51
|
Tu YS, Tseng YJ, Appell M. Quantum chemical investigation of the detection properties of alternariol and alternariol monomethyl ether. Struct Chem 2019. [DOI: 10.1007/s11224-019-01302-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
52
|
Tittlemier S, Cramer B, Dall’Asta C, Iha M, Lattanzio V, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J. Developments in mycotoxin analysis: an update for 2017-2018. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2398] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review summarises developments that have been published in the period from mid-2017 to mid-2018 on the analysis of various matrices for mycotoxins. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes, and zearalenone are covered in individual sections. Advances in sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices, and newly developed comprehensive liquid chromatographic-mass spectrometric based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| | - B. Cramer
- University of Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - C. Dall’Asta
- Università di Parma, Department of Food and Drug, Viale delle Scienze 23/A, 43124 Parma, Italy
| | - M.H. Iha
- Nucleous of Chemistry and Bromatology Science, Adolfo Lutz Institute of Ribeirão Preto, Rua Minas 866, CEP 14085-410, Ribeirão Preto, SP, Brazil
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 – Dejvice, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| |
Collapse
|
53
|
Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta 2019; 197:151-158. [PMID: 30771917 DOI: 10.1016/j.talanta.2019.01.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022]
Abstract
An ultrasensitive method for the kanamycin (KANA) detection in milk sample using surface-enhanced Raman spectroscopy-based aptasensor was employed in the current study. Double strand DNA binding bimetallic gold@silver nanoparticles were developed as a sensing platform. Probe DNAs were first embedded on the surface of gold nanoparticles by the end-modified thiol, and after silver shell encapsulating, KANA aptamer DNAs with the Raman reporter Cy3 were then hybridized with probe DNAs by complementary base pairing. Results showed that with increase in the KANA concentration, the Raman intensity of Cy3 decreased. Besides achieving selectivity, an ultralow detection limit of 0.90 pg/mL, a broad linear relationship ranging from 10 μg/mL to 100 ng/mL in aqueous reagent and satisfactory recoveries of 90.4-112% in liquid whole milk were obtained. The result of actual sample proved that this aptasensor was promising in trace determination of KANA residue.
Collapse
|
54
|
Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta 2019; 191:449-456. [DOI: 10.1016/j.talanta.2018.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
|
55
|
Hussain A, Pu H, Sun DW. Measurements of lycopene contents in fruit: A review of recent developments in conventional and novel techniques. Crit Rev Food Sci Nutr 2018; 59:758-769. [DOI: 10.1080/10408398.2018.1518896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Abid Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
56
|
Fu G, Sun DW, Pu H, Wei Q. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta 2018; 195:841-849. [PMID: 30625626 DOI: 10.1016/j.talanta.2018.11.114] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
Thiabendazole (TBZ) is a kind of pesticide that is widely used in agriculture, and its residue may pose a threat to human health. In order to measure TBZ residues in food samples, a surface-enhanced Raman spectroscopy (SERS) method combined with a homogeneous and reusable gold nanorods (GNR) array substrate was proposed. GNR with a high uniformity was synthesized and then applied to the self-assembly of a GNR vertically aligned array. The relative standard deviation (RSD) of the array for SERS could reach 15.4%, and the array could be reused for more than seven times through the treatment of plasma etching. A logarithmic correlation between TBZ concentration and Raman intensity was obtained, with the best determination coefficient (R2) and the corresponding limit of detection (LOD) of 0.991 and 0.037 mg/L in methanol solution, and 0.980 and 0.06 ppm in apple samples, respectively. The recoveries of TBZ in apple samples ranged from 76% to 107%. This study provided a rapid and sensitive approach for detecting TBZ in apples based on SERS coupled with GNR array substrate, showing great potential for analyzing other trace contaminants in food matrices.
Collapse
Affiliation(s)
- Gendi Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
57
|
Wei Q, Liu T, Sun DW. Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
58
|
Pan TT, Sun DW, Paliwal J, Pu H, Wei Q. New Method for Accurate Determination of Polyphenol Oxidase Activity Based on Reduction in SERS Intensity of Catechol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11180-11187. [PMID: 30209938 DOI: 10.1021/acs.jafc.8b03985] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rapid and accurate measurement of polyphenol oxidase (PPO) activity is important in the food industry as PPOs play a vital role in catalyzing enzymatic reactions. The aim of this study was to develop surface-enhanced Raman scattering (SERS) approach for accurate determination of PPO activity in fruit and vegetables using the reduction in SERS intensity of catechol in reaction medium. Within a certain catechol concentration, when a purified PPO solution was analyzed, the reduction in SERS intensity (Δ I) was linear to PPO activity ( Ec) in a wide range of 500-50 000 U/L, and a linear regression equation of log Δ I/Δ t = 0.6223 log Ec + 0.8072, with a correlation coefficient of 0.9689 and a limit of detection of 224.65 U/L, was obtained. The method was used for detecting PPO activity in apple and potato samples, and the results were compared with those obtained from colorimetric assay, which demonstrated that the proposed method could be successfully used for detecting PPO activity in food samples.
Collapse
Affiliation(s)
- Ting-Tiao Pan
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Department of Biosystems Engineering , University of Manitoba , E2-376, EITC, 75A Chancellor's Circle , Winnipeg , R3T 2N2 Manitoba , Canada
| | - Da-Wen Sun
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre , University College Dublin , National University of Ireland, Belfield, Dublin 4 , Ireland
| | - Jitendra Paliwal
- Department of Biosystems Engineering , University of Manitoba , E2-376, EITC, 75A Chancellor's Circle , Winnipeg , R3T 2N2 Manitoba , Canada
| | - Hongbin Pu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
| | - Qingyi Wei
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
| |
Collapse
|
59
|
Pu H, Xie X, Sun DW, Wei Q, Jiang Y. Double strand DNA functionalized Au@Ag Nps for ultrasensitive detection of 17β-estradiol using surface-enhanced raman spectroscopy. Talanta 2018; 195:419-425. [PMID: 30625564 DOI: 10.1016/j.talanta.2018.10.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 11/15/2022]
Abstract
A detection method for 17β-estradiol (E2) using surface-enhanced Raman scattering (SERS)-based aptamer sensor was presented. Raman reporter molecule Cy3 labeled E2-aptamer and DNA functionalized gold-silver core-shell nanoparticles (Au@Ag CS NPs) offered SERS with high sensitivity and selectivity. Based on the fabricated double strand DNA-immobilized gold-silver core-shell nanoparticles (Au@Ag NPs), SERS signal intensity of Raman reporter changed with the number of Cy3-labeled aptamer attached to the core-shell nanoparticles due to the strong binding affinity between the aptamers and E2 with different concentrations. A wide linear range from 1.0 × 10-13 to 1.0 × 10-9 was obtained for the detection of E2, with a low detection limit of 2.75 fM. This proposed method showed highly sensitive and selective for detecting E2, and could be used to determine E2 in actual samples.
Collapse
Affiliation(s)
- Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Xiaohui Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yingfen Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
60
|
Quantification of trace chemicals in unknown complex systems by SERS. Talanta 2018; 186:452-458. [DOI: 10.1016/j.talanta.2018.04.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/23/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022]
|