51
|
Artificial ligament made from silk protein/Laponite hybrid fibers. Acta Biomater 2020; 106:102-113. [PMID: 32014583 DOI: 10.1016/j.actbio.2020.01.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/05/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
With developments in tissue engineering, artificial ligaments are expected to be future materials for anterior cruciate ligament (ACL) reconstruction. However, poor healing of the intraosseous part after ACL reconstruction significantly hinders their applications in this field. In this study, a bioactive clay Laponite (LAP) was introduced into the regenerated silk fibroin (RSF) spinning dope to produce functional RSF/LAP hybrid fibers by wet-spinning. These RSF/LAP hybrid fibers were then woven into artificial ligament for ACL reconstruction. The structure and mechanical properties of RSF/LAP hybrid fibers were extensively studied by different means. Results confirmed the presence of LAP in RSF fibers and revealed that the addition of LAP slightly deteriorated the comprehensive mechanical properties of RSF fibers. However, they were still much tougher (with higher breaking energy) than those of degummed natural silkworm silk that was earlier used for making artificial ligament. The artificial ligament woven from RSF/LAP hybrid fibers showed better cytocompatibility and osteogenic differentiation with mouse pre-osteoblasts in vitro than those made from degummed natural silkworm silks and pure RSF fibers. Furthermore, in vivo study in a rat ACL reconstruction model demonstrated that the presence of LAP in the artificial ligament could significantly enhance the graft osseointegration process and also improve the corresponding biomechanical properties of the artificial ligament. Based upon these results, the RSF/LAP hybrid fibers, which can be mass produced by wet-spinning process, are believed to have a great potential for use as artificial ligament materials for ACL reconstruction. STATEMENT OF SIGNIFICANCE: In this study, we successfully introduced Laponite (LAP), a kind of clay that has the function of osteogenic induction, into regenerated silk fibroin (RSF) fibers, which was prepared by a mature wet-spinning method developed in our lab. We believe that through artificial spinning, additional functional components can be added into RSF fibers, which one can hardly achieve with natural silks. We showed that the artificial ligament woven from RSF/LAP hybrid fibers had better cytocompatibility and osteogenic differentiation for mouse pre-osteoblasts in vitro, and significantly enhanced the graft osseointegration process and improved the corresponding biomechanical properties in a rat ACL reconstruction model in vivo, compared to those artificial ligaments made from degummed natural silkworm silks and pure RSF fibers.
Collapse
|
52
|
Yang H, Wang Z, Wang M, Li C. Structure and properties of silk fibroin aerogels prepared by non-alkali degumming process. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
53
|
Zhang Y, Chen M, Dai Z, Cao H, Li J, Zhang W. Sustained protein therapeutics enabled by self-healing nanocomposite hydrogels for non-invasive bone regeneration. Biomater Sci 2020; 8:682-693. [PMID: 31776523 DOI: 10.1039/c9bm01455a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Bone tissue engineering based on stem cells, growth factors and bioactive scaffolds presents an appealing but challenging approach for rehabilitation of patients with bone defects. A versatile system with the capability for easy operation and precise protein delivery in specific locations is attractive for enhancing bone regeneration. Here, we develop a non-invasive delivery system based on injectable and self-healing nanocomposite hydrogels for sustained protein release, which has the potential to improve the current orthopedic strategy. Specifically, LAPONITE® (LAP) nanoplatelets are able to accelerate the gelation process through hydrogen bonds with polysaccharide matrices, endowing hydrogels with superior mechanical and rheological behaviors, along with better injectability and self-healing ability. Attractively, the strong static binding between LAP nanoplatelets and bone morphogenetic protein-2 (BMP-2) can form stable LAP@BMP-2 complexes. The results indicate that the complexes effectively preserve the intrinsic bioactivity of BMP-2 and prolong the release period for more than four weeks. Moreover, hydrogels incorporating with the LAP@BMP-2 complexes synergistically boost cell spreading, proliferation activity and osteogenesis, both in vitro and in vivo, compared with LAP or BMP-2 alone. Overall, this study proposes a valid platform for protein therapeutics and non-invasive bone repair.
Collapse
Affiliation(s)
- Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
54
|
Gou S, Xie D, Ma Y, Huang Y, Dai F, Wang C, Xiao B. Injectable, Thixotropic, and Multiresponsive Silk Fibroin Hydrogel for Localized and Synergistic Tumor Therapy. ACS Biomater Sci Eng 2019; 6:1052-1063. [DOI: 10.1021/acsbiomaterials.9b01676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shuangquan Gou
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Dengchao Xie
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Ya Ma
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Yamei Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Chenhui Wang
- School of Pharmaceutical Sciences, Chongqing University, No. 55 South Daxuecheng Road, Chongqing 401331, P. R. China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China
| |
Collapse
|
55
|
Liu J, Shen X, Tang S, Li H, Mei S, Zheng H, Sun Y, Zhao J, Kaewmanee R, Yang L, Gan Q, Wei J. Improvement of rBMSCs Responses to Poly(propylene carbonate) Based Biomaterial through Incorporation of Nanolaponite and Surface Treatment Using Sodium Hydroxide. ACS Biomater Sci Eng 2019; 6:329-339. [PMID: 33463218 DOI: 10.1021/acsbiomaterials.9b01137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Poly(propylene carbonate) (PPC) has aroused extensive attention in the biomaterial field because of its excellent biocompatibility and appropriate degradability, but surface hydrophobicity and bioinertness limit its applications for bone repair and tissue engineering. In this study, a bioactive PPC/laponite (LAP) nanocomposite (PL) was prepared by a melt-blending method, and a microporous surface on PPC and PL (PT and PLT) was created by sodium hydroxide (NaOH) treatment. The results demonstrated that the surface roughness, hydrophilicity, surface energy, and degradability as well as protein adsorption of PLT were obviously improved compared with PPC. Moreover, the degradability of PLT was remarkably enhanced with a slight increase of pH values in Tris-HCl solution. Furthermore, adhesion and proliferation as well as osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) to PLT were significantly promoted compared with PPC. The results suggested that incorporating LAP into PPC obviously improved the surface performance of PL (with nanotopography), and surface treatment with NaOH further enhanced surface properties of PLT (with micronanotopography and hydrophilic groups), which significantly promoted responses of rBMSCs. In short, PLT displayed excellent cytocompatibility, which would have great potential for bone regeneration.
Collapse
Affiliation(s)
- Jingyuan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No.130, Meilong Road, Shanghai 200237, China
| | - Xuening Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No.130, Meilong Road, Shanghai 200237, China
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No.130, Meilong Road, Shanghai 200237, China
| | - Hong Li
- College of Physical Science and Technology, Sichuan University, No. 17, South Renmin Road, Chengdu 610041, China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No.130, Meilong Road, Shanghai 200237, China
| | - Han Zheng
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No.130, Meilong Road, Shanghai 200237, China
| | - Yupeng Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No.130, Meilong Road, Shanghai 200237, China
| | - Jun Zhao
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, No. 639, Manufacturing Bureau Road, Shanghai 200011, China
| | - Rames Kaewmanee
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No.130, Meilong Road, Shanghai 200237, China
| | - Lili Yang
- Department of Orthopaedic Surgery, Changzheng Hospital, The Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No.130, Meilong Road, Shanghai 200237, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No.130, Meilong Road, Shanghai 200237, China
| |
Collapse
|
56
|
Zhang W, Liu H, Yang W, Liu C, Xie M, Guo R, Liang J, Ye Z, Xu H. Hydroxyapatite/silk fibroin composite biomimetic scaffold for dental pulp repair. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dental pulp repair is a difficult clinical problem. In the present study, the authors aimed to mimic the extracellular matrix of dental pulp tissue structurally and compositionally. Nanofibrous silk fibroin (SF) scaffolds containing hydroxyapatite (HAp) nanoparticles were fabricated by using the freeze-drying approach. Rod-shaped HAp was successfully embedded in the composite scaffold, the diameter of which was about 100–200 nm as shown by transmission electron microscopy analysis. The three-dimensional microstructure of the composite scaffold prepared in various ratios of HAp to SF was observed by scanning electron microscopy and the pore size of the optimal scaffold was about 30–120 μm. Meanwhile, the hemocompatibility of the composite scaffolds was evaluated based on their impact on the clotting function by way of activated partial thromboplastin time, prothrombin time and thromboelastographic assays. The scaffolds possessed a low hemolysis rate of red blood cells. Furthermore, cell culture tests using dental pulp stem cells found that the scaffolds had good biocompatibility. There biomimetic HAp/SF composite scaffolds may serve as a promising biomaterial for dental pulp repair.
Collapse
Affiliation(s)
- Wu Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China
| | - Haixia Liu
- Guangzhou Nansha District Maternal and Child Health Care Hospital, Guangzhou, China
| | - Wei Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Chang Liu
- School of Stomatology, Jinan University, Guangzhou, China
| | - Miaomiao Xie
- Department of Stomatology, People’s Hospital of Baoan District, Shenzhen, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Jianqiang Liang
- Guangzhou Haizhu District Stomatological Hospital, Guangzhou, China
| | - Zhongtai Ye
- Department of Stomatology, People’s Hospital of Baoan District, Shenzhen, China
| | - Hao Xu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
57
|
Hu T, Mei X, Wang Y, Weng X, Liang R, Wei M. Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci Bull (Beijing) 2019; 64:1707-1727. [PMID: 36659785 DOI: 10.1016/j.scib.2019.09.021] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/22/2019] [Accepted: 09/12/2019] [Indexed: 01/21/2023]
Abstract
Due to their high anisotropy and chemical functions, two-dimensional (2D) nanomaterials have attracted increasing interest and attention from various scientific fields, including functional electronics, catalysis, supercapacitors, batteries and energy materials. In the biomedical field, 2D nanomaterials have made significant contributions to the field of nanomedicine, especially in drug/gene delivery systems, multimodal imaging, biosensing, antimicrobial agents and tissue engineering. 2D nanomaterials such as graphene/graphene oxide (GO)/reduced graphene oxide (rGO), silicate clays, layered double hydroxides (LDHs), transition metal dichalcogenides (TMDs), transition metal oxides (TMOs), black phosphorus (BP), graphitic carbon nitride (g-C3N4), hexagonal boron nitride (h-BN), antimonene (AM), boron nanosheets (B NSs) and tin telluride nanosheets (SnTe NSs) possess excellent physical, chemical, optical and biological properties due to their uniform shapes, high surface-to-volume ratios and surface charge. In this review, we first introduce the properties, structures and synthetic strategies of different configurations of 2D nanomaterials. Recent advances and paradigms of 2D nanomaterials in a variety of biomedical applications, ranging from drug delivery, cancer treatment, bioimaging and tissue engineering to biosensing are discussed afterwards. In the final part, we foresee the development prospects and challenges of 2D nanomaterials after summarizing the research status of ultrathin 2D nanomaterials.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuan Mei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Wang
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
58
|
Liu J, Yang B, Li M, Li J, Wan Y. Enhanced dual network hydrogels consisting of thiolated chitosan and silk fibroin for cartilage tissue engineering. Carbohydr Polym 2019; 227:115335. [PMID: 31590851 DOI: 10.1016/j.carbpol.2019.115335] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Thiolated chitosan (CS-NAC) was synthesized and the selected CS-NAC was used together with silk fibroin (SF) to produce dual network CS-NAC/SF hydrogels. The CS-NAC/SF solutions with formulated compositions were able to form hydrogels at physiological temperature and pH. Rheological measurements showed that elastic modulus of some CS-NAC/SF gels could reach around 3 kPa or higher and was much higher than their respective viscous modulus, indicating that they behaved like strong gels. Deformation measurements verified that CS-NAC/SF gels had well-defined elasticity. The optimized CS-NAC/SF gels exhibited jointly enhanced properties in terms of strength, stiffness and elasticity when compared to the gels resulted from either CS-NAC or SF. Examinations of dry CS-NAC/SF gels revealed that they were highly porous with well-interconnected pore features. Cell culture demonstrated that CS-NAC/SF gels supported the growth of chondrocytes while effectively maintaining their phenotype. Results suggest that these dual network gels have promising potential in cartilage repair.
Collapse
Affiliation(s)
- Jiaoyan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Bin Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Minhui Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jing Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
59
|
The utilization of low molecular weight heparin-poloxamer associated Laponite nanoplatform for safe and efficient tumor therapy. Int J Biol Macromol 2019; 134:63-72. [PMID: 31071393 DOI: 10.1016/j.ijbiomac.2019.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/30/2022]
|
60
|
Yang G, Lu Y, Bomba HN, Gu Z. Cysteine-rich Proteins for Drug Delivery and Diagnosis. Curr Med Chem 2019; 26:1377-1388. [DOI: 10.2174/0929867324666170920163156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/23/2022]
Abstract
An emerging focus in nanomedicine is the exploration of multifunctional nanocomposite materials that integrate stimuli-responsive, therapeutic, and/or diagnostic functions. In this effort, cysteine-rich proteins have drawn considerable attention as a versatile platform due to their good biodegradability, biocompatibility, and ease of chemical modification. This review surveys cysteine-rich protein-based biomedical materials, including protein-metal nanohybrids, gold nanoparticle-protein agglomerates, protein-based nanoparticles, and hydrogels, with an emphasis on their preparation methods, especially those based on the cysteine residue-related reactions. Their applications in tumor-targeted drug delivery and diagnostics are highlighted.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Science & Technology of Eco-Textile, Donghua University, Ministry of Education, Shanghai 201620, China
| | - Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hunter N. Bomba
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
61
|
Novel preparation of Au nanoparticles loaded Laponite nanoparticles/ECM injectable hydrogel on cardiac differentiation of resident cardiac stem cells to cardiomyocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 192:49-54. [DOI: 10.1016/j.jphotobiol.2018.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
|
62
|
Becher TB, Braga CB, Bertuzzi DL, Ramos MD, Hassan A, Crespilho FN, Ornelas C. The structure-property relationship in LAPONITE® materials: from Wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. SOFT MATTER 2019; 15:1278-1289. [PMID: 30465687 DOI: 10.1039/c8sm01965g] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rheology, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) analysis, zeta potential measurement, scanning electron microscopy (SEM), and micro-FTIR and absorbance spectroscopy were used to enlighten the controversial literature about LAPONITE® materials. Our data suggest that pristine LAPONITE® in water does not form hydrogels induced by the so-called "house of cards" assembly, but rather forms Wigner glasses governed by repulsive forces. Ionic interactions between anisotropic LAPONITE® nanodiscs, sodium polyacrylate and inorganic salts afforded hydrogels that were transparent, self-standing, moldable, strong, and biocompatible with shear-thinning and self-healing behavior. An extensive study on the role of salts in the gelification process dictates a trend that relates the valence of cations with the viscoelastic properties of the bulk material (G' values follow the trend, monovalent < divalent < trivalent). These hydrogels present G' values up to 5.1 × 104 Pa, which are considered high values for non-covalent hydrogels. Hydrogels crosslinked with sodium phosphate salts are biocompatible, and might be valid candidates for injectable drug delivery systems due to their shear-thinning behavior with rapid self-healing after injection.
Collapse
Affiliation(s)
- Tiago B Becher
- Institute of Chemistry, University of Campinas - Unicamp, Campinas, 13083-861, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
63
|
Xu Z, Shi L, Yang M, Zhu L. Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties - A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:302-311. [DOI: 10.1016/j.msec.2018.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/25/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
|
64
|
Huang WS, Chu IM. Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering. PLoS One 2019; 14:e0210285. [PMID: 30629660 PMCID: PMC6328128 DOI: 10.1371/journal.pone.0210285] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022] Open
Abstract
The general concept of tissue engineering is to restore biological function by replacing defective tissues with implantable, biocompatible, and easily handleable cell-laden scaffolds. In this study, osteoinductive and osteoconductive super paramagnetic Fe3O4 nanoparticles (MNP) and hydroxyapatite (HAP) nanoparticles were incorporated into a di-block copolymer based thermo-responsive hydrogel, methoxy(polyethylene glycol)-polyalanine (mPA), at various concentrations to afford composite, injectable hydrogels. Incorporating nanoparticles into the thermo-responsive hydrogel increased the complex viscosity and decreased the gelation temperature of the starting hydrogel. Functionally, the integration of inorganic nanoparticles modulated bio-markers of bone differentiation and enhanced bone mineralization. Moreover, this study adopted the emerging method of using either a supplementary static magnetic field (SMF) or a moving magnetic field to elicit biological response. These results demonstrate that combining external (magnet) and internal (scaffold) magnetisms is a promising approach for bone regeneration.
Collapse
Affiliation(s)
- Wei-Shun Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
65
|
McCracken JM, Rauzan BM, Kjellman JCE, Kandel ME, Liu YH, Badea A, Miller LA, Rogers SA, Popescu G, Nuzzo RG. 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization. Adv Healthc Mater 2019; 8:e1800788. [PMID: 30565889 DOI: 10.1002/adhm.201800788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/30/2018] [Indexed: 12/14/2022]
Abstract
Materials chemistries for hydrogel scaffolds that are capable of programming temporal (4D) attributes of cellular decision-making in supported 3D microcultures are described. The scaffolds are fabricated using direct-ink writing (DIW)-a 3D-printing technique using extrusion to pattern scaffolds at biologically relevant diameters (≤ 100 µm). Herein, DIW is exploited to variously incorporate a rheological nanoclay, Laponite XLG (LAP), into 2-hydroxyethyl methacrylate (HEMA)-based hydrogels-printing the LAP-HEMA (LH) composites as functional modifiers within otherwise unmodified 2D and 3D HEMA microstructures. The nanoclay-modified domains, when tested as thin films, require no activating (e.g., protein) treatments to promote robust growth compliances that direct the spatial attachment of fibroblast (3T3) and preosteoblast (E1) cells, fostering for the latter a capacity to direct long-term osteodifferentiation. Cell-to-gel interfacial morphologies and cellular motility are analyzed with spatial light interference microscopy (SLIM). Through combination of HEMA and LH gels, high-resolution DIW of a nanocomposite ink (UniH) that translates organizationally dynamic attributes seen with 2D gels into dentition-mimetic 3D scaffolds is demonstrated. These analyses confirm that the underlying materials chemistry and geometry of hydrogel nanocomposites are capable of directing cellular attachment and temporal development within 3D microcultures-a useful material system for the 4D patterning of hydrogel scaffolds.
Collapse
Affiliation(s)
- Joselle M. McCracken
- Department of Chemistry University of Illinois–Urbana Champaign 600 S. Matthews, Avenue Urbana IL 61801 USA
| | - Brittany M. Rauzan
- Department of Chemistry University of Illinois–Urbana Champaign 600 S. Matthews, Avenue Urbana IL 61801 USA
| | - Jacob C. E. Kjellman
- Department of Chemistry University of Illinois–Urbana Champaign 600 S. Matthews, Avenue Urbana IL 61801 USA
| | - Mikhail E. Kandel
- Department of Electrical and Computer Engineering 4055 Beckman Institute MC 251, 405 N. Mathews Urbana IL 61801 USA
| | - Yu Hao Liu
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana–Champaign Urbana IL 61801 USA
| | - Adina Badea
- Department of Chemistry University of Illinois–Urbana Champaign 600 S. Matthews, Avenue Urbana IL 61801 USA
| | - Lou Ann Miller
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana–Champaign Urbana IL 61801 USA
| | - Simon A. Rogers
- Department of Chemical and Biomolecular Engineering University of Illinois–Urbana Champaign 600 S. Matthews Avenue Urbana IL 61801 USA
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering 4055 Beckman Institute MC 251, 405 N. Mathews Urbana IL 61801 USA
| | - Ralph G. Nuzzo
- Department of Chemistry University of Illinois–Urbana Champaign 600 S. Matthews, Avenue Urbana IL 61801 USA
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana–Champaign Urbana IL 61801 USA
- Surface and Corrosion Science School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Drottning Kristinasväg 51 100 44 Stockholm Sweden
| |
Collapse
|
66
|
Cao H, Duan Y, Lin Q, Yang Y, Gong Z, Zhong Y, Chen X, Shao Z. Dual-loaded, long-term sustained drug releasing and thixotropic hydrogel for localized chemotherapy of cancer. Biomater Sci 2019; 7:2975-2985. [DOI: 10.1039/c9bm00540d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A thixotropic injectable regenerated silk fibroin/hydroxypropylcellulose (RSF/HPC) hydrogel for highly sustainable dual-drug release with improved anticancer therapy and alleviated side effects.
Collapse
Affiliation(s)
- Han Cao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
| | - Yu Duan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
| | - Qinrui Lin
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
| | - Yuhong Yang
- Research Center for Analysis and Measurement
- Fudan University
- Shanghai
- People's Republic of China
| | - Zuguang Gong
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
| | - Yiming Zhong
- Fuels and Energy Technology Institute & Department of Chemical Engineering
- Curtin University
- Perth
- Australia
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
- Shanghai
| |
Collapse
|
67
|
Chen F, Lu S, Zhu L, Tang Z, Wang Q, Qin G, Yang J, Sun G, Zhang Q, Chen Q. Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances. J Mater Chem B 2019; 7:1708-1715. [DOI: 10.1039/c8tb02445f] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strong and tough RSF-based hydrogels that could be used as a strain sensor, a touch screen pen and an electronic skin were developed.
Collapse
Affiliation(s)
- Feng Chen
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Shaoping Lu
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Lin Zhu
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Ziqing Tang
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Qilin Wang
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Gang Qin
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Jia Yang
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Gengzhi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Qiang Chen
- School of Materials Science and Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| |
Collapse
|
68
|
Dong T, Mi R, Wu M, Zhong N, Zhao X, Chen X, Shao Z. The regenerated silk fibroin hydrogel with designed architecture bioprinted by its microhydrogel. J Mater Chem B 2019. [DOI: 10.1039/c9tb00783k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The regenerated silk fibroin microhydrogel with thixotropic property could be bioprinted and then ripened to a tough hydrogel because of the change in “the second network” of the microhydrogel.
Collapse
Affiliation(s)
- Tao Dong
- State Key Laboratory of Molecular Engineering of Polymers
- Laboratory of Advanced Materials and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Ruixin Mi
- State Key Laboratory of Molecular Engineering of Polymers
- Laboratory of Advanced Materials and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers
- Laboratory of Advanced Materials and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Nongping Zhong
- Department of Otorhinolaryngol Head & Neck Surgery
- Huashan Hospital
- Fudan University
- Shanghai
- China
| | - Xia Zhao
- Department of Otorhinolaryngol Head & Neck Surgery
- Huashan Hospital
- Fudan University
- Shanghai
- China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Laboratory of Advanced Materials and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Laboratory of Advanced Materials and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
69
|
Hasany M, Thakur A, Taebnia N, Kadumudi FB, Shahbazi MA, Pierchala MK, Mohanty S, Orive G, Andresen TL, Foldager CB, Yaghmaei S, Arpanaei A, Gaharwar AK, Mehrali M, Dolatshahi-Pirouz A. Combinatorial Screening of Nanoclay-Reinforced Hydrogels: A Glimpse of the "Holy Grail" in Orthopedic Stem Cell Therapy? ACS APPLIED MATERIALS & INTERFACES 2018; 10:34924-34941. [PMID: 30226363 DOI: 10.1021/acsami.8b11436] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the promise of hydrogel-based stem cell therapies in orthopedics, a significant need still exists for the development of injectable microenvironments capable of utilizing the regenerative potential of donor cells. Indeed, the quest for biomaterials that can direct stem cells into bone without the need of external factors has been the "Holy Grail" in orthopedic stem cell therapy for decades. To address this challenge, we have utilized a combinatorial approach to screen over 63 nanoengineered hydrogels made from alginate, hyaluronic acid, and two-dimensional nanoclays. Out of these combinations, we have identified a biomaterial that can promote osteogenesis in the absence of well-established differentiation factors such as bone morphogenetic protein 2 (BMP2) or dexamethasone. Notably, in our "hit" formulations we observed a 36-fold increase in alkaline phosphate (ALP) activity and a 11-fold increase in the formation of mineralized matrix, compared to the control hydrogel. This induced osteogenesis was further supported by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy. Additionally, the Montmorillonite-reinforced hydrogels exhibited high osteointegration as evident from the relatively stronger adhesion to the bone explants as compared to the control. Overall, our results demonstrate the capability of combinatorial and nanoengineered biomaterials to induce bone regeneration through osteoinduction of stem cells in a natural and differentiation-factor-free environment.
Collapse
Affiliation(s)
- Masoud Hasany
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
- Department of Chemical and Petroleum Engineering , Sharif University of Technology , P.O. Box 11365-11155, Tehran , Iran
- Department of Industrial and Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology , P.O. Box 14965/161, Tehran , Iran
| | - Ashish Thakur
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Nayere Taebnia
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Firoz Babu Kadumudi
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Mohammad-Ali Shahbazi
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Malgorzata Karolina Pierchala
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Soumyaranjan Mohanty
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7, 01006 Vitoria-Gasteiz , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , 01006 Vitoria-Gasteiz , Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua) , 01007 Vitoria , Spain
| | - Thomas L Andresen
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Casper Bindzus Foldager
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery , Aarhus University Hospital , 8000 Aarhus , Denmark
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering , Sharif University of Technology , P.O. Box 11365-11155, Tehran , Iran
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology , P.O. Box 14965/161, Tehran , Iran
| | | | - Mehdi Mehrali
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Alireza Dolatshahi-Pirouz
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| |
Collapse
|
70
|
Roohaniesfahani I, Wang J, No YJ, de Candia C, Miao X, Lu Z, Shi J, Kaplan DL, Jiang X, Zreiqat H. Modulatory effect of simultaneously released magnesium, strontium, and silicon ions on injectable silk hydrogels for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:976-987. [PMID: 30423786 DOI: 10.1016/j.msec.2018.10.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/08/2018] [Accepted: 10/13/2018] [Indexed: 01/31/2023]
Abstract
Injectable silk hydrogels are ideal carriers of therapeutic agents due to their biocompatibility and low immunogenicity. Injectable silk hydrogels for bone regeneration have been previously developed but often utilize expensive biologics. In this study, we have developed an injectable silk composite incorporated with a triphasic ceramic called MSM-10 (54 Mg2SiO4, 36 Si3Sr5 and 10 MgO (wt%)) capable of simultaneously releasing magnesium, silicon, and strontium ions into its environment. These ions have been previously reported to possess therapeutic effects for bone regeneration. MSM-10 particles were incorporated into the silk hydrogels at various weight percentages [0.1 (SMH-0.1), 0.6 (SMH-0.6), 1 (SMH-1) and 2 (SMH-2)]. The effects of the released ions on the physicochemical and biological properties of the silk hydrogel were comprehensively evaluated. Increased MSM-10 loading was found to hinder the gelation kinetics of the silk hydrogel through the reduction of beta-sheet phase formation, which in turn affected the required sonication time for gelation, compressive strength, force of injection, microstructure and in vitro degradation rate. Primary human osteoblasts seeded on SMH-0.6 demonstrated increased proliferation and early alkaline phosphatase activity, as well as enhanced osteogenic gene expression compared to pure silk hydrogel and SMH-0.1. In vivo results in subcutaneous mouse models showed both decreased fibrous capsule formation and increased number of new blood vessels around the injected SMH-0.1 and SMH-0.6 implants compared to pure silk hydrogels. The results in this study indicate that the ions released from MSM-10 is able to influence the physicochemical and biological properties of silk hydrogels, and SMH-0.6 in particular shows promising properties for bone regeneration.
Collapse
Affiliation(s)
- Iman Roohaniesfahani
- Biomaterials and Tissue Engineering Research Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, Sydney, Australia.
| | - Jie Wang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, Sydney, Australia
| | - Christian de Candia
- Biomaterials and Tissue Engineering Research Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, Sydney, Australia
| | - Xinchao Miao
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zufu Lu
- Biomaterials and Tissue Engineering Research Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, Sydney, Australia
| | - Jeffrey Shi
- School of Chemical and Biomolecular Engineering, Faculty of Engineering and IT, University of Sydney, Sydney, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Xinquan Jiang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, Sydney, Australia.
| |
Collapse
|
71
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
72
|
Li J, Yang Y, Yu Y, Li Q, Tan G, Wang Y, Liu W, Pan W. LAPONITE® nanoplatform functionalized with histidine modified oligomeric hyaluronic acid as an effective vehicle for the anticancer drug methotrexate. J Mater Chem B 2018; 6:5011-5020. [PMID: 32255073 DOI: 10.1039/c8tb01284a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The synthetic clay material, LAPONITE® (LAP), having a nanodisk structure together with a negatively charged surface, has been used for effective drug encapsulation by virtue of its interlayer space. In this research effort, the LAP nanodisk was used for the first time to encapsulate the antifolic methotrexate (MTX); the MTX-loaded LAP nanodisks (LAP/MTX) demonstrated a high drug loading efficiency of 80.39%. An efficient and reliable tumor-targeting device that rests on the synthesized oligomeric hyaluronic acid-l-histidine (oHA-His) was then encapsulated in the MTX-loaded LAP disks (forming LAP/MTX/oHA-His nanohybrids). The drug released from the LAP/MTX/oHA-His nanohybrids was pH-dependent and matched the first-order kinetics that describes the diffusion mechanism. In vitro biological evaluation manifested that the MTX-loaded LAP nanocarriers, particularly the LAP/MTX/oHA-His nanohybrids that have targetability and lysosomal antineoplastic activity, can be effectively internalized by the MCF-7 cell line, and can exhibit a more prominent anticancer cytotoxicity than free MTX. In vivo studies with mice indicated that the LAP/MTX/oHA-His nanohybrids demonstrated much higher antitumor efficiency compared to the LAP/MTX nanohybrids and pure MTX. Taken together, the LAP/oHA-His, CD44 receptor targeting and pH-sensitive multifunctional nanohybrids conferred the MTX with excellent cytocompatibility, dispersion stability, sustained pH-responsive release properties, and improved anticancer activity, and may be further developed as a potential active nanoplatform for various anticancer drugs.
Collapse
Affiliation(s)
- Jinyu Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Mehrabani MG, Karimian R, Mehramouz B, Rahimi M, Kafil HS. Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing. Int J Biol Macromol 2018; 114:961-971. [DOI: 10.1016/j.ijbiomac.2018.03.128] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
|
74
|
Waters R, Alam P, Pacelli S, Chakravarti AR, Ahmed RP, Paul A. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater 2018; 69:95-106. [PMID: 29281806 DOI: 10.1016/j.actbio.2017.12.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022]
Abstract
The objective of this study was to develop an injectable and biocompatible hydrogel that can deliver a cocktail of therapeutic biomolecules (secretome) secreted by human adipose-derived stem cells (hASCs) to the peri-infarct myocardium. Gelatin and Laponite® were combined to formulate a shear-thinning, nanocomposite hydrogel (nSi Gel) as an injectable carrier of secretome (nSi Gel+). The growth factor composition and the pro-angiogenic activity of the secretome were tested in vitro by evaluating the proliferation, migration and tube formation of human umbilical endothelial cells. The therapeutic efficacy of the nSi Gel + system was then investigated in vivo in rats by intramyocardial injection into the peri-infarct region. Subsequently, the inflammatory response, angiogenesis, scar formation, and heart function were assessed. Biocompatibility of the developed nSi Gel was confirmed by quantitative PCR and immunohistochemical tests which showed no significant differences in the level of inflammatory genes, microRNAs, and cell marker expression compared to the untreated control group. In addition, the only group that showed a significant increase in capillary density, reduction in scar area and improved cardiac function was treated with the nSi Gel+. Our in vitro and in vivo findings demonstrate the potential of this new secretome-loaded hydrogel as an alternative strategy to treat myocardial infarction. STATEMENT OF SIGNIFICANCE Stem cell based-therapies represent a possible solution to repair damaged myocardial tissue by promoting cardioprotection, angiogenesis, and reduced fibrosis. However, recent evidence indicates that most of the positive outcomes are likely due to the release of paracrine factors (cytokines, growth factors, and exosomes) from the cells and not because of the local engraftment of stem cells. This cocktail of essential growth factors and paracrine signals is known as secretome can be isolated in vitro, and the biomolecule composition can be controlled by varying stem-cell culture conditions. Here, we propose a straightforward strategy to deliver secretome produced from hASCs by using a nanocomposite injectable hydrogel made of gelatin and Laponite®. The designed secretome-loaded hydrogel represents a promising alternative to traditional stem cell therapy for the treatment of acute myocardial infarction.
Collapse
|
75
|
Mousa M, Evans ND, Oreffo RO, Dawson JI. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials 2018; 159:204-214. [DOI: 10.1016/j.biomaterials.2017.12.024] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 11/17/2022]
|
76
|
Liu K, Zang S, Xue R, Yang J, Wang L, Huang J, Yan Y. Coordination-Triggered Hierarchical Folate/Zinc Supramolecular Hydrogels Leading to Printable Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4530-4539. [PMID: 29336146 DOI: 10.1021/acsami.7b18155] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Printable hydrogels desired in bioengineering have extremely high demands on biocompatibility and mechanic strength, which can hardly be achieved in conventional hydrogels made with biopolymers. Here, we show that on employment of the strategy of coordination-triggered hierarchical self-assembly of naturally occurring small-molecule folic acid, supramolecular hydrogels with robust mechanical elastic modulus comparable to synthetic double-network polymer gels can be made at concentrations below 1%. A sequence of hierarchical steps are involved in the formation of this extraordinary hydrogel: petrin rings on folate form tetramers through hydrogen bonding, tetramers stack into nanofibers by π-π stacking, and zinc ions cross-link the nanofibers into larger-scale fibrils and further cross-link the fibril network to gel water. These supramolecular qualities endow the hydrogel with shear-thinning and instant healing ability, which makes the robust gel injectable and printable into various three-dimensional structures. Owing to the excellent biocompatibility, the gel can support cells three-dimensionally and can be used as an ideal carrier for imaging agent (Gd3+), as well as chemodrugs. In combination with its easy formation and abundant sources, this newly discovered metallo-folate supramolecular hydrogel is promising in various bioengineering technological applications.
Collapse
Affiliation(s)
- Kaerdun Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Shihao Zang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Rongrong Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Jinghui Yang
- College of Chemistry and Chemical Engineering, Xinjiang University , Urumqi 830046, P. R. China
| | - Lizhi Wang
- College of Chemistry and Chemical Engineering, Xinjiang University , Urumqi 830046, P. R. China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China
| |
Collapse
|
77
|
Jang TS, Jung HD, Pan HM, Han WT, Chen S, Song J. 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. Int J Bioprint 2018; 4:126. [PMID: 33102909 PMCID: PMC7582009 DOI: 10.18063/ijb.v4i1.126] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) printing of hydrogels is now an attractive area of research due to its capability to fabricate intricate, complex and highly customizable scaffold structures that can support cell adhesion and promote cell infiltration for tissue engineering. However, pure hydrogels alone lack the necessary mechanical stability and are too easily degraded to be used as printing ink. To overcome this problem, significant progress has been made in the 3D printing of hydrogel composites with improved mechanical performance and biofunctionality. Herein, we provide a brief overview of existing hydrogel composite 3D printing techniques including laser based-3D printing, nozzle based-3D printing, and inkjet printer based-3D printing systems. Based on the type of additives, we will discuss four main hydrogel composite systems in this review: polymer- or hydrogel-hydrogel composites, particle-reinforced hydrogel composites, fiber-reinforced hydrogel composites, and anisotropic filler-reinforced hydrogel composites. Additionally, several emerging potential applications of hydrogel composites in the field of tissue engineering and their accompanying challenges are discussed in parallel.
Collapse
Affiliation(s)
- Tae-Sik Jang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Hyun-Do Jung
- Liquid Processing & Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon, Republic of Korea
| | - Houwen Matthew Pan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Win Tun Han
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Shengyang Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
78
|
Martins JP, Ferreira MP, Ezazi NZ, Hirvonen JT, Santos HA, Thrivikraman G, França CM, Athirasala A, Tahayeri A, Bertassoni LE. 3D printing: prospects and challenges. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018:299-379. [DOI: 10.1016/b978-0-323-48063-5.00004-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
79
|
Antimicrobial colloidal hydrogels assembled by graphene oxide and thermo-sensitive nanogels for cell encapsulation. J Colloid Interface Sci 2017; 513:314-323. [PMID: 29161646 DOI: 10.1016/j.jcis.2017.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
Abstract
Hydrogels are promising 3D materials that have demonstrated increasing applications in the encapsulation and delivery of drugs and cells. Herein we report an injectable colloidal hydrogel that directly assembled by graphene oxide (GO) and thermo-sensitive nanogels (tNG). The pH dependent hydrogen bonding interactions between the carboxyl and oxethyl groups induce the reversible assembly of GO and nanogels. The hydrogel is mouldable and can be shaped into different macroscopic objects, and the mechanical strengths are tunable with pH and temperature adjustment. The hybrid hydrogel by its own possesses high antibacterial activity, and demonstrates responsive drug release behaviour and high viability of 3D encapsulated cells. We expect this hybrid colloidal hydrogel can serve as an interesting scaffold for active cargo delivery and cell culture.
Collapse
|
80
|
Ebrahimi A, Sadrjavadi K, Hajialyani M, Shokoohinia Y, Fattahi A. Preparation and characterization of silk fibroin hydrogel as injectable implants for sustained release of Risperidone. Drug Dev Ind Pharm 2017; 44:199-205. [PMID: 28956466 DOI: 10.1080/03639045.2017.1386195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The principal objective of the present study is to achieve a depot formulation of Risperidone by gelation of silk fibroin (SF). For this purpose, hydrochloric acid (HCl)/acetone-based and methanol-based hydrogels were prepared with different drug/polymer ratios (1:3, 1:6, and 1:15). For all the drug-loaded methanol-based hydrogels, gel transition of SF solutions occurred immediately and the gelation time was 1 min, while the gelation time of HCL/acetone-based hydrogels was around 360 min. According to the results obtined from Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) spectra, solvent systems and Risperidone could induce β-sheet structure, but HCL/acetone system had the lowest effect on induction of β-sheets. The crystallinity was increased by increasing the amount of Risperidone, and drug to polymer ratio of 1:3 possessed the highest crystallinity. Thermogravimetric analysis (TGA) indicated that increasing the amount of drug in formulation increased the stability of hydrogels, and methanol-based hydrogel with a ratio of 1:3 had the most stable structure. The release rate of Risperidone from methanol-based hydrogel at ratio of 1:3 was lower than that for HCl/acetone-based one, and it decreased by increasing the amount of Risperidone. The release of Risperidone from methanol hydrogel at ratios 1:3 and 1:6 continued up to 25 d which is acceptable for depot form of Risperidone and shows that the extended release of Risperidone was achieved successfully. In conclusion, SF hydrogel with the ability to respond to the environmental stimuli is an excellent candidate for injectable implants for extended release of Risperidone.
Collapse
Affiliation(s)
- Atefeh Ebrahimi
- a Student Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Komail Sadrjavadi
- b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Marziyeh Hajialyani
- b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Yalda Shokoohinia
- b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Ali Fattahi
- a Student Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran.,b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran.,c Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,d Regenerative Medicine Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,e Nano Drug Delivery Research Center, Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
81
|
Liu F, Jiang GC, Wang K, Wang J. Laponite nanoparticle as a multi-functional additive in water-based drilling fluids. JOURNAL OF MATERIALS SCIENCE 2017; 52:12266-12278. [DOI: 10.1007/s10853-017-1375-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
82
|
Ding Z, Han H, Fan Z, Lu H, Sang Y, Yao Y, Cheng Q, Lu Q, Kaplan DL. Nanoscale Silk-Hydroxyapatite Hydrogels for Injectable Bone Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16913-16921. [PMID: 28471165 DOI: 10.1021/acsami.7b03932] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Injectable hydrogel systems are important bone substitutes for regeneration because of their handling properties and the ability to fill irregular defects. Silk-hydroxyapatite composite materials with silk nanofibers in hydrogels were prepared and used as biomaterials for osteogenesis. These thixotropic silk nanofiber hydrogels and water-dispersible silk-HA nanoparticles were blended to form injectable nanoscale systems with a homogeneous distribution of a high HA content [60% (w/w)] to imitate bone niche. A modulus of ∼21 kPa was also achieved following the addition of HA in the systems, providing physical cues to induce osteodifferentiation. The composite hydrogels supported improved osteogenesis compared to that with silk nanofiber hydrogels. The newly formed bone tissue and bone defect healing were detected after implantation of the silk-HA composite hydrogels, suggesting utility for the regeneration of irregular bone defects.
Collapse
Affiliation(s)
- Zhaozhao Ding
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Hongyan Han
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University , Suzhou 215000, People's Republic of China
| | - Haijun Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University , Suzhou 215000, People's Republic of China
| | - Yonghuan Sang
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Yuling Yao
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - Qingqing Cheng
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Qiang Lu
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
83
|
Vashist A, Kaushik A, Alexis K, Dev Jayant R, Sagar V, Vashist A, Nair M. Bioresponsive Injectable Hydrogels for On-demand Drug Release and Tissue Engineering. Curr Pharm Des 2017; 23:3595-3602. [PMID: 28521694 PMCID: PMC6889087 DOI: 10.2174/1381612823666170516144914] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
The emergence of injectable hydrogels as biomaterials has been a revolutionary breakthrough in the field of on-demand drug delivery and tissue engineering. The promising features of these systems include their biodegradability, biocompatibility, permeability, ease of the surgical implantation, and most importantly exhibit minimally invasiveness. These hydrogels have been explored as sustained and on-demand release carriers for the various bioactive agents, growth factors, live cells, various hydrophobic drugs and as extracellular matrices for tissue engineering. Present review is an attempt to highlight the recent systems explored for on-demand drug release and tissue engineering. It also gives an overview of the role of nanotechnology in the advancements of injectable hydrogels. The future prospects and challenges of these hydrogels have also been addressed.
Collapse
Affiliation(s)
- Arti Vashist
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Ajeet Kaushik
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Kayla Alexis
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Rahul Dev Jayant
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Vidya Sagar
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, Índia
| | - Madhavan Nair
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| |
Collapse
|
84
|
Tao L, Zhonglong L, Ming X, Zezheng Y, Zhiyuan L, Xiaojun Z, Jinwu W. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Adv 2017. [DOI: 10.1039/c7ra06913h] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, we fabricated a biocomposite scaffold composed of carboxymethyl chitosan (CMC), gelatin and LAPONITE® (Lap) nanoparticles via freeze-drying and investigated its potential use in bone tissue engineering.
Collapse
Affiliation(s)
- Li Tao
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Liu Zhonglong
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Xiao Ming
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Yang Zezheng
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Liu Zhiyuan
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Zhou Xiaojun
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Wang Jinwu
- Shanghai Key Laboratory of Orthopaedic Implant
- Department of Orthopaedic Surgery
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| |
Collapse
|
85
|
Zhang X, Xu B, Gao F, Zheng P, Liu W. Repair of volumetric bone defects with a high strength BMP-loaded-mineralized hydrogel tubular scaffold. J Mater Chem B 2017. [DOI: 10.1039/c7tb01279a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A high strength and BMP-2-loaded tubular scaffold was engineered by in situ mineralization of a supramolecular hydrogel. This tubular scaffold could lead to an efficient volumetric bone repair.
Collapse
Affiliation(s)
- Xuran Zhang
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300352
- China
| | - Bing Xu
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300352
- China
| | - Fei Gao
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300352
- China
| | - Pengbin Zheng
- Tianjin First Center Hospital
- Tianjin 300192
- P. R. China
| | - Wenguang Liu
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300352
- China
| |
Collapse
|
86
|
Toytziaridis A, Dicko C. Fabrication and Optimization of Stable, Optically Transparent, and Reusable pH-Responsive Silk Membranes. Int J Mol Sci 2016; 17:E1897. [PMID: 27854303 PMCID: PMC5133896 DOI: 10.3390/ijms17111897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022] Open
Abstract
The fabrication of silk-based membranes that are stable, optically transparent and reusable is yet to be achieved. To address this bottleneck we have developed a method to produce transparent chromogenic silk patches that are optically responsive to pH. The patches were produced by blending regenerated silk fibroin (RSF), Laponite RD (nano clay) and the organic dyes neutral red and Thionine acetate. The Laponite RD played a central role in the patch mechanical integrity and prevention of dye leaching. The process was optimized using a factorial design to maximize the patch response to pH by UV absorbance and fluorescence emission. New patches of the optimized protocol, made from solutions containing 125 μM neutral red or 250 μM of Thionine and 15 mg/mL silk, were further tested for operational stability over several cycles of pH altering. Stability, performance, and reusability were achieved over the tested cycles. The approach could be extended to other reporting molecules or enzymes able to bind to Laponite.
Collapse
Affiliation(s)
- Andreas Toytziaridis
- Pure and Applied Biochemistry, Chemical Center, Lund University, 22241 Lund, Sweden.
| | - Cedric Dicko
- Pure and Applied Biochemistry, Chemical Center, Lund University, 22241 Lund, Sweden.
| |
Collapse
|
87
|
Wang Y, Ma R, Hu K, Kim S, Fang G, Shao Z, Tsukruk VV. Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24962-24973. [PMID: 27580039 DOI: 10.1021/acsami.6b08610] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between "bricks"-GO sheets and "mortar"-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young's modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for β-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic-hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interactions, but also provides insight on how to enhance the mechanical properties for the nacre-mimic nanocomposites by focusing on adjusting the delicate interactions between heterogeneous "brick" and adaptive "mortar" components with water/temperature annealing routines.
Collapse
Affiliation(s)
- Yaxian Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Ruilong Ma
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Kesong Hu
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Guangqiang Fang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| |
Collapse
|