51
|
Ricigliano VA, Cank KB, Todd DA, Knowles SL, Oberlies NH. Metabolomics-Guided Comparison of Pollen and Microalgae-Based Artificial Diets in Honey Bees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9790-9801. [PMID: 35881882 PMCID: PMC9372997 DOI: 10.1021/acs.jafc.2c02583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Managed honey bee colonies used for crop pollination are fed artificial diets to offset nutritional deficiencies related to land-use intensification and climate change. In this study, we formulated novel microalgae diets using Chlorella vulgaris and Arthrospira platensis (spirulina) biomass and fed them to young adult honey bee workers. Diet-induced changes in bee metabolite profiles were studied relative to a natural pollen diet using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) metabolomics. Untargeted analyses of pollen- and microalgae-fed bees revealed significant overlap, with 248 shared features determined by LC-MS and 87 shared features determined by GC-MS. Further metabolomic commonalities were evident upon subtraction of unique diet features. Twenty-five identified metabolites were influenced by diet, which included complex lipids, essential fatty acids, vitamins, and phytochemicals. The metabolomics results are useful to understand mechanisms underlying favorable growth performance as well as increased antioxidant and heat shock protein gene expression in bees fed the microalgae diets. We conclude that the tested microalgae have potential as sustainable feed additives and as a source of bee health-modulating natural products. Metabolomics-guided diet development could eventually help tailor feed interventions to achieve precision nutrition in honey bees and other livestock animals.
Collapse
Affiliation(s)
- Vincent A. Ricigliano
- Vincent
A. Ricigliano—Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton
Rouge, Louisiana 70820, United States
| | - Kristof B. Cank
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Daniel A. Todd
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Sonja L. Knowles
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
- .
Fax: (336) 334-5402
| |
Collapse
|
52
|
Li Z, Liu Y, Zhou T, Cao L, Cai Y, Wang Y, Cui X, Yan H, Ruan R, Zhang Q. Effects of Culture Conditions on the Performance of Arthrospira platensis and Its Production of Exopolysaccharides. Foods 2022; 11:foods11142020. [PMID: 35885263 PMCID: PMC9316341 DOI: 10.3390/foods11142020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
Exopolysaccharides (EPS) produced by Arthrospira platensis (A. platensis) has been widely applied in industry and commerce for its various activities but the accumulation of EPS in culture medium may influence the growth of A. platensis reversely. This work aims to explore the impacts of initial pH, nitrogen source and concentration, phosphate concentration and recycle times of the culture medium on the growth of A. platensis and the secretion of its EPS. The results showed that EPS accumulated with the increase in recycle times of culture medium. The optimal initial pH for the growth of A. platensis was 8.50, and high pH of 11.5 inhibited the growth of biomass while resulting in highest EPS content of 92.87 mg/g DW. Excessive and limited nitrogen (NaNO3 of 25.00 g/L and NaNO3 < 2.50 g/L) and phosphate (K2HPO4 of 5.00 g/L and K2HPO4 < 0.50 g/L) inhibited the biomass production of A. platensis by 1.28−30.77% and 14.29−45.05%, respectively. EPS yield of 97.57 mg/g DW and 40.90 mg/g DW were obtained under NaNO3 of 25.00 g/L and K2HPO4 of 5.00 g/L due to salt stress. These findings are beneficial in providing a theoretical basis for high yield EPS from A. platensis without affecting biomass yield.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Yihui Cai
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Hongbin Yan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
| | - Roger Ruan
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering and Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Y.L.); (L.C.); (Y.C.); (Y.W.); (X.C.); (H.Y.)
- Correspondence: ; Tel.: +86-18070118735
| |
Collapse
|
53
|
ElFar OA, Billa N, Lim HR, Chew KW, Cheah WY, Munawaroh HSH, Balakrishnan D, Show PL. Advances in delivery methods of Arthrospira platensis (spirulina) for enhanced therapeutic outcomes. Bioengineered 2022; 13:14681-14718. [PMID: 35946342 PMCID: PMC9373759 DOI: 10.1080/21655979.2022.2100863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.
Collapse
Affiliation(s)
- Omar Ashraf ElFar
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Malaysia
| | - Nashiru Billa
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities,Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | | | | | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Malaysia
| |
Collapse
|
54
|
Vilahur G, Sutelman P, Ben-Aicha S, Mendieta G, Radiké M, Schoch L, Casaní L, Borrell-Pagés M, Padro T, Badimon L. Supplementation With Spirulina Reduces Infarct Size and Ameliorates Cardiac Function in a Pig Model of STEMI. Front Pharmacol 2022; 13:891801. [PMID: 35592428 PMCID: PMC9113432 DOI: 10.3389/fphar.2022.891801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: Myocardial infarction (MI) is the clinical manifestation of atherosclerotic coronary artery disease. Spirulina is an algae known to ameliorate cardiometabolic disorders and with proven anti-inflammatory and anti-oxidant effects. We investigated, in a highly translatable animal model, whether oral supplementation with spirulina protects against the deleterious effects triggered by ST-elevation MI (STEMI). Methods: Pigs were fed a regular diet supplemented with spirulina (1 g/animal/bid) or placebo-control for 10 days. Thereafter, animals were subjected to 1.5 h percutaneous balloon-induced coronary occlusion (STEMI) followed by 2.5 h reperfusion and then sacrificed. We assessed infarct size and cardiac function. Blood samples and infarcted and remote myocardial tissue were obtained. Results: Spirulina supplementation reduced infarct size by 64%, increased myocardial salvage by 18%, and improved cardiac function by 30% vs. controls (p < 0.05). These benefits were associated with attenuation in DNA-oxidative damage and apoptotic markers and increased iNOS in the infarcted myocardium, higher AMPK activation in the remote myocardium, and lower myocardial MCP-1 expression. Systemically, spirulina attenuated Cox-2 expression in STEMI-activated peripheral blood mononuclear cells and enhanced TNF-α release acutely post-STEMI. Additionally, spirulina decreased weight gain progression over time (p < 0.05) without changes in lipids, glucose, liver or kidney parameters. Conclusion: A 10-day supplementation with spirulina exerts cardioprotection in a preclinical setting of STEMI by limiting cardiac damage and improving ventricular contractility through anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CiberCV, Institute Carlos III, Madrid, Spain
| | - Pablo Sutelman
- Cardiovascular Program-ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Soumaya Ben-Aicha
- Cardiovascular Program-ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Guiomar Mendieta
- Cardiovascular Program-ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,Department of Cardiology, Clinic Hospital, Barcelona, Spain
| | - Monika Radiké
- Cardiovascular Program-ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Leonie Schoch
- Cardiovascular Program-ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Laura Casaní
- Cardiovascular Program-ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CiberCV, Institute Carlos III, Madrid, Spain
| | - María Borrell-Pagés
- Cardiovascular Program-ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Program-ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CiberCV, Institute Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CiberCV, Institute Carlos III, Madrid, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
55
|
Monitoring of Spirulina Flakes and Powders from Italian Companies. Molecules 2022; 27:molecules27103155. [PMID: 35630631 PMCID: PMC9143159 DOI: 10.3390/molecules27103155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
Microalgae and microalgae-derived compounds have great potential as supplements in the human diet and as a source of bioactive products with health benefits. Spirulina (Arthrospira platensis (Nordstedt) Gomont, or Spirulina platensis) belongs to the class of cyanobacteria and has been studied for its numerous health benefits, which include anti-inflammatory properties, among others. This work was aimed at comparing some spirulina products available on the Italian market. The commercial products here analyzed consisted of spirulina cultivated and processed with different approaches. Single-component spirulina products in powder and flake form, free of any type of excipient produced from four different companies operating in the sector, have been analyzed. The macro- and micromorphological examination, and the content of pigments, phycobiliproteins, phenols, and proteins have shown differences regarding the morphology and chemical composition, especially for those classes of particularly unstable compounds such as chlorophylls and carotenoids, suggesting a great influence of both culture conditions and processing methods.
Collapse
|
56
|
Fais G, Manca A, Bolognesi F, Borselli M, Concas A, Busutti M, Broggi G, Sanna P, Castillo-Aleman YM, Rivero-Jiménez RA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Altea M, Pantaleo A, Gabrielli G, Biglioli F, Cao G, Giannaccare G. Wide Range Applications of Spirulina: From Earth to Space Missions. Mar Drugs 2022; 20:md20050299. [PMID: 35621951 PMCID: PMC9143897 DOI: 10.3390/md20050299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | - Federico Bolognesi
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplant Unit, IRCCS-Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy;
| | - Giovanni Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, University of Milan, Via Celoria 11, 20133 Milan, Italy;
- Columbus Clinic Center, Via Michelangelo Buonarroti 48, 20145 Milan, Italy
| | - Pierdanilo Sanna
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yandy Marx Castillo-Aleman
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - René Antonio Rivero-Jiménez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Antonio Alfonso Bencomo-Hernandez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yendry Ventura-Carmenate
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Michela Altea
- TOLO Green, Via San Damiano 2, 20122 Milan, Italy; (M.A.); (G.G.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | | | - Federico Biglioli
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-3317186201
| |
Collapse
|
57
|
Taragjini E, Ciardi M, Musari E, Villaró S, Morillas-España A, Alarcón FJ, Lafarga T. Pilot-Scale Production of A. platensis: Protein Isolation Following an Ultrasound-Assisted Strategy and Assessment of Techno-functional Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02789-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
58
|
Ahirwar A, Kesharwani K, Deka R, Muthukumar S, Khan MJ, Rai A, Vinayak V, Varjani S, Joshi KB, Morjaria S. Microalgal drugs: A promising therapeutic reserve for the future. J Biotechnol 2022; 349:32-46. [PMID: 35339574 DOI: 10.1016/j.jbiotec.2022.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Over the decades, a variety of chemically synthesized drugs are being used to cure existing diseases but often these drugs could not be effectively employed for the treatment of serious and newly emerging diseases. Fortunately, in nature there occurs immense treasure of plants and microorganisms which are living jewels with respect to their richness of medically important metabolites of high value. Hence, amongst the existing microorganism(s), the marine world offers a plethora of biological entities that can contribute to alleviate numerous human ailments. Algae are one such photosynthetic microorganism found in both marine as well as fresh water which are rich source of metabolites known for their nutrient content and health benefits. Various algal species like Haematococcus, Diatoms, Griffithsia, Chlorella, Spirulina, Ulva, etc. have been identified and isolated to produce biologically active and pharmaceutically important high value compounds like astaxanthin, fucoxanthin, sulphur polysaccharides mainly galactose, rhamnose, xylose, fucose etc., which show antimicrobial, antifungal, anti-cancer, and antiviral activities. However, the production of either of these bio compounds is favored under conditions of stress. This review gives detailed information on various nutraceutical metabolites extracted from algae. Additionally focus has been made on the role of these bio compounds extracted from algae especially sulphur polysaccharides to treat several diseases with prospective treatment for SARS-CoV-2. Lastly it covers the knowledge gaps and future perspectives in this area of research.
Collapse
Affiliation(s)
- Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shreya Muthukumar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana, 133203, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shruti Morjaria
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| |
Collapse
|
59
|
van den Oever SP, Mayer HK. Biologically active or just” pseudo”-vitamin B12 as predominant form in algae-based nutritional supplements? J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
60
|
Lugarà R, Realini L, Kreuzer M, Giller K. Effects of maternal high-energy diet and spirulina supplementation in pregnant and lactating sows on performance, quality of carcass and meat, and its fatty acid profile in male and female offspring. Meat Sci 2022; 187:108769. [DOI: 10.1016/j.meatsci.2022.108769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
|
61
|
A Combination of Aqueous Extraction and Ultrafiltration for the Purification of Phycocyanin from Arthrospira maxima. Microorganisms 2022; 10:microorganisms10020308. [PMID: 35208763 PMCID: PMC8880360 DOI: 10.3390/microorganisms10020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
The purification of phycocyanin (PC) from Spirulina generally involves a combination of different techniques. Here, we report the results on PC yields from a combined aqueous extraction-ultrafiltration (UF) process of a strain of Arthrospira maxima cultivated in a farm devoted to producing PC with food-grade purity. Samples optimized from different biomass/solvent ratios were purified by using a polyethersulphone (PES) membrane with a molecular weight cut-off (MWCO) of 20 kDa. The UF system was operated at 2.0 ± 0.1 bar and at 24 ± 2 °C up to a volume concentration factor (VCF) of 5. A diafiltration (DF) process was conducted after UF in order to increase the PC recovery in the retentate. Samples were collected during both UF and DF processes in order to evaluate membrane productivity and PC purity. The average permeate fluxes of about 14.4 L/m2h were measured in the selected operating conditions and more than 96% of PC was rejected by the UF membrane independently ofthe extraction yields and times. The concentration of PC in the final retentate was 1.17 mg/mL; this confirmed the observed rejection and the final VCF of the process (about 5-fold when compared to the concentration of PC in the crude extract). In addition, the combination of UF and diafiltration allowed the removal of about 91.7% of the DNA from the crude extract, thereby improving the purity of the phycocyanin in the retentate fraction.
Collapse
|
62
|
Jin SE, Lee SJ, Park CY. Mass-produced Spirulina-mediated altered responses in ARPE-19 and HaCaT cells for biomedical applications. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Zanghaneh E, Mirzaei H, Jafari SM, Javadi A, Afshar Mogaddam MR. Spirulina platensis extract nanoliposomes: preparation, characterization and application to white cheese. J AOAC Int 2021; 105:827-834. [PMID: 34904627 DOI: 10.1093/jaoacint/qsab162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Ultrafiltration cheese is produced in large scale from treated and pasteurized treated and pasteurized milk with mesophilic starter and to expand its shelf life preservatives addition is needed. OBJECTIVE The purpose of the present study was preparation of encapsulate Spirulina platensis algae nanoliposomes to evaluate the characteristics of the nanoliposomes loaded with Spirulina extract (SE-NLs). In addition, the chemical and microbiological properties of white cheese produced with SE-NLs were studied. METHODS Nanoliposomes are composed of lecithin and cholesterol, used for the encapsulation of SE. The SE-NLs were prepared using the thin layer hydration method. The characteristics of produced SE-NLs including particle size, zeta potential, morphology and the encapsulation efficiency (EE) was studied during 4 weeks in different storage conditions (4 °C and 25 °C). In addition, the effect of SE and SE-NLs on the chemical and microbiological properties of white cheese was evaluated during 60 days of ripening. RESULTS The results showed that the nanoliposomes loaded with 3 mg/g of SE had the optimum formulation due to the higher EE, smaller particle size, and higher negatively charged zeta potential. The quality of the produced nanoliposomes decreased by increasing the time of storage but the SE-NLs stored at 4 °C were more stable and possessed higher EE and smaller particle sizes. While the chemical composition of the cheeses manufactured by the nanoliposome loaded with 3 mg/g SE- NLs were comparable to that of control cheese at 60 days of ripening, it showed a significant inhibitory effect on Staphylococcus aureus and Listeria monocytogenes after 30 days. CONCLUSION The utilization of SE-NLs can be considered as a natural antimicrobial and an alternative to the use of synthetic preservatives in the production of white cheese. HIGHLIGHTS Nanoliposomes of Spirulina platensis extracts was prepared.UF white cheese prepared by nanoliposomes and then were evaluated.
Collapse
Affiliation(s)
- Esmaiel Zanghaneh
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamid Mirzaei
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Seid Mahdi Jafari
- Department of Clinical Biochemistry, School of medicine, Golestan University of Medical Sciences, Golestan
| | - Afshin Javadi
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
64
|
Shioji Y, Kobayashi T, Yoshida T, Otagiri T, Onoda K, Yoshioka Y, Sasada T, Miyoshi N. Nitrogen Balance and Bioavailability of Amino Acids in Spirulina Diet-Fed Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13780-13786. [PMID: 34677963 DOI: 10.1021/acs.jafc.1c04840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spirulina widely known to consumers as a health food is mainly a dried product. Since data for raw spirulina as a protein source are insufficient, the nutritional values of dry and raw spirulina diets in Wistar rats were determined. Digestibility coefficients were significantly lower in the dry (84.1 ± 0.5%) and raw (85.7 ± 0.4%) spirulina diets than that in the casein diet (96.6 ± 0.2%), although biological values of dry (86.3 ± 1.3%) and raw (77.9 ± 2.6%) spirulina diets were significantly higher than that of the casein diet (71.9 ± 2.5%). The protein digestibility-corrected amino acid score of raw spirulina (86.6 ± 0.5%) was significantly higher than that of dry spirulina (85.1 ± 0.5%). Additionally, amino acid profiling of portal/venous blood in spirulina diet-fed rats revealed that Ala, Gly, Val, and Leu/Ile were markedly decreased after systemic circulation. These results suggest that dry and raw spirulina diets may be effective not only as a protein source but also as a supplement to support protein/amino acid bioavailability.
Collapse
Affiliation(s)
- Yudai Shioji
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Kakegawa Biocenter of VUTEQ Corporation, Shizuoka 437-1304, Japan
| | - Takuma Kobayashi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takuya Yoshida
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Tomoka Otagiri
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Keita Onoda
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yasukiyo Yoshioka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Tatsuya Sasada
- Kakegawa Biocenter of VUTEQ Corporation, Shizuoka 437-1304, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
65
|
Spirulina platensis alleviates high fat diet-induced cognitive impairment in mice via the gut-brain axis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
66
|
Witkop JJ, Vertigan T, Reynolds A, Duffy L, Barati B, Jerome S, Dunlap K. Sled dogs as a model for PM2.5 exposure from wildfires in Alaska. ENVIRONMENT INTERNATIONAL 2021; 156:106767. [PMID: 34425643 PMCID: PMC8385229 DOI: 10.1016/j.envint.2021.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter 2.5 (PM2.5) exposure induces oxidative stress associated with many negative health outcomes such as respiratory disorders, cardiovascular disease and neurodegenerative disease. Research shows that diet and exercise can improve antioxidant defense against oxidative stress. This study is the first to use an Arctic animal model to investigate the cumulative effects of two lifestyle interventions on the antioxidant response before, during, and after ambient PM 2.5 exposure from wildfire: antioxidant supplementation (Arthrospira platensis) and exercise. In a two-factorial, longitudinal design, this study divided sled dogs (n = 48) into four groups (exercise and supplemented, exercise, supplemented, and control) to (1) test the effects of a 30-day exercise and antioxidant supplementation protocol on antioxidant response; and (2) measure the antioxidant response of all groups during and after a natural wildfire event. Commercial assays for total antioxidant power (TAP) and the enzymatic antioxidant superoxide dismutase (SOD) were used as markers for antioxidant status and response. During the forest fire, SOD was increased 5- to 10-fold over pre/post-exposure levels in all groups suggesting an endogenous upregulation of defense systems in response to the acute environmental stress. TAP was lower in all groups at peak PM2.5 exposure compared to 48 h after peak exposure in all groups except the exercise alone group which may indicate that exercise offers improved endogenous defense.
Collapse
Affiliation(s)
- Jacob J Witkop
- University of Alaska Fairbanks Department of Chemistry and Biochemistry, 900 Yukon Drive Fairbanks, AK 99775, United States
| | - Theresa Vertigan
- University of Alaska, Fairbanks Institute of Arctic Biology, 2140 Koyukuk Drive Fairbanks, AK 99775, United States; University of Alaska Fairbanks Department of Chemistry and Biochemistry, 900 Yukon Drive Fairbanks, AK 99775, United States.
| | - Arleigh Reynolds
- University of Alaska Fairbanks Center for One Health, Arctic Health Research Building, Fairbanks, AK 99775, United States.
| | - Lawrence Duffy
- University of Alaska, Fairbanks Institute of Arctic Biology, 2140 Koyukuk Drive Fairbanks, AK 99775, United States; University of Alaska Fairbanks Department of Chemistry and Biochemistry, 900 Yukon Drive Fairbanks, AK 99775, United States.
| | - Bahareh Barati
- University of Alaska, Fairbanks Institute of Arctic Biology, 2140 Koyukuk Drive Fairbanks, AK 99775, United States.
| | - Scott Jerome
- University of Alaska, Fairbanks Institute of Arctic Biology, 2140 Koyukuk Drive Fairbanks, AK 99775, United States; University of Alaska Fairbanks Department of Chemistry and Biochemistry, 900 Yukon Drive Fairbanks, AK 99775, United States.
| | - Kriya Dunlap
- University of Alaska, Fairbanks Institute of Arctic Biology, 2140 Koyukuk Drive Fairbanks, AK 99775, United States; University of Alaska Fairbanks Department of Chemistry and Biochemistry, 900 Yukon Drive Fairbanks, AK 99775, United States.
| |
Collapse
|
67
|
Machowiec P, Ręka G, Maksymowicz M, Piecewicz-Szczęsna H, Smoleń A. Effect of Spirulina Supplementation on Systolic and Diastolic Blood Pressure: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13093054. [PMID: 34578932 PMCID: PMC8468496 DOI: 10.3390/nu13093054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/25/2022] Open
Abstract
Spirulina is a microalga that presents various important pro-health properties, for instance lowering blood pressure in the research. The study aims to appraise the efficacy of Spirulina administration on systolic (SBP) and diastolic blood pressure (DBP). Randomized controlled trials (RCTs) were retrieved by a systematic search of PubMed, Web of Science, and the Cochrane Library databases from inception to June 2021 according to a standardized protocol. The effect size of each study was counted from mean and standard deviation before and after the intervention and shown as Un-standardized mean difference and 95% confidence interval. Sensitivity analyses were performed. Meta-analysis on 5 RCTs with 230 subjects was eligible. The amount of Spirulina ranged from 1 to 8 g per day, and intervention durations ranged from 2 to 12 weeks. Data analysis indicated that Spirulina supplementation led to a significant lowering of SBP (Mean Difference (MD): -4.59 mmHg, 95% Confidence Interval (CI): -8.20 to -0.99, I square statistic (I2) = 65%) and significant lowering of DBP (MD: -7.02 mmHg, CI: -8.86 to -5.18, I2 = 11%), particularly in a subgroup of hypertensive patients. Spirulina administration might have a supportive effect on the prevention and treatment of hypertension. More exact randomized controlled trials are needed to clarify the effect of Spirulina supplementation on blood pressure.
Collapse
|
68
|
Keller RJ, Porter W, Goli K, Rosenthal R, Butler N, Jones JA. Biologically-Based and Physiochemical Life Support and In Situ Resource Utilization for Exploration of the Solar System-Reviewing the Current State and Defining Future Development Needs. Life (Basel) 2021; 11:844. [PMID: 34440588 PMCID: PMC8398003 DOI: 10.3390/life11080844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/02/2022] Open
Abstract
The future of long-duration spaceflight missions will place our vehicles and crew outside of the comfort of low-Earth orbit. Luxuries of quick resupply and frequent crew changes will not be available. Future missions will have to be adapted to low resource environments and be suited to use resources at their destinations to complete the latter parts of the mission. This includes the production of food, oxygen, and return fuel for human flight. In this chapter, we performed a review of the current literature, and offer a vision for the implementation of cyanobacteria-based bio-regenerative life support systems and in situ resource utilization during long duration expeditions, using the Moon and Mars for examples. Much work has been done to understand the nutritional benefits of cyanobacteria and their ability to survive in extreme environments like what is expected on other celestial objects. Fuel production is still in its infancy, but cyanobacterial production of methane is a promising front. In this chapter, we put forth a vision of a three-stage reactor system for regolith processing, nutritional and atmospheric production, and biofuel production as well as diving into what that system will look like during flight and a discussion on containment considerations.
Collapse
Affiliation(s)
- Ryan J. Keller
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (W.P.); (K.G.); (R.R.); (N.B.); (J.A.J.)
| | | | | | | | | | | |
Collapse
|
69
|
|
70
|
Augustsson A, Qvarforth A, Engström E, Paulukat C, Rodushkin I. Trace and major elements in food supplements of different origin: Implications for daily intake levels and health risks. Toxicol Rep 2021; 8:1067-1080. [PMID: 34094882 PMCID: PMC8166911 DOI: 10.1016/j.toxrep.2021.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
As the use of food supplements increases, voices are being raised questioning the safety of these products. As a contribution to understanding the trace and major elemental composition of food supplements and their potential health risks, this study presents concentrations of 71 elements in 138 supplements, categorised into synthetic products and three groups of products with natural ingredients. Concentrations were converted into average daily doses (ADDs) and compared to tolerable daily intakes (TDIs). For elements where we found significant ADDs relative to the TDI a comparison was also made to the normal dietary intake. Our main findings are that: 1) Most elements display highly variable concentrations in food supplements; more so than in normal foodstuff; 2) For ten of the analysed elements some products rendered ADDs > 50 % of the TDI. Half of the elements were essential (Fe, Mn, Se, Mo, Zn), and as such motivated in food supplements. The other half (As, Pb, Cd, Al, Ni) represent non-essential and highly toxic elements, where the occurrence in food supplements ought to be viewed as contamination. Although none of these toxic metals were declared on any product's table of content, several products gave high ADDs - in several cases even exceeding the TDIs; 3) The risk of reaching high ADDs for the toxic elements is strongly associated with products that contain marine ingredients (e.g. algae, mussels etc), and to some degree products of terrestrial plant-based origin. The health of consumers would benefit if food regulatory frameworks were updated to better address the risks of food supplements occasionally being contaminated with different toxic metals, for example by setting maximum permissible concentrations for a longer list of elements.
Collapse
Affiliation(s)
- A. Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - A. Qvarforth
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - E. Engström
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden
- ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - C. Paulukat
- ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - I. Rodushkin
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden
- ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| |
Collapse
|
71
|
Tudor C, Gherasim EC, Dulf FV, Pintea A. In vitro bioaccessibility of macular xanthophylls from commercial microalgal powders of Arthrospira platensis and Chlorella pyrenoidosa. Food Sci Nutr 2021; 9:1896-1906. [PMID: 33841808 PMCID: PMC8020956 DOI: 10.1002/fsn3.2150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
The bioaccessibility of the major carotenoids present in two commercial microalgal supplements in powder form was investigated through a standardized in vitro digestion method. The dried biomass of Arthrospira platensis contained β-carotene (36.8 mg/100 g) and zeaxanthin (20.8 mg/100 g) as the main carotenoids as well as a high content of saturated fatty acids (61% of total fatty acids), whereas that of Chlorella pyrenoidosa was rich in lutein (37.8 mg/100 g) and had a high level of unsaturated fatty acids (65% of total fatty acids). In the case of the latter, lutein bioaccessibility was not statistically enhanced after the replacement of porcine bile extract with bovine bile extract in the in vitro digestion protocol and after the addition of coconut oil (17.8% as against to 19.2% and 19.2% vs. 18.5%, respectively). In contrast, the use of bovine bile extract along with co-digestion with coconut oil significantly enhanced the bioaccessibility of zeaxanthin from A. platensis, reaching the highest bioaccessibility of 42.8%.
Collapse
Affiliation(s)
- Cristina Tudor
- University of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | | | | | - Adela Pintea
- University of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| |
Collapse
|
72
|
Semba RD, Ramsing R, Rahman N, Kraemer K, Bloem MW. Legumes as a sustainable source of protein in human diets. GLOBAL FOOD SECURITY 2021. [DOI: 10.1016/j.gfs.2021.100520] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
73
|
Kejžar J, Jagodic Hudobivnik M, Nečemer M, Ogrinc N, Masten Rutar J, Poklar Ulrih N. Characterization of Algae Dietary Supplements Using Antioxidative Potential, Elemental Composition, and Stable Isotopes Approach. Front Nutr 2021; 7:618503. [PMID: 33614692 PMCID: PMC7892597 DOI: 10.3389/fnut.2020.618503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
Dietary supplements based on algae, known for their nutritional value and bioactive properties, are popular products among consumers today. While commercial algal products are regarded safe by numerous studies, information about the production and origin of such products is scarce. In addition, dietary supplements are not as strictly regulated as food and medicinal drugs. We characterized different algal products (kelps: Laminariales, Spirulina spp., Chlorella spp., and Aphanizomenon flos-aquae), obtained on Slovenian market, based on their elemental composition (X-ray fluorescence, inductively coupled plasma–mass spectrometry), antioxidative potential [DPPH (2,2-diphenyl-1-picrylhydrazyl) assay, total phenolic content], and stable isotope values [carbon (C), nitrogen (N), and sulfur (S); elemental analyzer isotope ratio mass spectrometry (EA-IRMS) method]. Antioxidative potential is consistent among products of the same type, with A. flos-aquae samples having 4.4 times higher antioxidative potential compared to Chlorella spp. and 2.7 times higher compared to Spirulina spp. Levels of toxic trace elements (arsenic, cadmium, mercury, and lead) are below the maximum allowed values and as such do not pose risk to consumers' health. Samples of Spirulina spp. have relatively high δ15N (7.4 ‰ ± 4.4‰) values, which indicate use of organic nitrogen sources in certain samples. Likewise, different elemental composition and isotopic ratios of stable elements (C, N, and S) for the samples with Spirulina spp. or Chlorella spp. are the consequence of using different nutrient sources and algae-growing techniques. Statistical analysis (principal component analysis) has confirmed that all tested A. flos-aquae samples originate from the same source, supposedly Klamath Lake (Oregon, USA). Hawaiian Spirulina pacifica can also be differentiated from all the other samples because of its characteristically high metal content (iron, manganese, zinc, cobalt, nickel, vanadium). Chlorella spp. and Spirulina spp. require further analyses with larger number of samples, as differentiation is not possible based on results of this study.
Collapse
Affiliation(s)
- Jan Kejžar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Marijan Nečemer
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jasmina Masten Rutar
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
74
|
Liu D, Liberton M, Hendry JI, Aminian-Dehkordi J, Maranas CD, Pakrasi HB. Engineering biology approaches for food and nutrient production by cyanobacteria. Curr Opin Biotechnol 2020; 67:1-6. [PMID: 33129046 DOI: 10.1016/j.copbio.2020.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023]
Abstract
As photoautotrophic organisms, cyanobacteria capture and store solar energy in the form of biomass. Cyanobacterial biomass has been an important component of diet and nutrition in several regions for centuries. Synthetic biology strategies are currently being applied to increase the yield and productivity of cyanobacterial biomass by optimizing solar energy utilization and CO2 fixation rates for carbon storage. Likewise, engineering cyanobacteria as cellular factories to synthesize carbohydrates, amino acids, proteins, lipids and fatty acids is providing an attractive way to sustainably produce food and nutrients for human consumption. In this review, we have summarized recent progress in both aspects and prospective trends under development.
Collapse
Affiliation(s)
- Deng Liu
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - John I Hendry
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Javad Aminian-Dehkordi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
75
|
Sinha S, Patro N, Tiwari PK, Patro IK. Maternal Spirulina supplementation during pregnancy and lactation partially prevents oxidative stress, glial activation and neuronal damage in protein malnourished F1 progeny. Neurochem Int 2020; 141:104877. [PMID: 33049335 DOI: 10.1016/j.neuint.2020.104877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Protein malnutrition (PMN) is a global health issue but most prevalent in Africa and Asia. It exerts detrimental effect on structural and physiological aspects of hippocampal circuitry. Despite accumulating evidence for PMN induced changes in nervous system, relatively very little is known about how maternal nutritional supplementation during malnutrition affects glial cells and neurons. Herein, we aimed to investigate the effects of maternal Spirulina supplementation against PMN induced oxidative stress, reactive gliosis and neuronal damage in hippocampus of F1 progeny. Three months old healthy Sprague Dawley females (n = 24) were shifted to normoprotein (NC; 20% protein) and low protein (LP; 8% protein) diets 15 days before conception. The NC and LP group females were subdivided into two groups according to Spirulina supplementation (400 mg/kg/b.wt. orally throughout gestation and lactation period): normal control with Spirulina (NC SPI) and low protein with Spirulina supplemented group (LP SPI). F1 progeny born were used in present study. Thus, building on earlier results of ameliorated neurobehavioral and cognitive abilities in Spirulina supplemented protein deprived rats, the present study incorporates neurochemical and morphometric analysis of glial cells and neurons and revealed that maternal Spirulina consumption partially prevented the PMN associated neuropathological alterations in terms of attenuated oxidative brain damage, reduced reactive gliosis and apoptotic cell population, improved dendritic branch complexity with few damaged neurons and enhanced mushroom shaped spine density. The results suggest that cellular changes in hippocampus after PMN are partially restored after maternal Spirulina supplementation and one could envision intervention approaches using Spirulina against malnutrition.
Collapse
Affiliation(s)
- Shrstha Sinha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - P K Tiwari
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
76
|
Ho KKHY, Redan BW. Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Crit Rev Food Sci Nutr 2020; 62:508-526. [DOI: 10.1080/10408398.2020.1821598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kacie K. H. Y. Ho
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Bedford Park, Illinois, USA
| |
Collapse
|
77
|
Lafarga T, Fernández-Sevilla JM, González-López C, Acién-Fernández FG. Spirulina for the food and functional food industries. Food Res Int 2020; 137:109356. [PMID: 33233059 DOI: 10.1016/j.foodres.2020.109356] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/05/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Humans are no strangers to the consumption of microalgae as already in the sixteenth century Spirulina was harvested from Lake Texcoco and consumed in markets in Tenochtitlan (today Mexico City). Nowadays, microalgae are being incorporated into many food formulations. Most of these use microalgae as a marketing strategy or as a colouring agent. However, Spirulina (and compounds derived thereof) show potential for being used as ingredients in the development of novel functional foods, which are one of the top trends in the food industry. Several human intervention studies demonstrated the potential of Spirulina for being used in the prevention or treatment of disorders related to metabolic syndrome. The aim of the current paper was to review current and potential applications of this microalga in the food and functional food industries. Health benefits associated with consuming Spirulina and/or some of the most important compounds derived from Spirulina were also discussed.
Collapse
Affiliation(s)
- Tomas Lafarga
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain.
| | | | | | | |
Collapse
|