51
|
Vílchez-Cózar Á, Armakola E, Gjika M, Visa A, Bazaga-García M, Olivera-Pastor P, Choquesillo-Lazarte D, Marrero-López D, Cabeza A, P. Colodrero RM, Demadis KD. Exploiting the Multifunctionality of M 2+/Imidazole-Etidronates for Proton Conductivity (Zn 2+) and Electrocatalysis (Co 2+, Ni 2+) toward the HER, OER, and ORR. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11273-11287. [PMID: 35192337 PMCID: PMC8915163 DOI: 10.1021/acsami.1c21876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
This work deals with the synthesis and characterization of one-dimensional (1D) imidazole-containing etidronates, [M2(ETID)(Im)3]·nH2O (M = Co2+ and Ni2+; n = 0, 1, 3) and [Zn2(ETID)2(H2O)2](Im)2, as well as the corresponding Co2+/Ni2+ solid solutions, to evaluate their properties as multipurpose materials for energy conversion processes. Depending on the water content, metal ions in the isostructural Co2+ and Ni2+ derivatives are octahedrally coordinated (n = 3) or consist of octahedral together with dimeric trigonal bipyramidal (n = 1) or square pyramidal (n = 0) environments. The imidazole molecule acts as a ligand (Co2+, Ni2+ derivatives) or charge-compensating protonated species (Zn2+ derivative). For the latter, the proton conductivity is determined to be ∼6 × 10-4 S·cm-1 at 80 °C and 95% relative humidity (RH). By pyrolyzing in 5%H2-Ar at 700-850 °C, core-shell electrocatalysts consisting of Co2+-, Ni2+-phosphides or Co2+/Ni2+-phosphide solid solution particles embedded in a N-doped carbon graphitic matrix are obtained, which exhibit improved catalytic performances compared to the non-N-doped carbon materials. Co2+ phosphides consist of CoP and Co2P in variable proportions according to the used precursor and pyrolytic conditions. However, the Ni2+ phosphide is composed of Ni2P exclusively at high temperatures. Exploration of the electrochemical activity of these metal phosphides toward the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) reveals that the anhydrous Co2(ETID)(Im)3 pyrolyzed at 800 °C (CoP/Co2P = 80/20 wt %) is the most active trifunctional electrocatalyst, with good integrated capabilities as an anode for overall water splitting (cell voltage of 1.61 V) and potential application in Zn-air batteries. This solid also displays a moderate activity for the HER with an overpotential of 156 mV and a Tafel slope of 79.7 mV·dec-1 in 0.5 M H2SO4. Ni2+- and Co2+/Ni2+-phosphide solid solutions show lower electrochemical performances, which are correlated with the formation of less active crystalline phases.
Collapse
Affiliation(s)
- Álvaro Vílchez-Cózar
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | - Eirini Armakola
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Crete GR-71003, Greece
| | - Maria Gjika
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Crete GR-71003, Greece
| | - Aurelia Visa
- Romanian
Academy, “Coriolan Dragulescu”, Institute of Chemistry, Timisoara 300223, Romania
| | - Montse Bazaga-García
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | - Pascual Olivera-Pastor
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | | | - David Marrero-López
- Departamento
de Física Aplicada I, Universidad
de Málaga, Campus
Teatinos s/n, Málaga 29071, Spain
| | - Aurelio Cabeza
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | - Rosario M. P. Colodrero
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | - Konstantinos D. Demadis
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Crete GR-71003, Greece
| |
Collapse
|
52
|
Jia Z, Zhao Y, Wang Q, Lyu F, Tian X, Liang SX, Zhang LC, Luan J, Wang Q, Sun L, Yang T, Shen B. Nanoscale Heterogeneities of Non-Noble Iron-Based Metallic Glasses toward Efficient Water Oxidation at Industrial-Level Current Densities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10288-10297. [PMID: 35175044 DOI: 10.1021/acsami.1c22294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scaling up the production of cost-effective electrocatalysts for efficient water splitting at the industrial level is critically important to achieve carbon neutrality in our society. While noble-metal-based materials represent a high-performance benchmark with superb activities for hydrogen and oxygen evolution reactions, their high cost, poor scalability, and scarcity are major impediments to achieve widespread commercialization. Herein, a flexible freestanding Fe-based metallic glass (MG) with an atomic composition of Fe50Ni30P13C7 was prepared by a large-scale metallurgical technique that can be employed directly as a bifunctional electrode for water splitting. The surface hydroxylation process created unique structural and chemical heterogeneities in the presence of amorphous FeOOH and Ni2P as well as nanocrystalline Ni2P that offered various active sites to optimize each rate-determining step for water oxidation. The achieved overpotentials for the oxygen evolution reaction were 327 and 382 mV at high current densities of 100 and 500 mA cm-2 in alkaline media, respectively, and a cell voltage of 1.59 V was obtained when using the MG as both the anode and the cathode for overall water splitting at a current density of 10 mA cm-2. Theoretical calculations unveiled that amorphous FeOOH makes a significant contribution to water molecule adsorption and oxygen evolution processes, while the amorphous and nanocrystalline Ni2P stabilize the free energy of hydrogen protons (ΔGH*) in the hydrogen evolution process. This MG alloy design concept is expected to stimulate the discovery of many more high-performance catalytic materials that can be produced at an industrial scale with customized properties in the near future.
Collapse
Affiliation(s)
- Zhe Jia
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Yilu Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qing Wang
- Laboratory for Microstructures Institute of Materials Science, Shanghai University, Shanghai 200072, China
| | - Fucong Lyu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 00000, China
| | - Xiaobao Tian
- Department of Mechanics, Sichuan University, Chengdu 610065, China
| | - Shun-Xing Liang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
| | - Junhua Luan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 00000, China
| | - Qianqian Wang
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Ligang Sun
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tao Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 00000, China
| | - Baolong Shen
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| |
Collapse
|
53
|
Lou H, Yu G, Tang M, Chen W, Yang G. Janus MoPC Monolayer with Superior Electrocatalytic Performance for the Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7836-7844. [PMID: 35104411 DOI: 10.1021/acsami.1c20114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing the earth's abundant and high-performance electrocatalysts, which possess high stability, excellent electrical conductivity, inherent active sites, and catalytic activity identical with Pt, is challenging but crucial for the hydrogen evolution reaction (HER). By first-principles structure search simulations, we identify a new two-dimensional (2D) MoPC material with the Janus structure as a promising catalyst. This novel 2D monolayer has superior stability and metallic conductivity. Especially, it exhibits a remarkable HER catalytic activity, where all of the constituent atoms, including Mo, P, and C, can uniformly act as active sites in view of the near-zero ΔGH* value. Its active site density counts up to 1.46 × 1015 site/cm2, larger than that of many reported materials and even comparable to Pt. The excellent HER catalytic activity can also be maintained at a very high H coverage with or without external strain. The MoPC monolayer can produce H2 spontaneously through the favorable Volmer-Heyrovsky pathway. The detailed catalytic mechanism behind the high HER activity has been also analyzed. Our work provides a feasible action for the experimental synthesis of excellent HER catalysts.
Collapse
Affiliation(s)
- Huan Lou
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Guangtao Yu
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Meng Tang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
54
|
Zhang T, Wang Y, Yuan J, Fang K, Wang AJ. Heterostructured CoP·CoMoP nanocages as advanced electrocatalysts for efficient hydrogen evolution over a wide pH range. J Colloid Interface Sci 2022; 615:465-474. [PMID: 35150954 DOI: 10.1016/j.jcis.2022.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
A sustainable and environmental-friendly method to produce hydrogen with high purity is the electrochemical water splitting, but its commercialization is challenged due to lack of cost-effective electrocatalysts for hydrogen evolution reaction (HER) over a wide pH range. Herein, a series of CoP·xCoMoP heterostructured nanocages (NCs) were prepared via a dissolution-regrowth and subsequent phosphorization process using metal-organic frameworks (MOFs) as template. The three-dimensional (3D) architecture of CoP·xCoMoP is constituted by the heterostructured nanosheets composed with CoP and CoMoP phase. These noble-metal-free earth-abundant transition metal phosphide (TMP) catalysts show a pH-universal HER activity with high efficiency. Under the optimal atom ratio of Co and Mo (6:5), CoP·5CoMoP NC catalysts can deliver a current density of 10 mA cm-2 at the overpotential of 72 mV with a Tafel slope of 60.3 mV dec-1 in 1.0 M KOH solution. The same current output requires overpotential of 44 mV in 0.5 M H2SO4 solution and 151 mV in1.0 M phosphate buffered solution (PBS), respectively. The superior HER activity of CoP·5CoMoP NC catalysts can be comparable to or even better than most of noble metal-free HER electrocatalysts reported recently. In addition, CoP·5CoMoP NC catalysts also show a fairly high HER stability over a wide pH range, and their HER activity can be well kept without significant loss for long-term electrolysis. The 3D CoP·5CoMoP heterostructured catalysts hold promise as efficient and low-cost catalysts for water splitting devices over a wide pH range.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yihui Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Junhua Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| | - Keming Fang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
55
|
Moschkowitsch W, Lori O, Elbaz L. Recent Progress and Viability of PGM-Free Catalysts for Hydrogen Evolution Reaction and Hydrogen Oxidation Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04948] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenjamin Moschkowitsch
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Oran Lori
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Elbaz
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
56
|
Wang B, Huang Y, Ai Y, Yao Y, Shi F, Xu S, Zhang Z, Wang X, Sun W. Synergistically Coupling P-doped Mo2C@N, P Dual-coped Carbon-nanoribbons as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj01553f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing non-noble and high-performance electrocatalysts towards hydrogen evolution reaction (HER) in both acidic and alkaline medium remains a stern challenge. Herein, the composite of P-doped Mo2C and hierarchically ultrathin N,...
Collapse
|
57
|
Sun R, Huang X, Jiang J, Xu W, Zhou S, Wei Y, Li M, Chen Y, Han S. Recent advances in cobalt-based catalysts for efficient electrochemical hydrogen evolution: a review. Dalton Trans 2022; 51:15205-15226. [DOI: 10.1039/d2dt02189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen (H2) is a new type of renewable energy that can meet people's growing energy needs and is environmentally friendly. In order to improve the industrial application prospect and electrochemical...
Collapse
|
58
|
Han D, Xie Y, Wu Y, Xu K, Qian Y. Enhanced Hydrogen Evolution Catalysis from Hierarchical Nanostructure Co−P@CoMo−P Electrode. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dongdong Han
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University 27, Shanda South Road, Licheng District Jinan City Shadong 250100 China
| | - Yufang Xie
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yishang Wu
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Kangli Xu
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yitai Qian
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University 27, Shanda South Road, Licheng District Jinan City Shadong 250100 China
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
59
|
Development of Ferromagnetic Materials Containing Co 2P, Fe 2P Phases from Organometallic Dendrimers Precursors. Molecules 2021; 26:molecules26216732. [PMID: 34771141 PMCID: PMC8588225 DOI: 10.3390/molecules26216732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The development of synthesis methods to access advanced materials, such as magnetic materials that combine multimetallic phosphide phases, remains a worthy research challenge. The most widely used strategies for the synthesis of magnetic transition metal phosphides (TMPs) are organometallic approaches. In this study, Fe-containing homometallic dendrimers and Fe/Co-containing heterometallic dendrimers were used to synthesize magnetic materials containing multimetallic phosphide phases. The crystalline nature of the nearly aggregated particles was indicated for both designed magnetic samples. In contrast to heterometallic samples, homometallic samples showed dendritic effects on their magnetic properties. Specifically, saturation magnetization (Ms) and coercivity (Hc) decrease as dendritic generation increases. Incorporating cobalt into the homometallic dendrimers to prepare the heterometallic dendrimers markedly increases the magnetic properties of the magnetic materials from 60 to 75 emu/g. Ferromagnetism in homometallic and heterometallic particles shows different responses to temperature changes. For example, heterometallic samples were less sensitive to temperature changes due to the presence of Co2P in contrast to the homometallic ones, which show an abrupt change in their slopes at a temperature close to 209 K, which appears to be related to the Fe2P ratios. This study presents dendrimers as a new type of precursor for the assembly of magnetic materials containing a mixture of iron- and cobalt-phosphides phases with tunable magnetism, and provides an opportunity to understand magnetism in such materials.
Collapse
|
60
|
Guo M, Qiu F, Yuan Y, Yu T, Yuan C, Lu ZH. Active Site Engineering in CoP@NC/Graphene Heterostructures Enabling Enhanced Hydrogen Evolution. Inorg Chem 2021; 60:16761-16768. [PMID: 34647726 DOI: 10.1021/acs.inorgchem.1c02639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the core of an electrocatalyst, the active site is critical to determine its catalytic performance in the hydrogen evolution reaction (HER). In this work, porous N-doped carbon-encapsulated CoP nanoparticles on both sides of graphene (CoP@NC/GR) are derived from a bimetallic metal-organic framework (MOF)@graphene oxide composite. Through active site engineering by tailoring the environment around CoP and engineering the structure, the HER activity of CoP@NC/GR heterostructures is significantly enhanced. Both X-ray photoelectron spectroscopy (XPS) results and density functional theory (DFT) calculations manifest that the electronic structure of CoP can be modulated by the carbon matrix of NC/GR, resulting in electron redistribution and a reduction in the adsorption energy of hydrogen (ΔGH*) from -0.53 to 0.04 eV. By engineering the sandwich-like structure, active sites in CoP@NC/GR are further increased by optimizing the Zn/Co ratio in the bimetallic MOF. Benefiting from this active site engineering, the CoP@NC/GR electrocatalyst exhibits small overpotentials of 105 mV in 0.5 M H2SO4 (or 125 mV in 1 M KOH) to 10 mA cm-2, accelerated HER kinetics with a low Tafel slope of 47.5 mV dec-1, and remarkable structural and HER stability.
Collapse
Affiliation(s)
- Manman Guo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Fen Qiu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China.,Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Yuxi Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Ting Yu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
61
|
Kou J, Zhu Chen J, Gao J, Zhang X, Zhu J, Ghosh A, Liu W, Kropf AJ, Zemlyanov D, Ma R, Guo X, Datye AK, Zhang G, Guo L, Miller JT. Structural and Catalytic Properties of Isolated Pt 2+ Sites in Platinum Phosphide (PtP 2). ACS Catal 2021. [DOI: 10.1021/acscatal.1c03970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiajing Kou
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, China
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Johnny Zhu Chen
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Junxian Gao
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Xiaoben Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Arnab Ghosh
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - A. Jeremy Kropf
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 W State Street, West Lafayette, Indiana 47907, United States
| | - Rui Ma
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, China
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
62
|
Liang W, Dong P, Le Z, Lin X, Gong X, Xie F, Zhang H, Chen J, Wang N, Jin Y, Meng H. Electron Density Modulation of MoO 2/Ni to Produce Superior Hydrogen Evolution and Oxidation Activities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39470-39479. [PMID: 34433246 DOI: 10.1021/acsami.1c11025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) have aroused great interest, but the high price of platinum group metals (PGMs) limits their development. The electronic reconstruction at the interface of a heterostructure is a promising strategy to enhance their catalytic performance. Here, MoO2/Ni heterostructure was synthesized to provide effective HER in an alkaline electrolyte and exhibit excellent HOR performance. Theoretical and experimental analyses prove that the electron density around the Ni atom is reduced. The electron density modulation optimizes the hydrogen adsorption and hydroxide adsorption free energy, which can effectively improve the activity of both HER and HOR. Accordingly, the prepared MoO2/Ni@NF catalyst reveals robust HER activity (η10 = 50.48 mV) and HOR activity (j0 = ∼1.21 mA cm-2). This work demonstrates an effective method to design heterostructure interfaces and tailor the surface electronic structure to improve HER/HOR performance.
Collapse
Affiliation(s)
- Wanli Liang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Pengyu Dong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Zhichen Le
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Xinyi Lin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Xiyu Gong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Hao Zhang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Jian Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275 P.R. China
| | - Nan Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Yanshuo Jin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| | - Hui Meng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong 510632 P.R. China
| |
Collapse
|
63
|
Electronic Structure and d-Band Center Control Engineering over Ni-Doped CoP 3 Nanowall Arrays for Boosting Hydrogen Production. NANOMATERIALS 2021; 11:nano11061595. [PMID: 34204471 PMCID: PMC8233895 DOI: 10.3390/nano11061595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022]
Abstract
To address the challenge of highly efficient water splitting into H2, successful fabrication of novel porous three-dimensional Ni-doped CoP3 nanowall arrays on carbon cloth was realized, resulting in an effective self-supported electrode for the electrocatalytic hydrogen-evolution reaction. The synthesized samples exhibit rough, curly, and porous structures, which are beneficial for gaseous transfer and diffusion during the electrocatalytic process. As expected, the obtained Ni-doped CoP3 nanowall arrays with a doping concentration of 7% exhibit the promoted electrocatalytic activity. The achieved overpotentials of 176 mV for the hydrogen-evolution reaction afford a current density of 100 mA cm−2, which indicates that electrocatalytic performance can be dramatically enhanced via Ni doping. The Ni-doped CoP3 electrocatalysts with increasing catalytic activity should have significant potential in the field of water splitting into H2. This study also opens an avenue for further enhancement of electrocatalytic performance through tuning of electronic structure and d-band center by doping.
Collapse
|