51
|
Sanchez-Burgos I, Joseph JA, Collepardo-Guevara R, Espinosa JR. Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients. Sci Rep 2021; 11:15241. [PMID: 34315935 PMCID: PMC8316449 DOI: 10.1038/s41598-021-94309-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Biomolecular condensates are liquid-like membraneless compartments that contribute to the spatiotemporal organization of proteins, RNA, and other biomolecules inside cells. Some membraneless compartments, such as nucleoli, are dispersed as different condensates that do not grow beyond a certain size, or do not present coalescence over time. In this work, using a minimal protein model, we show that phase separation of binary mixtures of scaffolds and low-valency clients that can act as surfactants-i.e., that significantly reduce the droplet surface tension-can yield either a single drop or multiple droplets that conserve their sizes on long timescales (herein 'multidroplet size-conserved' scenario'), depending on the scaffold to client ratio. Our simulations demonstrate that protein connectivity and condensate surface tension regulate the balance between these two scenarios. The multidroplet size-conserved scenario spontaneously arises at increasing surfactant-to-scaffold concentrations, when the interfacial penalty for creating small liquid droplets is sufficiently reduced by the surfactant proteins that are preferentially located at the interface. In contrast, low surfactant-to-scaffold concentrations enable continuous growth and fusion of droplets without restrictions. Overall, our work proposes one thermodynamic mechanism to help rationalize how size-conserved coexisting condensates can persist inside cells-shedding light on the roles of protein connectivity, binding affinity, and droplet composition in this process.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
52
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|