51
|
Sui X, Huang X, Wu Y, Ren R, Pu H, Chang J, Zhou G, Mao S, Chen J. Organometallic Precursor-Derived SnO 2/Sn-Reduced Graphene Oxide Sandwiched Nanocomposite Anode with Superior Lithium Storage Capacity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26170-26177. [PMID: 29995381 DOI: 10.1021/acsami.8b04851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Benefiting from the reversible conversion reaction upon delithiation, nanosized SnO2, with its theoretical capacity of 1494 mA h g-1, has gained special attention as a promising anode material. Here, we report a self-assembled SnO2/Sn-reduced graphene oxide (rGO) sandwich nanocomposite developed by organometallic precursor coating and in situ transformation. Ultrafine SnO2 nanoparticles with an average diameter of 5 nm are sandwiched within the rGO/carbonaceous network, which not only greatly alleviates the volume changes upon lithiation and aggregation of SnO2 nanoparticles but also facilitates the charge transfer and reaction kinetics of SnO2 upon lithiation/delithiation. As a result, the SnO2/Sn-rGO nanocomposite exhibited a superior lithium storage capacity with a reversible capacity of 1307 mA h g-1 at a current density of 80 mA g-1 in the potential window of 0.01-2.5 V versus Li+/Li and showed a reversible capacity of 767 mA h g-1 over 200 cycles at a current density of 400 mA g-1. When cycling at a higher current density of 1600 mA g-1, the SnO2/Sn-rGO nanocomposite showed a highly stable capacity of 449 mA g-1 without obvious decay after 400 cycles.
Collapse
Affiliation(s)
- Xiaoyu Sui
- Department of Mechanical Engineering , University of Wisconsin-Milwaukee , 3200 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Xingkang Huang
- Department of Mechanical Engineering , University of Wisconsin-Milwaukee , 3200 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Yingpeng Wu
- Department of Mechanical Engineering , University of Wisconsin-Milwaukee , 3200 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Ren Ren
- Department of Mechanical Engineering , University of Wisconsin-Milwaukee , 3200 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Haihui Pu
- Department of Mechanical Engineering , University of Wisconsin-Milwaukee , 3200 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Jingbo Chang
- Department of Mechanical Engineering , University of Wisconsin-Milwaukee , 3200 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Guihua Zhou
- Department of Mechanical Engineering , University of Wisconsin-Milwaukee , 3200 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Junhong Chen
- Department of Mechanical Engineering , University of Wisconsin-Milwaukee , 3200 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| |
Collapse
|