51
|
Huisman KH, Thijssen JM. CISS Effect: A Magnetoresistance Through Inelastic Scattering. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:23364-23369. [PMID: 34737840 PMCID: PMC8558858 DOI: 10.1021/acs.jpcc.1c06193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Indexed: 05/05/2023]
Abstract
One of the manifestations of chirality-induced spin selectivity is the magnetoresistance (MR) in two-terminal transport measurements on molecular junctions. This paper investigates the effect of spin-orbit coupling in the leads on the polarization of the transmission. A helicene molecule between two gold contacts is studied using a tight binding model. To study the occurrence of MR, which is prohibited in coherent transport, as a consequence of the Büttiker reciprocity, we add Büttiker probes to the system in order to incorporate inelastic scattering effects. We show that for a strict two-terminal system without inelastic scattering, the MR is strictly zero in the linear and nonlinear regimes. We show that for a two-terminal system with inelastic scattering, a nonzero MR does appear in the nonlinear regime, reaching values of the order of 0.1%. Our calculations show that for a two-terminal system respecting time-reversal symmetry and charge conservation, a nonzero MR can only be obtained through inelastic scattering. However, spin-orbit coupling in the leads in combination with inelastic scattering modeled with the Büttiker probe method cannot explain the magnitude of the MR measured in experiments.
Collapse
|
52
|
Lu Y, Wang Q, He R, Zhou F, Yang X, Wang D, Cao H, He W, Pan F, Yang Z, Song C. Highly Efficient Spin‐Filtering Transport in Chiral Hybrid Copper Halides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Lu
- Department of Materials Physics and Chemistry School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Qian Wang
- Key Laboratory of Advanced Materials (MOE) School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Ruilin He
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 China
| | - Foxin Zhou
- Department of Materials Physics and Chemistry School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xia Yang
- Department of Materials Physics and Chemistry School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Dong Wang
- Department of Materials Physics and Chemistry School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Hui Cao
- Department of Materials Physics and Chemistry School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Wanli He
- Department of Materials Physics and Chemistry School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE) School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Zhou Yang
- Department of Materials Physics and Chemistry School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE) School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
53
|
Lu Y, Wang Q, He R, Zhou F, Yang X, Wang D, Cao H, He W, Pan F, Yang Z, Song C. Highly Efficient Spin-Filtering Transport in Chiral Hybrid Copper Halides. Angew Chem Int Ed Engl 2021; 60:23578-23583. [PMID: 34423529 DOI: 10.1002/anie.202109595] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 01/03/2023]
Abstract
Chiral Pb(Sn)-I hybrid organic-inorganic perovskites exhibit outstanding chiral-induced spin selectivity (CISS) performance, but the nontoxic lead-free hybrid materials with high stability are still greatly desired for spin filtering in spintronic applications. We synthesize chiral hybrid copper halides (R/S-MBA)2 CuX4 (MBA=methylbenzylammonium; X=Cl, Br) with characteristic 0D CuX4 tetrahedral structural motifs, combining the low toxicity of Cu2+ and air stability of halide ions (Cl- and Br- ). Despite similar structural and electronic features, (R/S-MBA)2 CuBr4 shows much smaller chiroptical activity than the chloride counterpart. Magnetically conductive atomic force microscopy measurements display a typical spin-polarized charge-transport property with high efficiency up to 90 % for both copper halides. Our work expands the CISS effect into eco-friendly and stable metal-organic halides, which is promising for applications in spintronics based on transition-metal hybrid systems.
Collapse
Affiliation(s)
- Ying Lu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruilin He
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Foxin Zhou
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xia Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hui Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wanli He
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhou Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
54
|
Alwan S, Dubi Y. Spinterface Origin for the Chirality-Induced Spin-Selectivity Effect. J Am Chem Soc 2021; 143:14235-14241. [PMID: 34460242 DOI: 10.1021/jacs.1c05637] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
When electrons are injected through a chiral molecule, the resulting current may become spin polarized. This effect, known as the chirality-induced spin-selectivity (CISS) effect, has been suggested to emerge due to the interplay between spin-orbit interactions and the chirality within the molecule. However, such explanations require unrealistically large values for the molecular spin-orbit interaction. Here, we present a theory for the CISS effect based on the interplay between spin-orbit interactions in the electrode, the chirality of the molecule (which induces a solenoid field), and spin-transfer torque at the molecule-electrode interface. Using a mean-field calculation with simple models for the molecular junction, we show that our phenomenological theory can qualitatively account for all key experimental observations, most importantly the magnitude of the CISS with realistic parameters. We also provide a set of predictions which can be readily tested experimentally.
Collapse
Affiliation(s)
- Seif Alwan
- Department of Chemistry, Ben Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Yonatan Dubi
- Department of Chemistry, Ben Gurion University of the Negev, Be'er Sheva 8410501, Israel.,Ilse Katz Center for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be'er Sheva 8410501, Israel
| |
Collapse
|
55
|
Wang X, Sun M, Qu A, Wang W, Lu M, Guo X, Chen C, Hao C, Xu L, Xu C, Kuang H. Improved Reactive Oxygen Species Generation by Chiral Co
3
O
4
Supraparticles under Electromagnetic Fields. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiuxiu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Maozhong Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Aihua Qu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Weiwei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Meiru Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Xiao Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Chen Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Changlong Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Liguang Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Chuanlai Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| | - Hua Kuang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
56
|
Wang X, Sun M, Qu A, Wang W, Lu M, Guo X, Chen C, Hao C, Xu L, Xu C, Kuang H. Improved Reactive Oxygen Species Generation by Chiral Co 3 O 4 Supraparticles under Electromagnetic Fields. Angew Chem Int Ed Engl 2021; 60:18240-18246. [PMID: 34018664 DOI: 10.1002/anie.202105675] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/24/2022]
Abstract
One of the most common methods to treat thromboembolism is the use of thrombolytic drugs to activate fibrinolytic protease. The aim of this treatment was to initiate the lysis of fibrin; however, there are many side-effects associated with this form of treatment. Herein, we fabricated chiral Co3 O4 supraparticles (SPs) with a g-factor of up to 0.02 at 550 nm and paramagnetic performance applied in the treatment of thromboembolism under an electromagnetic field (MF). In vitro experiments showed that d-SPs degraded blood clot within 8 hours under MF. Compared to l-SPs, d-SPs exhibited much stronger thrombolytic ability and effectively enhanced the survival rate of thrombosis model mice more than 70 % in the 25 d of observation. The results of mechanism study showed that under MF, the level of reactive oxygen species (ROS) produced by d-SPs were 1.5 times higher than that of l-SPs, which might be attributed to the chiral-induced spin selectivity effects.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Weiwei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Meiru Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chen Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Changlong Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
57
|
Chiesa A, Chizzini M, Garlatti E, Salvadori E, Tacchino F, Santini P, Tavernelli I, Bittl R, Chiesa M, Sessoli R, Carretta S. Assessing the Nature of Chiral-Induced Spin Selectivity by Magnetic Resonance. J Phys Chem Lett 2021; 12:6341-6347. [PMID: 34228926 PMCID: PMC8397348 DOI: 10.1021/acs.jpclett.1c01447] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/21/2021] [Indexed: 05/20/2023]
Abstract
Understanding chiral-induced spin selectivity (CISS), resulting from charge transport through helical systems, has recently inspired many experimental and theoretical efforts but is still the object of intense debate. In order to assess the nature of CISS, we propose to focus on electron-transfer processes occurring at the single-molecule level. We design simple magnetic resonance experiments, exploiting a qubit as a highly sensitive and coherent magnetic sensor, to provide clear signatures of the acceptor polarization. Moreover, we show that information could even be obtained from time-resolved electron paramagnetic resonance experiments on a randomly oriented solution of molecules. The proposed experiments will unveil the role of chiral linkers in electron transfer and could also be exploited for quantum computing applications.
Collapse
Affiliation(s)
- A. Chiesa
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - M. Chizzini
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
| | - E. Garlatti
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - E. Salvadori
- Dipartimento
di Chimica & NIS Centre, Università
di Torino, Via P. Giuria
7, I-10125 Torino, Italy
| | - F. Tacchino
- IBM
Quantum, IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - P. Santini
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - I. Tavernelli
- IBM
Quantum, IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - R. Bittl
- Freie
Universität Berlin, Fachbereich Physik, Berlin Joint EPR Lab, Arnimallee 14, D-14195 Berlin, Germany
| | - M. Chiesa
- Dipartimento
di Chimica & NIS Centre, Università
di Torino, Via P. Giuria
7, I-10125 Torino, Italy
| | - R. Sessoli
- Dipartimento
di Chimica “Ugo Schiff” & INSTM, Università Degli Studi di Firenze, I-50019 Sesto Fiorentino, Italy
| | - S. Carretta
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|
58
|
Fransson J. Charge Redistribution and Spin Polarization Driven by Correlation Induced Electron Exchange in Chiral Molecules. NANO LETTERS 2021; 21:3026-3032. [PMID: 33759530 PMCID: PMC8050826 DOI: 10.1021/acs.nanolett.1c00183] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Indexed: 05/20/2023]
Abstract
Chiral induced spin selectivity is a phenomenon that has been attributed to chirality, spin-orbit interactions, and nonequilibrium conditions, while the role of electron exchange and correlations have been investigated only marginally until very recently. However, as recent experiments show that chiral molecules acquire a finite spin-polarization merely by being in contact with a metallic surface, these results suggest that electron correlations play a more crucial role for the emergence of the phenomenon than previously thought. Here, it is demonstrated that molecular vibrations give rise to molecular charge redistribution and accompany spin-polarization when coupling a chiral molecule to a nonmagnetic metal. The presented theory opens up new routes to construct a comprehensive picture of enantiomer separation.
Collapse
Affiliation(s)
- Jonas Fransson
- Department of Physics and Astronomy, Uppsala University, Box 516, 75121 Uppsala, Sweden
| |
Collapse
|
59
|
Li X, Nan J, Pan X. Chiral Induced Spin Selectivity as a Spontaneous Intertwined Order. PHYSICAL REVIEW LETTERS 2020; 125:263002. [PMID: 33449790 DOI: 10.1103/physrevlett.125.263002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Chiral induced spin selectivity (CISS) describes efficient spin filtering by chiral molecules. This phenomenon has led to nanoscale manipulation of quantum spins with promising applications to spintronics and quantum computing, since its discovery nearly two decades ago. However, its underlying mechanism still remains mysterious for the required spin-orbit interaction (SOI) strength is unexpectedly large. Here we report a multi-orbital theory for CISS, where an effective SOI emerges from spontaneous formation of electron-hole pairing caused by many-body correlation. This mechanism produces a strong SOI reaching the energy scale of room temperature, which could support the large spin polarization observed in CISS. One central ingredient of our theory is the Wannier functions of the valence and conduction bands correspond, respectively, to one- and two-dimensional representation of the spatial rotation symmetry around the molecule elongation direction. The induced SOI strength is found to decrease when the band gap increases. Our theory may provide important guidance for searching other molecules with CISS effects.
Collapse
Affiliation(s)
- Xiaopeng Li
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, AI Tower, Xuhui District, Shanghai 200232, China
| | - Jue Nan
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
60
|
Zöllner MS, Saghatchi A, Mujica V, Herrmann C. Influence of Electronic Structure Modeling and Junction Structure on First-Principles Chiral Induced Spin Selectivity. J Chem Theory Comput 2020; 16:7357-7371. [PMID: 33167619 DOI: 10.1021/acs.jctc.0c00621] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have carried out a comprehensive study of the influence of electronic structure modeling and junction structure description on the first-principles calculation of the spin polarization in molecular junctions caused by the chiral induced spin selectivity (CISS) effect. We explore the limits and the sensitivity to modeling decisions of a Landauer/Green's function/two-component density functional theory approach to CISS. We find that although the CISS effect is entirely attributed in the literature to molecular spin filtering, spin-orbit coupling being partially inherited from the metal electrodes plays an important role in our calculations on ideal carbon helices, even though this effect cannot explain the experimental conductance results. Its magnitude depends considerably on the shape, size, and material of the metal clusters modeling the electrodes. Also, a pronounced dependence on the specific description of exchange interaction and spin-orbit coupling is manifest in our approach. This is important because the interplay between exchange effects and spin-orbit coupling may play an important role in the description of the junction magnetic response. Our calculations are relevant for the whole field of spin-polarized electron transport and electron transfer, because there is still an open discussion in the literature about the detailed underlying mechanism and the magnitude of physical parameters that need to be included to achieve a consistent description of the CISS effect: seemingly good quantitative agreement between simulation and the experiment can be caused by error compensation, because spin polarization as contained in a Landauer/Green's function/two-component density functional theory approach depends strongly on computational and structural parameters.
Collapse
Affiliation(s)
| | - Aida Saghatchi
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Vladimiro Mujica
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States.,Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), Donostia, Euskadi P.K. 1072, 20080, Spain
| | - Carmen Herrmann
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
61
|
Dianat A, Gutierrez R, Alpern H, Mujica V, Ziv A, Yochelis S, Millo O, Paltiel Y, Cuniberti G. Role of Exchange Interactions in the Magnetic Response and Intermolecular Recognition of Chiral Molecules. NANO LETTERS 2020; 20:7077-7086. [PMID: 32786950 DOI: 10.1021/acs.nanolett.0c02216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physical origin of the so-called chirality-induced spin selectivity (CISS) effect has puzzled experimental and theoretical researchers over the past few years. Early experiments were interpreted in terms of unconventional spin-orbit interactions mediated by the helical geometry. However, more recent experimental studies have clearly revealed that electronic exchange interactions also play a key role in the magnetic response of chiral molecules in singlet states. In this investigation, we use spin-polarized closed-shell density functional theory calculations to address the influence of exchange contributions to the interaction between helical molecules as well as of helical molecules with magnetized substrates. We show that exchange effects result in differences in the interaction properties with magnetized surfaces, shedding light into the possible origin of two recent important experimental results: enantiomer separation and magnetic exchange force microscopy with AFM tips functionalized with helical peptides.
Collapse
Affiliation(s)
- Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| | - Hen Alpern
- Applied Physics Department and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Vladimiro Mujica
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Ikerbasque Foundation and Donostia International Physics Center (DIPC), Manuel de Lardizabal Pasealekua 4, 20018 Donostia, Euskadi Spain
| | - Amir Ziv
- Applied Physics Department and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shira Yochelis
- Applied Physics Department and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Oded Millo
- Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yossi Paltiel
- Applied Physics Department and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
62
|
Yang X, van der Wal CH, van Wees BJ. Detecting Chirality in Two-Terminal Electronic Nanodevices. NANO LETTERS 2020; 20:6148-6154. [PMID: 32672980 PMCID: PMC7458476 DOI: 10.1021/acs.nanolett.0c02417] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Central to spintronics is the interconversion between electronic charge and spin currents, and this can arise from the chirality-induced spin selectivity (CISS) effect. CISS is often studied as magnetoresistance (MR) in two-terminal (2T) electronic nanodevices containing a chiral (molecular) component and a ferromagnet. However, fundamental understanding of when and how this MR can occur is lacking. Here, we uncover an elementary mechanism that generates such an MR for nonlinear response. It requires energy-dependent transport and energy relaxation within the device. The sign of the MR depends on chirality, charge carrier type, and bias direction. Additionally, we reveal how CISS can be detected in the linear response regime in magnet-free 2T nanodevices, either by forming a chirality-based spin-valve using two or more chiral components or by Hanle spin precession in devices with a single chiral component. Our results provide operation principles and design guidelines for chirality-based spintronic nanodevices and technologies.
Collapse
|
63
|
Geyer M, Gutierrez R, Cuniberti G. Effective Hamiltonian model for helically constrained quantum systems within adiabatic perturbation theory: Application to the chirality-induced spin selectivity (CISS) effect. J Chem Phys 2020; 152:214105. [DOI: 10.1063/5.0005181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthias Geyer
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
64
|
Ghazaryan A, Paltiel Y, Lemeshko M. Analytic Model of Chiral-Induced Spin Selectivity. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:11716-11721. [PMID: 32499842 PMCID: PMC7262685 DOI: 10.1021/acs.jpcc.0c02584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Indexed: 05/05/2023]
Abstract
Organic materials are known to feature long spin-diffusion times, originating in a generally small spin-orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle that attracted a lot of attention in recent years. Here, we revisit the physical origins of chiral-induced spin selectivity (CISS) and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wire's axes and is therefore quite general. Importantly, it shows that the helical structure of the molecule is not necessary to observe CISS and other chiral nonhelical molecules can also be considered as potential candidates for the CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in the experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where the CISS effect plays an essential role.
Collapse
Affiliation(s)
- Areg Ghazaryan
- IST
Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Yossi Paltiel
- Applied
Physics Department, The Hebrew University
of Jerusalem, Bergmann
Building, Safra Campus, Jerusalem 91904, Israel
| | - Mikhail Lemeshko
- IST
Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
65
|
Abstract
This Perspective discusses recent experiments that bear on the chiral induced spin selectivity (CISS) mechanism and its manifestation in electronic and magnetic properties of chiral molecules and materials. Although the discussion emphasizes newer experiments, such as the magnetization dependence of chiral molecule interactions with ferromagnetic surfaces, early experiments, which reveal the nonlinear scaling of the spin filtering with applied potential, are described also. In many of the theoretical studies, one has had to invoke unusually large spin-orbit couplings in order to reproduce the large spin filtering observed in experiments. Experiments imply that exchange interactions and Pauli exclusion constraints are an important aspect of CISS. They also demonstrate the spin-dependent charge flow between a ferromagnetic substrate and chiral molecules. With these insights in mind, a simplified model is described in which the chiral molecule's spin polarization is enhanced by a spin blockade effect to generate large spin filtering.
Collapse
Affiliation(s)
- R Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Y Paltiel
- Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - D H Waldeck
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260 United States
| |
Collapse
|
66
|
Zöllner MS, Varela S, Medina E, Mujica V, Herrmann C. Insight into the Origin of Chiral-Induced Spin Selectivity from a Symmetry Analysis of Electronic Transmission. J Chem Theory Comput 2020; 16:2914-2929. [DOI: 10.1021/acs.jctc.9b01078] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Solmar Varela
- School of Chemical Sciences and Engineering, Yachay Tech University, 100119 Urcuquı́, Ecuador
| | - Ernesto Medina
- Yachay Tech University, School of Physical Sciences and Nanotechnology, 100119 Urcuquı́, Ecuador
| | - Vladimiro Mujica
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Carmen Herrmann
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
67
|
Sierra MA, Sánchez D, Gutierrez R, Cuniberti G, Domínguez-Adame F, Díaz E. Spin-Polarized Electron Transmission in DNA-Like Systems. Biomolecules 2019; 10:E49. [PMID: 31905610 PMCID: PMC7022823 DOI: 10.3390/biom10010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/29/2023] Open
Abstract
The helical distribution of the electronic density in chiral molecules, such as DNA and bacteriorhodopsin, has been suggested to induce a spin-orbit coupling interaction that may lead to the so-called chirality-induced spin selectivity (CISS) effect. Key ingredients for the theoretical modelling are, in this context, the helically shaped potential of the molecule and, concomitantly, a Rashba-like spin-orbit coupling due to the appearance of a magnetic field in the electron reference frame. Symmetries of these models clearly play a crucial role in explaining the observed effect, but a thorough analysis has been largely ignored in the literature. In this work, we present a study of these symmetries and how they can be exploited to enhance chiral-induced spin selectivity in helical molecular systems.
Collapse
Affiliation(s)
- Miguel A. Sierra
- Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain; (M.A.S.); (D.S.)
- Institut für Theoretische Physik (TP4) and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - David Sánchez
- Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain; (M.A.S.); (D.S.)
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (R.G.); (G.C.)
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (R.G.); (G.C.)
- Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany
| | | | - Elena Díaz
- GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid, Spain
| |
Collapse
|