51
|
Deazaflavin reductive photocatalysis involves excited semiquinone radicals. Nat Commun 2020; 11:3174. [PMID: 32576821 PMCID: PMC7311442 DOI: 10.1038/s41467-020-16909-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022] Open
Abstract
Flavin-mediated photocatalytic oxidations are established in synthetic chemistry. In contrast, their use in reductive chemistry is rare. Deazaflavins with a much lower reduction potential are even better suited for reductive chemistry rendering also deazaflavin semiquinones as strong reductants. However, no direct evidence exists for the involvement of these radical species in reductive processes. Here, we synthesise deazaflavins with different substituents at C5 and demonstrate their photocatalytic activity in the dehalogenation of p-halogenanisoles with best performance under basic conditions. Mechanistic investigations reveal a consecutive photo-induced electron transfer via the semiquinone form of the deazaflavin as part of a triplet-correlated radical pair after electron transfer from a sacrificial electron donor to the triplet state. A second electron transfer from the excited semiquinone to p-halogenanisoles triggers the final product formation. This study provides first evidence that the reductive power of excited deazaflavin semiquinones can be used in photocatalytic reductive chemistry. Flavins and deazaflavins are well suited for photoredox processes but their application in photoreductions is challenging. Here, the authors provide direct evidence of the high reductive power of excited deazaflavin semiquinones and their application in catalytic photodehalogenations.
Collapse
|
52
|
Petsi M, Zografos AL. 2,5-Diketopiperazine Catalysts as Activators of Dioxygen in Oxidative Processes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marina Petsi
- Department of Chemistry, Main University Campus, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Alexandros L. Zografos
- Department of Chemistry, Main University Campus, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
53
|
Arakawa Y, Mihara T, Fujii H, Minagawa K, Imada Y. An uncommon use of irradiated flavins: Brønsted acid catalysis. Chem Commun (Camb) 2020; 56:5661-5664. [PMID: 32315001 DOI: 10.1039/d0cc01960g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present that thioacetalization of aldehydes can be induced by blue light irradiation in the presence of a catalytic amount of riboflavin tetraacetate (RFTA) under aerobic conditions. Several control experiments have suggested that the reaction is more likely to be catalyzed by acidic species generated in situ upon light irradiation. We have proposed that single electron transfer from a thiol (RSH) to the excited state of RFTA can take place to give a one-electron oxidized thiol (RSH+˙) and the one-electron reduced RFTA (RFTA-˙), which can be trapped by molecular oxygen to be stabilized as Brønsted acids including the protonated RFTA-˙ (RFTAH˙). Finally, we have demonstrated that such acidic species can be prepared in advance as a solution and used as Brønsted acid catalysts for not only thioacetalization but also Mannich-type reactions.
Collapse
Affiliation(s)
- Yukihiro Arakawa
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Tomohiro Mihara
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Hiroki Fujii
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| | - Keiji Minagawa
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan. and Institute of Liberal Arts and Sciences, Tokushima University, Minamijosanjima, Tokushima 770-8502, Japan
| | - Yasushi Imada
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.
| |
Collapse
|
54
|
Zelenka J, Roithová J. Mechanistic Investigation of Photochemical Reactions by Mass Spectrometry. Chembiochem 2020; 21:2232-2240. [DOI: 10.1002/cbic.202000072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/23/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Zelenka
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| | - Jana Roithová
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| |
Collapse
|
55
|
Capaldo L, Ravelli D. The Dark Side of Photocatalysis: One Thousand Ways to Close the Cycle. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000144] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Luca Capaldo
- PhotoGreen Lab; Department of Chemistry; University of Pavia; viale Taramelli 12 27100 Pavia Italy
| | - Davide Ravelli
- PhotoGreen Lab; Department of Chemistry; University of Pavia; viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
56
|
Zhang W, Carpenter KL, Lin S. Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. Angew Chem Int Ed Engl 2020; 59:409-417. [PMID: 31617271 PMCID: PMC6923568 DOI: 10.1002/anie.201910300] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Indexed: 11/10/2022]
Abstract
Riboflavin-derived photocatalysts have been extensively studied in the context of alcohol oxidation. However, to date, the scope of this catalytic methodology has been limited to benzyl alcohols. In this work, mechanistic understanding of flavin-catalyzed oxidation reactions, in either the absence or presence of thiourea as a cocatalyst, was obtained. The mechanistic insights enabled development of an electrochemically driven photochemical oxidation of primary and secondary aliphatic alcohols using a pair of flavin and dialkylthiourea catalysts. Electrochemistry makes it possible to avoid using O2 and an oxidant and generating H2 O2 as a byproduct, both of which oxidatively degrade thiourea under the reaction conditions. This modification unlocks a new mechanistic pathway in which the oxidation of unactivated alcohols is achieved by thiyl radical mediated hydrogen-atom abstraction.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Keith L Carpenter
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
57
|
Sajiki H, Sawama Y, Yasukawa N, Matsuda T, Shimizu E. Platinum on Carbon–Catalyzed and Chemoselective Aqueous Oxygen Oxidation of Aromatic Acetals to Benzoic Acids. HETEROCYCLES 2020. [DOI: 10.3987/com-19-14122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
58
|
Tolba AH, Vávra F, Chudoba J, Cibulka R. Tuning Flavin-Based Photocatalytic Systems for Application in the Mild Chemoselective Aerobic Oxidation of Benzylic Substrates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amal Hassan Tolba
- Department of Organic Chemistry; University of Chemistry and Technology, Prague; Technická 5 166 28 Prague Czech Republic
| | - František Vávra
- Department of Organic Chemistry; University of Chemistry and Technology, Prague; Technická 5 166 28 Prague Czech Republic
| | - Josef Chudoba
- Central Laboratories; University of Chemistry and Technology Prague; Technická 5 166 28 Prague Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry; University of Chemistry and Technology, Prague; Technická 5 166 28 Prague Czech Republic
| |
Collapse
|
59
|
Luo Z, Gao ZH, Song ZY, Han YF, Ye S. Visible light mediated oxidative lactonization of 2-methyl-1,1'-biaryls for the synthesis of benzocoumarins. Org Biomol Chem 2019; 17:4212-4215. [PMID: 30942253 DOI: 10.1039/c9ob00529c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light mediated oxidative lactonization of 2-methyl-1,1'-biaryls was developed, giving benzocoumarins in good yields. The reaction features multiple C-H functionalization processes with oxygen as the final oxidant. The corresponding 2-aldehdyes, alcohols and carboxylic acids of the 1,1'-biaryls also worked well for the reaction.
Collapse
Affiliation(s)
- Zhi Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
60
|
Zhang W, Carpenter KL, Lin S. Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910300] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen Zhang
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Keith L. Carpenter
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Song Lin
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
61
|
Desage‐El Murr M. Nature is the Cure: Engineering Natural Redox Cofactors for Biomimetic and Bioinspired Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201901642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marine Desage‐El Murr
- Institut de Chimie UMR 7177Université de Strasbourg 1 rue Blaise Pascal Strasbourg 67000 France
| |
Collapse
|
62
|
Tanimoto K, Ohkado R, Iida H. Aerobic Oxidative Sulfenylation of Pyrazolones and Pyrazoles Catalyzed by Metal-Free Flavin–Iodine Catalysis. J Org Chem 2019; 84:14980-14986. [DOI: 10.1021/acs.joc.9b02422] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
63
|
Zelenka J, Cibulka R, Roithová J. Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates. Angew Chem Int Ed Engl 2019; 58:15412-15420. [PMID: 31364790 PMCID: PMC6852162 DOI: 10.1002/anie.201906293] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Indexed: 12/18/2022]
Abstract
Flavin-based catalysts are photoactive in the visible range which makes them useful in biology and chemistry. Herein, we present electrospray-ionization mass-spectrometry detection of short-lived intermediates in photooxidation of toluene catalysed by flavinium ions (Fl+ ). Previous studies have shown that photoexcited flavins react with aromates by proton-coupled electron transfer (PCET) on the microsecond time scale. For Fl+ , PCET leads to FlH.+ with the H-atom bound to the N5 position. We show that the reaction continues by coupling between FlH.+ and hydroperoxy or benzylperoxy radicals at the C4a position of FlH.+ . These results demonstrate that the N5-blocking effect reported for alkylated flavins is also active after PCET in these photocatalytic reactions. Structures of all intermediates were fully characterised by isotopic labelling and by photodissociation spectroscopy. These tools provide a new way to study reaction intermediates in the sub-second time range.
Collapse
Affiliation(s)
- Jan Zelenka
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Radek Cibulka
- Department of organic chemistryFaculty of Chemical TechnologyUniversity of Chemistry and Technology PragueTechnická 5166 28Prague 6Czech Republic
| | - Jana Roithová
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
64
|
Zelenka J, Cibulka R, Roithová J. Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Zelenka
- Department of Spectroscopy and Catalysis Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Radek Cibulka
- Department of organic chemistry Faculty of Chemical Technology University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Jana Roithová
- Department of Spectroscopy and Catalysis Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
65
|
Le T, Courant T, Merad J, Allain C, Audebert P, Masson G. Aerobic Tetrazine‐Catalyzed Oxidative Nitroso‐Diels‐Alder Reaction of N‐Arylhydroxylamines with Dienecarbamates: Access to Functionalized 1,6‐Dihydro‐1,2‐oxazines. ChemCatChem 2019. [DOI: 10.1002/cctc.201901373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tuan Le
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
- PPSM ENS Cachan CNRSUniversité Paris-Saclay Cachan 94235 France
| | - Thibaut Courant
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
| | - Jérémy Merad
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
| | - Clémence Allain
- PPSM ENS Cachan CNRSUniversité Paris-Saclay Cachan 94235 France
| | - Pierre Audebert
- PPSM ENS Cachan CNRSUniversité Paris-Saclay Cachan 94235 France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS UPR 2301Université Paris-Sud Gif-sur-Yvette Cedex 91198 France
| |
Collapse
|
66
|
Tagami T, Arakawa Y, Minagawa K, Imada Y. Efficient Use of Photons in Photoredox/Enamine Dual Catalysis with a Peptide-Bridged Flavin-Amine Hybrid. Org Lett 2019; 21:6978-6982. [PMID: 31403307 DOI: 10.1021/acs.orglett.9b02567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An isoalloxazine (flavin) ring system and a secondary amine have been integrated through a short peptide linker with the aim of using photons as efficiently as possible in photoredox/enamine dual catalysis. We herein report a peptide-bridged flavin-amine hybrid that can catalyze α-oxyamination of aldehydes with TEMPO under weak blue light irradiation to achieve an extremely high quantum yield of reaction (Φ = 0.80).
Collapse
Affiliation(s)
- Takuma Tagami
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan
| | - Yukihiro Arakawa
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan
| | - Keiji Minagawa
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan.,Institute of Liberal Arts and Sciences, Tokushima University, Minamijosanjima, Tokushima 770-8502, Japan
| | - Yasushi Imada
- Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan
| |
Collapse
|
67
|
Bosque I, Bach T. 3-Acetoxyquinuclidine as Catalyst in Electron Donor–Acceptor Complex-Mediated Reactions Triggered by Visible Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01039] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Irene Bosque
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Thorsten Bach
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
68
|
März M, Babor M, Cibulka R. Flavin Catalysis Employing an N(5)-Adduct: an Application in the Aerobic Organocatalytic Mitsunobu Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michal März
- Department of Organic Chemistry; University of Chemistry and Technology; 166 28 Prague 6 Prague, Technická 5 Czech Republic
| | - Martin Babor
- Department of Solid State Chemistry; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Prague Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry; University of Chemistry and Technology; 166 28 Prague 6 Prague, Technická 5 Czech Republic
| |
Collapse
|
69
|
Abstract
The first example organocatalyzed aerobic oxidation of aldehydes to carboxylic acids in both organic solvent and water under mild conditions is developed. As low as 5 mol % N-hydroxyphthalimide was used as the organocatalyst, and molecular O2 was used as the sole oxidant. No transition metals or hazardous oxidants or cocatalysts were involved. A wide range of carboxylic acids bearing diverse functional groups were obtained from aldehydes, even from alcohols, in high yields.
Collapse
Affiliation(s)
- Peng-Fei Dai
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Yan-Biao Kang
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|