 in wastewater is not straightforward because it can be a source of infection when present in the treated wastewater depending on the permeability of the wastewater treatment plant containment area, and can also leach into aquifers, which may serve as drinking water supplies. Secondly, there are different practices that can mitigate the SARS-CoV-2 infection rate from infected feces and urine. The World Health Organization has recommended the use of ultraviolet radiation (UV), disinfection, and filtration for wastewater contaminated with SARS-CoV-2, processes also common in wastewater treatment facilities. This article discusses these strategies referencing studies performed with surrogate viruses and shows that SARS-CoV-2 treatment can be complicated due to the interference from other aqueous chemical and physical factors. Considering that COVID-19 is not the first and certainly not the last pandemic, it is imperative to develop an effective multitreatment strategy for wastewater contaminated with contagious viruses and, preferably, those that are compatible with current wastewater treatment methods.
Collapse
|