51
|
Alfonso-Prieto M, Giorgetti A, Carloni P. Multiscale simulations on human Frizzled and Taste2 GPCRs. Curr Opin Struct Biol 2019; 55:8-16. [PMID: 30933747 DOI: 10.1016/j.sbi.2019.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/19/2019] [Indexed: 01/24/2023]
Abstract
Recently, molecular dynamics simulations, from all atom and coarse grained to hybrid methods bridging the two scales, have provided exciting functional insights into class F (Frizzled and Taste2) GPCRs (about 40 members in humans). Findings include: (i) The activation of one member of the Frizzled receptors (FZD4) involves a bending of transmembrane helix TM7 far larger than that in class A GPCRs. (ii) The affinity of an anticancer drug targeting another member (Smoothened receptor) decreases in a specific drug-resistant variant, because the mutation ultimately disrupts the binding cavity and affects TM6. (iii) A novel two-state recognition mechanism explains the very large agonist diversity for at least one member of the Taste2 GPCRs, hTAS2R46.
Collapse
Affiliation(s)
- Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany; Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany; Department of Biotechnology, University of Verona, Verona, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany; Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich GmbH, Jülich, Germany; VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National University, Hanoi, Viet Nam.
| |
Collapse
|
52
|
Behrens M, Redel U, Blank K, Meyerhof W. The human bitter taste receptor TAS2R7 facilitates the detection of bitter salts. Biochem Biophys Res Commun 2019; 512:877-881. [PMID: 30928101 DOI: 10.1016/j.bbrc.2019.03.139] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 11/29/2022]
Abstract
The human sense of taste is devoted to the analysis of the chemical composition of food prior to ingestion. Among the five basic taste qualities bitter taste perception is believed to avoid ingestion of potentially toxic substances. The receptors facilitating the detection of hundreds of chemically different bitter compounds belong to the taste 2 receptor (TAS2R) family, which are part of the G protein-coupled superfamily. Although the chemical classes of bitter compounds that have been identified as agonists of one of the 25 potentially functional human bitter taste receptors cover an enormous chemical space, one distinct group of bitter compounds, the bitter salts have not been assigned to any bitter taste receptor. To close this gap, we screened the entire human bitter taste receptor repertoire by functional calcium mobilization assays with the most famous bitter salt, magnesium sulfate, also known as Epsom salt. Although the profound pharmacological activity and the bitter taste of spring water containing magnesium sulfate has been known since 1697, the molecular basis for its taste has not been elucidated until now. Our screening resulted in the identification of a single receptor, the TAS2R7, responding to magnesium sulfate at concentrations humans perceive this salt as bitter. Subsequently, TAS2R7 was stimulated with other salts and it was found that this receptor also responds to manganese2+ and iron2+ ions, but not to potassium ions. Magnesium sulfate is known to exert a number of beneficial effects on the human body and thus, has been used as medicine against premature uterine contractions, as anti-arrhythmic drug and as laxative, however, magnesium sulfate overdosage can result in cardiac arrest and thus have fatal consequences. Therefore, it appears reasonable that nature placed TAS2R7 as sentinel for high concentrations of bitter salts on our tongues.
Collapse
Affiliation(s)
- Maik Behrens
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany.
| | - Ulrike Redel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Kristina Blank
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Center for Integrative Physiology and Molecular Medicine, Saarland University, Kirrberger Straße 100, 66421 Homburg, Germany
| |
Collapse
|
53
|
Behrens M, Meyerhof W. A role for taste receptors in (neuro)endocrinology? J Neuroendocrinol 2019; 31:e12691. [PMID: 30712315 DOI: 10.1111/jne.12691] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
The sense of taste is positioned at the forefront when it comes to the interaction of our body with foodborne chemicals. However, the role of our taste system, and in particular its associated taste receptors, is not limited to driving food preferences leading to ingestion or rejection before other organs take over responsibility for nutrient digestion, absorption and metabolic regulation. Taste sensory elements do much more. On the one hand, extra-oral taste receptors from the brain to the gut continue to sense nutrients and noxious substances after ingestion and, on the other hand, the nutritional state feeds back on the taste system. This intricate regulatory network is orchestrated by endocrine factors that are secreted in response to taste receptor signalling and, in turn regulate the taste receptor cells themselves. The present review summarises current knowledge on the endocrine regulation of the taste perceptual system and the release of hunger/satiety regulating factors by gastrointestinal taste receptors. Furthermore, the regulation of blood glucose levels via the activation of pancreatic sweet taste receptors and subsequent insulin secretion, as well as the influence of bitter compounds on thyroid hormone release, is addressed. Finally, the central effects of tastants are discussed briefly.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
54
|
Luddi A, Governini L, Wilmskötter D, Gudermann T, Boekhoff I, Piomboni P. Taste Receptors: New Players in Sperm Biology. Int J Mol Sci 2019; 20:E967. [PMID: 30813355 PMCID: PMC6413048 DOI: 10.3390/ijms20040967] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Taste receptors were first described as sensory receptors located on the tongue, where they are expressed in small clusters of specialized epithelial cells. However, more studies were published in recent years pointing to an expression of these proteins not only in the oral cavity but throughout the body and thus to a physiological role beyond the tongue. The recent observation that taste receptors and components of the coupled taste transduction cascade are also expressed during the different phases of spermatogenesis as well as in mature spermatozoa from mouse to humans and the overlap between the ligand spectrum of taste receptors with compounds in the male and female reproductive organs makes it reasonable to assume that sperm "taste" these different cues in their natural microenvironments. This assumption is assisted by the recent observations of a reproductive phenotype of different mouse lines carrying a targeted deletion of a taste receptor gene as well as the finding of a significant correlation between human male infertility and some polymorphisms in taste receptors genes. In this review, we depict recent findings on the role of taste receptors in male fertility, especially focusing on their possible involvement in mechanisms underlying spermatogenesis and post testicular sperm maturation. We also highlight the impact of genetic deletions of taste receptors, as well as their polymorphisms on male reproduction.
Collapse
Affiliation(s)
- Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| | - Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| | - Dorke Wilmskötter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Ingrid Boekhoff
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| |
Collapse
|
55
|
Thawabteh A, Lelario F, Scrano L, Bufo SA, Nowak S, Behrens M, Di Pizio A, Niv MY, Karaman R. Bitterless guaifenesin prodrugs-design, synthesis, characterization, in vitro kinetics, and bitterness studies. Chem Biol Drug Des 2018; 93:262-271. [PMID: 30276968 DOI: 10.1111/cbdd.13409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/04/2018] [Accepted: 09/15/2018] [Indexed: 11/30/2022]
Abstract
A respected number of drugs suffer from bitter taste which results in patient incompliance. With the aim of solving the bitterness of guaifenesin, dimethyl maleate, maleate, glutarate, succinate, and dimethyl succinate prodrugs were designed and synthesized. Molecular orbital methods were utilized for the design of the ester prodrugs. The density functional theory (DFT) calculations revealed that the hydrolysis efficiency of the synthesized prodrugs is significantly sensitive to the pattern of substitution on C=C bond and distance between the nucleophile and the electrophile. The hydrolysis of the prodrugs was largely affected by the pH of the medium. The experimental t1/2 for the hydrolysis of guaifenesin dimaleate ester prodrugs in 1N HCl was the least and for guaifenesin dimethyl succinate was the highest. Functional heterologous expression of TAS2R14, a broadly tuned bitter taste receptor responding to guaifenesin, and experiments using these prodrugs revealed that, while some of the prodrugs still activated the receptor similarly or even stronger than the parent substance, succinate derivatization resulted in the complete loss of receptor responses. The predicted binding modes of guaifenesin and its prodrugs to the TAS2R14 homology model suggest that the decreased activity of the succinate derivatives may be caused by a clash with Phe247.
Collapse
Affiliation(s)
- Amin Thawabteh
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Filomena Lelario
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Laura Scrano
- Department of European Cultures (DICEM), University of Basilicata, Potenza, Italy
| | - Sabino A Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Stefanie Nowak
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Maik Behrens
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Rehovot, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Rehovot, Israel
| | - Rafik Karaman
- Department of Sciences, University of Basilicata, Potenza, Italy.,Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem, Palestine
| |
Collapse
|
56
|
Glendinning JI. Oral Post-Oral Actions of Low-Calorie Sweeteners: A Tale of Contradictions and Controversies. Obesity (Silver Spring) 2018; 26 Suppl 3:S9-S17. [PMID: 30290077 DOI: 10.1002/oby.22253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/28/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Many scientists and laypeople alike have concerns about low-calorie sweeteners (LCSs). These concerns stem from both a dissatisfaction with the taste of LCSs and reports that they cause metabolic disruptions (e.g., weight gain, glucose intolerance). METHODS This article provides a critical review of the literature on LCSs from the standpoint of their taste, gastrointestinal, and metabolic effects; biological fate in the body; and impact on ingestion and glucose homeostasis. RESULTS AND CONCLUSIONS Mammals can readily discriminate between LCSs and sugars because both types of sweetener activate distinct oral and post-oral sensory pathways. LCSs differ in their ability to access post-oral tissues, but few studies have incorporated this observation into their design. It is difficult to extrapolate results between mice, rats, and humans because of interspecies differences in the taste and post-oral actions of LCSs and the fact that investigators often use different response measures in rodents and humans. There is confounding in the experimental design of some of the most widely cited studies of LCS-induced metabolic disruptions. The uncritical acceptance of these studies has generated considerable controversy. More work is needed to obtain a clearer understanding of the metabolic effects of LCSs.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| |
Collapse
|
57
|
Xue AY, Di Pizio A, Levit A, Yarnitzky T, Penn O, Pupko T, Niv MY. Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes. Front Mol Biosci 2018; 5:9. [PMID: 29552563 PMCID: PMC5840161 DOI: 10.3389/fmolb.2018.00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/19/2018] [Indexed: 01/02/2023] Open
Abstract
The 25 human bitter taste receptors (hT2Rs) recognize thousands of structurally and chemically diverse bitter substances. The binding modes of human bitter taste receptors hT2R10 and hT2R46, which are responsible for strychnine recognition, were previously established using site-directed mutagenesis, functional assays, and molecular modeling. Here we construct a phylogenetic tree and reconstruct ancestral sequences of the T2R10 and T2R46 clades. We next analyze the binding sites in view of experimental data to predict their ability to recognize strychnine. This analysis suggests that the common ancestor of hT2R10 and hT2R46 is unlikely to bind strychnine in the same mode as either of its two descendants. Estimation of relative divergence times shows that hT2R10 evolved earlier than hT2R46. Strychnine recognition was likely acquired first by the earliest common ancestor of the T2R10 clade before the separation of primates from other mammals, and was highly conserved within the clade. It was probably independently acquired by the common ancestor of T2R43-47 before the homo-ape speciation, lost in most T2Rs within this clade, but enhanced in the hT2R46 after humans diverged from the rest of primates. Our findings suggest hypothetical strychnine T2R receptors in several species, and serve as an experimental guide for further study. Improved understanding of how bitter taste receptors acquire the ability to be activated by particular ligands is valuable for the development of sensors for bitterness and for potential toxicity.
Collapse
Affiliation(s)
- Ava Yuan Xue
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Antonella Di Pizio
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Levit
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Tali Yarnitzky
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
- Tali Yarnitzky Scientific Consulting, Maccabim-Reut, Israel
| | - Osnat Penn
- Modeling, Analysis and Theory Group, Allen Institute for Brain Science, Seattle, WA, United States
| | - Tal Pupko
- The Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Masha Y. Niv
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
58
|
Moine F, Brechbühl J, Nenniger Tosato M, Beaumann M, Broillet MC. Alarm pheromone and kairomone detection via bitter taste receptors in the mouse Grueneberg ganglion. BMC Biol 2018; 16:12. [PMID: 29347925 PMCID: PMC5774136 DOI: 10.1186/s12915-017-0479-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/28/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The mouse Grueneberg ganglion (GG) is an olfactory subsystem specialized in the detection of volatile heterocyclic compounds signalling danger. The signalling pathways transducing the danger signals are only beginning to be characterized. RESULTS Screening chemical libraries for compounds structurally resembling the already-identified GG ligands, we found a new category of chemicals previously identified as bitter tastants that initiated fear-related behaviours in mice depending on their volatility and evoked neuronal responses in mouse GG neurons. Screening for the expression of signalling receptors of these compounds in the mouse GG yielded transcripts of the taste receptors Tas2r115, Tas2r131, Tas2r143 and their associated G protein α-gustducin (Gnat3). We were further able to confirm their expression at the protein level. Challenging these three G protein-coupled receptors in a heterologous system with the known GG ligands, we identified TAS2R143 as a chemical danger receptor transducing both alarm pheromone and predator-derived kairomone signals. CONCLUSIONS These results demonstrate that similar molecular elements might be used by the GG and by the taste system to detect chemical danger signals present in the environment.
Collapse
Affiliation(s)
- Fabian Moine
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Julien Brechbühl
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Monique Nenniger Tosato
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Manon Beaumann
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Marie-Christine Broillet
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH-1011, Switzerland.
| |
Collapse
|
59
|
Appendino G, Brönstrup M, Kubanek JM. Olfaction, taste and chemoreception: scientific evidence replaces "Essays in biopoetry". Nat Prod Rep 2017; 34:469-471. [PMID: 28485741 DOI: 10.1039/c7np90016c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Giovanni Appendino, Mark Brönstrup and Julia Kubanek introduce the Natural Product Reports themed issue on ‘Olfaction, taste and chemoreception’.
Collapse
Affiliation(s)
- Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100 Novara, Italy.
| | | | | |
Collapse
|