51
|
Moon HJ, Lee HJ, Patel M, Park S, Chang SH, Jeong B. Hepatogenic Supported Differentiation of Mesenchymal Stem Cells in a Lactobionic Acid-Conjugated Thermogel. ACS Macro Lett 2017; 6:1305-1309. [PMID: 35650787 DOI: 10.1021/acsmacrolett.7b00802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the effect of receptor substrate of target cells on stem cell differentiation, lactobionic acid-conjugated poly[(propylene glycol)-b-(ethylene glycol)-b-(propylene glycol)]-poly(l-alanine) (LB-PLX-PA) was synthesized, and then thermogelling systems consisting of LB-PLX-PA and PLX-PA in a ratio of 0/100 (LB-0), 5/95 (LB-5), and 20/80 (LB-20) were constructed as an injectable three-dimensional scaffold toward hepatogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs). Modulus of LB-0, LB-5, and LB-20 increased to 500-800 Pa at 37 °C (gel) due to the heat induced sol-to-gel transition of the systems during which TMSCs were incorporated into the gel. Based on biomarker expressions and hepatic biofunctions of the differentiated cells, the receptor substrate (LB)-conjugated bioactive thermogel provides compatible microenvironments for the differentiated cells, and thus gives pronounced positive results on the differentiation of the stem cells into target cells during three-dimensional culture, compared with a passive thermogel.
Collapse
Affiliation(s)
- Hyo Jung Moon
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Hyun Jung Lee
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Madhumita Patel
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Sohee Park
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Seo Hee Chang
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
52
|
Huang P, Song H, Zhang Y, Liu J, Cheng Z, Liang XJ, Wang W, Kong D, Liu J. FRET-enabled monitoring of the thermosensitive nanoscale assembly of polymeric micelles into macroscale hydrogel and sequential cognate micelles release. Biomaterials 2017; 145:81-91. [PMID: 28858720 DOI: 10.1016/j.biomaterials.2017.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 01/02/2023]
Abstract
Thermosensitive "micellar hydrogel" is prepared based on poly(ε-caprolactone-co- 1,4,8-trioxa[4.6]spiro-9-undecanone)-b-poly(ethylene glycol)- b-poly(ε-caprolactone- co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) triblock copolymer. Fluorescence resonance energy transfer (FRET) is adopted to explore its assembly (formation) and disassembly (degradation) mechanism within the range of 10 nm. Results prove that the thermosensitive non-covalent aggregation of micelles facilitates the hydrogel formation and the sustained shedding of cognate micelles induces the hydrogel degradation, during which polymers are steadily incorporated in micelles without any micelle disassembly or reassembly. It is confirmed that using multiple-tags based imaging technology, such as FRET imaging, the fate of macro biodegradable materials in vitro and in vivo can be followed at a precise nano even molecular level. Such an unique hydrogel composed of nothing more than PECT micelles can act as not only an injectable nanomedicine reservoir by subcutaneous or peri-tissue administration, but also an advanced "combo" macroscale platform for co-delivery of multi-modal therapeutic agents. Our findings also indicate that biological stimuli (e.g., temperature, enzymes)-induced non-covalent micelle self-assembly may provide us an effective strategy to prepare a macroscale device from nanoscale subunits.
Collapse
Affiliation(s)
- Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5484, USA
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
53
|
Fan J, Li R, Wang H, He X, Nguyen TP, Letteri RA, Zou J, Wooley KL. Multi-responsive polypeptide hydrogels derived from N-carboxyanhydride terpolymerizations for delivery of nonsteroidal anti-inflammatory drugs. Org Biomol Chem 2017; 15:5145-5154. [PMID: 28574067 PMCID: PMC5551480 DOI: 10.1039/c7ob00931c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A polypeptide-based hydrogel system, when prepared from a diblock polymer with a ternary copolypeptide as one block, exhibited thermo-, mechano- and enzyme-responsive properties, which enabled the encapsulation of naproxen (Npx) during the sol-gel transition and its release in the gel state. Statistical terpolymerizations of l-alanine (Ala), glycine (Gly) and l-isoleucine (Ile) NCAs at a 1 : 1 : 1 feed ratio initiated by monomethoxy monoamino-terminated poly(ethylene glycol) afforded a series of methoxy poly(ethylene glycol)-block-poly(l-alanine-co-glycine-co-l-isoleucine) (mPEG-b-P(A-G-I)) block polymers. β-Sheets were the dominant secondary structures within the polypeptide segments, which facilitated a heat-induced sol-to-gel transition, resulting from the supramolecular assembly of β-sheets into nanofibrils. Deconstruction of the three-dimensional networks by mechanical force (sonication) triggered the reverse gel-to-sol transition. Certain enzymes could accelerate the breakdown of the hydrogel, as determined by in vitro gel weight loss profiles. The hydrogels were able to encapsulate and release Npx over 6 days, demonstrating the potential application of these polypeptide hydrogels as an injectable local delivery system for small molecule drugs.
Collapse
Affiliation(s)
- Jingwei Fan
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Richen Li
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Hai Wang
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Xun He
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Tan P Nguyen
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Rachel A Letteri
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Jiong Zou
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering, Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Taxes A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842, USA.
| |
Collapse
|
54
|
Kim HA, Lee HJ, Hong JH, Moon HJ, Ko DY, Jeong B. α,ω-Diphenylalanine-End-Capping of PEG-PPG-PEG Polymers Changes the Micelle Morphology and Enhances Stability of the Thermogel. Biomacromolecules 2017; 18:2214-2219. [PMID: 28605182 DOI: 10.1021/acs.biomac.7b00626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pluronics F127 (P, PEG-PPG-PEG triblock copolymer) was coupled with diphenylalanine (FF) to prepare FF-end-capped Pluronics (FFPFF). With increasing temperature from 10 to 60 °C, the FFPFF self-assembled to vesicles in water. The unimer-to-vesicle transition accompanies endothermic enthalpy of 53.9 kcal/mol. Aqueous P and FFPFF solutions exhibited thermogelation in 15.0-24.0 wt %. The gel phase of FFPFF was stable up to 90 °C, whereas that of P turned into a sol again at 55-86 °C, indicating that end-capping with FF improved the gel stability against heat. In addition, the carboxylic acids of the FF end-groups can form coordination bonds with metal ions, and the gel modulus at 37 °C increased from 15-21 KPa (P) to 20-25 KPa (FFPFF) to 24-28 KPa (FFPFF-Zn), and the duration of gel against water-erosion increased from 24 h (P) to 60 h (FFPFF-Zn), leading to a useful biomaterial for sustained drug delivery. The FFPFF-Zn gels implanted in the rats' subcutaneous layer induced a mild inflammatory responses. Contrary to the previous end-capping of Pluronics by poly(lactic acid), polycarprolactone, carboxylic acid, and so on that weakened the gel stability, the diphenylalanine end-capping strengthened the stability of Pluronics gel against heat and water-erosion. This paper suggests that the control of polymer nanoassemblies directed by FF end-groups improves the mechanical properties and stability of the resulting thermogel and, thus, provides a useful drug delivery carrier with prolonged durability.
Collapse
Affiliation(s)
- Hae An Kim
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Ja Hye Hong
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Hyo Jung Moon
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Du Young Ko
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
55
|
Li P, Zhang J, Dong CM. Photosensitive poly(o-nitrobenzyloxycarbonyl-l-lysine)-b-PEO polypeptide copolymers: synthesis, multiple self-assembly behaviors, and the photo/pH-thermo-sensitive hydrogels. Polym Chem 2017. [DOI: 10.1039/c7py01574g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We synthesize a photosensitive poly(o-nitrobenzyloxycarbonyl-l-lysine)-b-poly(ethylene glycol) block copolymer and fabricate three kinds of dual-sensitive (i.e., photo/pH-thermo) polypeptide normal and reverse micellar hydrogels.
Collapse
Affiliation(s)
- Pan Li
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jiacheng Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|