51
|
Prolyl hydroxylase inhibitor DMOG suppressed inflammatory cytokine production in human gingival fibroblasts stimulated with Fusobacterium nucleatum. Clin Oral Investig 2018; 23:3123-3132. [PMID: 30411281 DOI: 10.1007/s00784-018-2733-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Fusobacterium nucleatum (F. nucleatum) is one of the most common bacteria involved in the initiation and progression of periodontal diseases. Pharmacological inhibitor of prolyl hydroxylases (PHDs), dimethyloxallyl glycine (DMOG), has been reported to exert anti-inflammatory effects. The aim of this investigation was to evaluate the role of DMOG in inflammatory cytokine production of human gingival fibroblasts (HGFs) stimulated with F. nucleatum. MATERIAL AND METHODS HGFs were pretreated with 10, 50, and 100 μM DMOG for 24 h before infected with F. nucleatum (MOI = 100). Cell morphology and survival after infection with F. nucleatum were determined by crystal violet staining assay. The mRNA levels of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, and IL-1β were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The production of IL-6, IL-8, TNF-α, and IL-1β was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS F. nucleatum did not affect the morphology and survival of HGFs by the concentrations of MOI (multiplicity of infection) = 10, 50, and 100. The mRNA levels of IL-6, IL-8, TNF-α, and IL-1β were significantly enhanced with the stimulation of F. nucleatum, and the maximal effect reached at 6 h. The secretion of IL-6, IL-8, and TNF-α was significantly upregulated by the infection of F. nucleatum while the production of IL-1β was nearly unchanged. Above all, DMOG suppressed F. nucleatum-stimulated IL-6, IL-8, TNF-α, and IL-1β expressions. CONCLUSIONS These data indicate that prolyl hydroxylase inhibitor DMOG partly downregulates inflammatory cytokine expression in F. nucleatum-infected HGFs. CLINICAL RELEVANCE DMOG may provide a novel strategy for the therapy of periodontitis.
Collapse
|
52
|
Zhao X, Liu Y, Yu Y, Huang Q, Ji W, Li J, Zhao Y. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. NANOSCALE 2018; 10:12595-12604. [PMID: 29938277 DOI: 10.1039/c8nr03728k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Abdominal wall defect repair remains a major clinical need, and a particle-based controllable drug delivery system offers a solution to this problem. Here, we present a new type of hierarchically porous microparticles (HPMs) composed of poly(lactic-co-glycolic acid) (PLGA) and hollow mesoporous silica nanoparticles (HMSNs) for the delivery. The HPMs are generated by drying microfluidic emulsion templates of HMSNs-dispersed PLGA solution. The resultant HPMs have tailorable porous structures, that provide a three-hierarchy architecture for the controlled release of actives. The first hierarchy is formed for controlling the drug release via physical absorption as a result of the presence of the HMSNs in the HPMs. The second hierarchy channels with small pores scattered throughout the surface of the HPMs are formed during evaporation of the solvent. The third hierarchy with openings on the surface of the HPMs is formed as a result of the inner droplets leaking out of the double emulsion templates during the PLGA solidification. Thus, by manipulating the flow of solutions during the microfluidic emulsification, the porous structures of HPMs can be easily and precisely adjusted, and the loaded drugs are delivered at the required rate. These features of the HPMs make them ideal for repairing abdominal wall defects.
Collapse
Affiliation(s)
- Xin Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
53
|
Al-Enizi AM, Zagho MM, Elzatahry AA. Polymer-Based Electrospun Nanofibers for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E259. [PMID: 29677145 PMCID: PMC5923589 DOI: 10.3390/nano8040259] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
Electrospinning has been considered a promising and novel procedure to fabricate polymer nanofibers due to its simplicity, cost effectiveness, and high production rate, making this technique highly relevant for both industry and academia. It is used to fabricate non-woven fibers with unique characteristics such as high permeability, stability, porosity, surface area to volume ratio, ease of functionalization, and excellent mechanical performance. Nanofibers can be synthesized and tailored to suit a wide range of applications including energy, biotechnology, healthcare, and environmental engineering. A comprehensive outlook on the recent developments, and the influence of electrospinning on biomedical uses such as wound dressing, drug release, and tissue engineering, has been presented. Concerns regarding the procedural restrictions and research contests are addressed, in addition to providing insights about the future of this fabrication technique in the biomedical field.
Collapse
Affiliation(s)
- Abdullah M Al-Enizi
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Moustafa M Zagho
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
54
|
Ren X, Han Y, Wang J, Jiang Y, Yi Z, Xu H, Ke Q. An aligned porous electrospun fibrous membrane with controlled drug delivery - An efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater 2018; 70:140-153. [PMID: 29454159 DOI: 10.1016/j.actbio.2018.02.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
A chronic wound in diabetic patients is usually characterized by poor angiogenesis and delayed wound closure. The exploration of efficient strategy to significantly improve angiogenesis in the diabetic wound bed and thereby accelerate wound healing is still a significant challenge. Herein, we reported a kind of aligned porous poly (l-lactic acid) (PlLA) electrospun fibrous membranes containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles (DS) for diabetic wound healing. The PlLA electrospun fibers aligned in a single direction and there were ellipse-shaped nano-pores in situ generated onto the surface of fibers, while the DS were well distributed in the fibers and the DMOG as well as Si ion could be controlled released from the nanopores on the fibers. The in vitro results revealed that the aligned porous composite membranes (DS-PL) could stimulate the proliferation, migration and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs) compared with the pure PlLA membranes. The in vivo study further demonstrated that the prepared DS-PL membranes significantly improved neo-vascularization, re-epithelialization and collagen formation as well as inhibited inflammatory reaction in the diabetic wound bed, which eventually stimulated the healing of the diabetic wound. Collectively, these results suggest that the combination of hierarchical structures (nanopores on the aligned fibers) with the controllable released DMOG drugs as well as Si ions from the membranes, which could create a synergetic effect on the rapid stimulation of angiogenesis in the diabetic wound bed, is a potential novel therapeutic strategy for highly efficient diabetic wound healing. STATEMENT OF SIGNIFICANCE A chronic wound in diabetic patients is usually characterized by the poor angiogenesis and the delayed wound closure. The main innovation of this study is to design a new kind of skin tissue engineered scaffold, aligned porous poly (l-lactic acid) (PlLA) electrospun membranes containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles (DS), which could significantly improve angiogenesis in the diabetic wound bed and thereby accelerate diabetic wound healing. The results revealed that the electrospun fibers with ellipse-shaped nano-pores on the surface were aligned in a single direction, while there were DS particles distributed in the fibers and the DMOG as well as Si ions could be controllably released from the nanopores on the fibers. The in vitro studies demonstrated that the hierarchical nanostructures (nanopores on the aligned fibers) and the controllable released chemical active agents (DMOG drugs and Si ions) from the DS-PL membranes could exert a synergistic effect on inducing the endothelial cell proliferation, migration and differentiation. Above all, the scaffolds distinctly induced the angiogenesis, collagen deposition and re-epithelialization as well as inhibited inflammation reaction in the wound sites, which eventually stimulated the healing of diabetic wounds in vivo. The significance of the current study is that the combination of the hierarchical aligned porous nanofibrous structure with DMOG-loaded MSNs incorporated in electrospun fibers may suggest a high-efficiency strategy for chronic wound healing.
Collapse
Affiliation(s)
- Xiaozhi Ren
- College of Life and Environmental Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Yiming Han
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Wang
- College of Life and Environmental Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Yuqi Jiang
- College of Life and Environmental Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - He Xu
- College of Life and Environmental Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China.
| | - Qinfei Ke
- College of Life and Environmental Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China.
| |
Collapse
|
55
|
Dimethyloxalylglycine-embedded Poly(ε-caprolactone) Fiber Meshes Promote Odontoblastic Differentiation of Human Dental Pulp–derived Cells. J Endod 2018; 44:98-103.e1. [DOI: 10.1016/j.joen.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 11/18/2022]
|
56
|
Rameshbabu AP, Datta S, Bankoti K, Subramani E, Chaudhury K, Lalzawmliana V, Nandi SK, Dhara S. Polycaprolactone nanofibers functionalized with placental derived extracellular matrix for stimulating wound healing activity. J Mater Chem B 2018; 6:6767-6780. [DOI: 10.1039/c8tb01373j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impaired wound healing is primarily associated with inadequate angiogenesis, repressed cell migration, deficient synthesis of extracellular matrix (ECM) component/growth factors, and altered inflammatory responses in the wound bed environment.
Collapse
Affiliation(s)
- Arun Prabhu Rameshbabu
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur – 721302
- India
| | - Sayanti Datta
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur – 721302
- India
| | - Kamakshi Bankoti
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur – 721302
- India
| | - Elavarasan Subramani
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur – 721302
- India
| | - Koel Chaudhury
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur – 721302
- India
| | - V. Lalzawmliana
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
- Kolkata – 700037
- India
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
- Kolkata – 700037
- India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur – 721302
- India
| |
Collapse
|
57
|
Shi Q, Qian Z, Liu D, Sun J, Wang X, Liu H, Xu J, Guo X. GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model. Front Physiol 2017; 8:904. [PMID: 29163228 PMCID: PMC5681946 DOI: 10.3389/fphys.2017.00904] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Delayed wound healing in diabetic patients is one of the most challenging complications in clinical medicine, as it poses a greater risk of gangrene, amputation and even death. Therefore, a novel method to promote diabetic wound healing is of considerable interest at present. Previous studies showed that injection of MSC-derived exosomes has beneficial effects on wound healing. In current studies, we aimed to isolate exosomes derived from gingival mesenchymal stem cells (GMSCs) and then loading them to the chitosan/silk hydrogel sponge to evaluate the effects of this novel non-invasive method on skin defects in diabetic rats. Methods: GMSCs were isolated from human gingival connective tissue and characterized by surface antigen analysis and in vitro multipotent differentiation. The cell supernatant was collected to isolate the exosomes. The exosomes were characterized by transmission electron microscopy, Western blot and size distribution analysis. The chitosan/silk-based hydrogel sponge was prepared using the freeze-drying method and then structural and physical properties were characterized. Then, the exosomes were added to the hydrogel and tested in a diabetic rat skin defect model. The effects were evaluated by wound area measurement, histological, immunohistochemical and immunofluorescence analysis. Results: We have successfully isolated GMSCs and exosomes with a mean diameter of 127 nm. The chitosan/silk hydrogel had the appropriate properties of swelling and moisture retention capacity. The in vivo studies showed that the incorporating of GMSC-derived exosomes to hydrogel could effectively promote healing of diabetic skin defects. The histological analysis revealed more neo-epithelium and collagen in the hydrogel-exosome group. In addition, the hydrogel-exosome group had the highest microvessel density and nerve density. Conclusions: The combination of GMSC-derived exosomes and hydrogel could effectively promote skin wound healing in diabetic rats by promoting the re-epithelialization, deposition and remodeling of collagen and by enhancing angiogenesis and neuronal ingrowth. These findings not only provide new information on the role of the GMSC-derived exosomes in wound healing but also provide a novel non-invasive application method of exosomes with practical value for skin repair.
Collapse
Affiliation(s)
- Quan Shi
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Qian
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, China
| | - Donghua Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, China
| | - Jie Sun
- Stomatology Center, General Hospital of Armed Police Forces, Beijing, China
| | - Xing Wang
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Hongchen Liu
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Juan Xu
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
58
|
Zhao G, Zhang T, Ma X, Jiang K, Wu H, Qiu C, Guo M, Deng G. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264.7 cells and acute lung injury. Oncotarget 2017; 8:68153-68164. [PMID: 28978105 PMCID: PMC5620245 DOI: 10.18632/oncotarget.19249] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening inflammatory disease owing to the lack of specific and effective therapies. Oridonin (Ori) is an active diterpenoid isolated from Rabdosiarubescens (R.rubescens) that has been shown to possess a broadspectrum pharmacological properties including anti-inflammatory, antitumour, antioxidative and neuroregulatory effects. However, its potential protective mechanism in ALI is not well characterized. In this study, we demonstrated that Ori reduces the mortality of mice with ALI induced by a high dose of lipopolysaccharide (LPS), which suggests that Ori has a protective effect on LPS induced ALI. Next, our results confirmed that Ori improves LPS-induced localized pulmonary pathology and decreased the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum. Nuclear factor-kappa B (NF-κB) is capable of regulating the transcription of pro-inflammatory factors. Interestingly, our results showed that Ori inhibits the expression of TLR4/MyD88 and phosphorylation of NF-κB p65 in lung tissues. To confirm this, we further validated the possible regulatory anti-inflammatory mechanisms of Ori in vitro. LPS-induced RAW264.7 cells, which are widely used as an inflammation model to evaluate the potential protective effect of drugs in vitro, were chosen for this study. Similar results were observed, that is, pre-treatment with Ori, markedly inhibited the nuclear translocation and phosphorylation of NF-κB p65 induced by LPS and subsequently decreased the release of pro-inflammatory cytokines that were increased by LPS. Overall, these results demonstrated that Ori exerts a therapeutic effect on ALI by inhibiting the release of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, through the TLR4/MyD88/NF-κB axis.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|