51
|
Dai D, Wang H, Li C, Qin X, Li T. A Physical Entangling Strategy for Simultaneous Interior and Exterior Modification of Metal–Organic Framework with Polymers. Angew Chem Int Ed Engl 2021; 60:7389-7396. [DOI: 10.1002/anie.202016041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Dejun Dai
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Hongliang Wang
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Conger Li
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Xuedi Qin
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Tao Li
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| |
Collapse
|
52
|
Dai D, Wang H, Li C, Qin X, Li T. A Physical Entangling Strategy for Simultaneous Interior and Exterior Modification of Metal–Organic Framework with Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dejun Dai
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Hongliang Wang
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Conger Li
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Xuedi Qin
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Tao Li
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| |
Collapse
|
53
|
Choi O, Kim Y, Jeon JD, Kim TH. Preparation of thin film nanocomposite hollow fiber membranes with polydopamine-encapsulated Engelhard titanosilicate-4 for gas separation applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
54
|
Rayder TM, Bensalah AT, Li B, Byers JA, Tsung CK. Engineering Second Sphere Interactions in a Host–Guest Multicomponent Catalyst System for the Hydrogenation of Carbon Dioxide to Methanol. J Am Chem Soc 2021; 143:1630-1640. [DOI: 10.1021/jacs.0c08957] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Thomas M. Rayder
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Adam T. Bensalah
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Banruo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jeffery A. Byers
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chia-Kuang Tsung
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
55
|
Yang S, Karve VV, Justin A, Kochetygov I, Espín J, Asgari M, Trukhina O, Sun DT, Peng L, Queen WL. Enhancing MOF performance through the introduction of polymer guests. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213525] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
56
|
Hossain I, Husna A, Chaemchuen S, Verpoort F, Kim TH. Cross-Linked Mixed-Matrix Membranes Using Functionalized UiO-66-NH 2 into PEG/PPG-PDMS-Based Rubbery Polymer for Efficient CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57916-57931. [PMID: 33337874 DOI: 10.1021/acsami.0c18415] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixed-matrix membranes (MMMs) with an ideal polymer-filler interface and high gas separation performance are very challenging to fabricate because of incompatibility between the fillers and the polymer matrix. This work provides a simple technique to prepare a series of cross-linked MMMs (xMMM@n) by covalently attaching UiO-66-NB metal-organic frameworks (MOFs) within the PEG/PPG-PDMS copolymer matrix via ring-opening metathesis polymerization and in situ membrane casting. The norbornene-modified MOF (UiO-66-NB) is successfully copolymerized and dispersed homogeneously into a PEG/PPG-PDMS matrix because of very fast polymer formation and strong covalent interaction between MOFs and the rubbery polymer. A significant improvement in gas permeability is achieved in membranes up to a 5 wt % MOF loading compared to the pristine polymer membrane without affecting selectivity. The CO2/N2 separation performance of xMMM@1, xMMM@3, and xMMM@5 with 1, 3, and 5 wt % MOF loading, respectively, surpassed Robeson's 2008 upper bound. In addition, the best performing membrane, xMMM@3 (PCO2 = 585 Barrer and CO2/N2 ∼53), approaches the 2019 upper bound, indicating that the cross-linked MMMs (xMMM@n) are very promising for CO2 separation from flue gas. The experimental results of our study were evaluated and are supported by theoretical data obtained using the Maxwell model for MMMs. Moreover, the developed MMMs, xMMM@ns, displayed outstanding antiplasticization performance at pressures of up to 25 atm and very stable antiaging performance for up to 11 months with good temperature switching behaviors.
Collapse
Affiliation(s)
- Iqubal Hossain
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea
- Department of Chemistry, Ghent University, Gent 9000, Belgium
- Ghent University Global Campus, Incheon 21985, Korea
| | - Asmaul Husna
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Francis Verpoort
- Department of Chemistry, Ghent University, Gent 9000, Belgium
- Ghent University Global Campus, Incheon 21985, Korea
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- National Research Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
57
|
|
58
|
Akbari A, Karimi-Sabet J, Ghoreishi SM. Intensification of helium separation from CH4 and N2 by size-reduced Cu-BTC particles in Matrimid matrix. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
59
|
Muthukumaraswamy Rangaraj V, Wahab MA, Reddy KSK, Kakosimos G, Abdalla O, Favvas EP, Reinalda D, Geuzebroek F, Abdala A, Karanikolos GN. Metal Organic Framework - Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Front Chem 2020; 8:534. [PMID: 32719772 PMCID: PMC7350925 DOI: 10.3389/fchem.2020.00534] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Gas separation and purification using polymeric membranes is a promising technology that constitutes an energy-efficient and eco-friendly process for large scale integration. However, pristine polymeric membranes typically suffer from the trade-off between permeability and selectivity represented by the Robeson's upper bound. Mixed matrix membranes (MMMs) synthesized by the addition of porous nano-fillers into polymer matrices, can enable a simultaneous increase in selectivity and permeability. Among the various porous fillers, metal-organic frameworks (MOFs) are recognized in recent days as a promising filler material for the fabrication of MMMs. In this article, we review representative examples of MMMs prepared by dispersion of MOFs into polymer matrices or by deposition on the surface of polymeric membranes. Addition of MOFs into other continuous phases, such as ionic liquids, are also included. CO2 separation from hydrocarbons, H2, N2, and the like is emphasized. Hybrid fillers based on composites of MOFs with other nanomaterials, e.g., of MOF/GO, MOF/CNTs, and functionalized MOFs, are also presented and discussed. Synergetic effects and the result of interactions between filler/matrix and filler/filler are reviewed, and the impact of filler and matrix types and compositions, filler loading, surface area, porosity, pore sizes, and surface functionalities on tuning permeability are discoursed. Finally, selectivity, thermal, chemical, and mechanical stability of the resulting MMMs are analyzed. The review concludes with a perspective of up-scaling of such systems for CO2 separation, including an overview of the most promising MMM systems.
Collapse
Affiliation(s)
| | - Mohammad A. Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
- School of Chemistry, Physics and Mechanical Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - K. Suresh Kumar Reddy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - George Kakosimos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Omnya Abdalla
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | - Evangelos P. Favvas
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research “Demokritos”, Attica, Greece
| | - Donald Reinalda
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Frank Geuzebroek
- ADNOC Gas Processing, Department of Research and Engineering R&D, Abu Dhabi, United Arab Emirates
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | - Georgios N. Karanikolos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
60
|
Guo Z, Zheng W, Yan X, Dai Y, Ruan X, Yang X, Li X, Zhang N, He G. Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/infiltration strategy for enhanced gas screening of mixed-matrix membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
61
|
Fang M, Montoro C, Semsarilar M. Metal and Covalent Organic Frameworks for Membrane Applications. MEMBRANES 2020; 10:E107. [PMID: 32455983 PMCID: PMC7281687 DOI: 10.3390/membranes10050107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Better and more efficient membranes are needed to face imminent and future scientific, technological and societal challenges. New materials endowed with enhanced properties are required for the preparation of such membranes. Metal and Covalent Organic Frameworks (MOFs and COFs) are a new class of crystalline porous materials with large surface area, tuneable pore size, structure, and functionality, making them a perfect candidate for membrane applications. In recent years an enormous number of articles have been published on the use of MOFs and COFs in preparation of membranes for various applications. This review gathers the work reported on the synthesis and preparation of membranes containing MOFs and COFs in the last 10 years. Here we give an overview on membranes and their use in separation technology, discussing the essential factors in their synthesis as well as their limitations. A full detailed summary of the preparation and characterization methods used for MOF and COF membranes is given. Finally, applications of these membranes in gas and liquid separation as well as fuel cells are discussed. This review is aimed at both experts in the field and newcomers, including students at both undergraduate and postgraduate levels, who would like to learn about preparation of membranes from crystalline porous materials.
Collapse
Affiliation(s)
| | | | - Mona Semsarilar
- Institut Européen des Membranes—IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
62
|
Molavi H, Neshastehgar M, Shojaei A, Ghashghaeinejad H. Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite. CHEMOSPHERE 2020; 247:125882. [PMID: 32069713 DOI: 10.1016/j.chemosphere.2020.125882] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
In this research, UiO-66 and its composite nanoparticles with thermally oxidized nanodiamond (OND) were synthesized via a simple solvothermal method and utilized as solid adsorbent for the removal of anionic methyl red (MR) dye and cationic malachite green (MG) dye from contaminated water. The synthesized adsorbents were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), N2 adsorption-desorption, and zeta potential analyzer. The influences of various factors such as initial concentrations of the dyes, adsorption process time, solution pH, solution temperature and ionic strength on adsorption behavior of MR dye onto OND-UiO hybrid nanoparticle were investigated. The adsorption of MR onto OND-UiO hybrid nanoparticle could be well described by Langmuir isotherm model. Meanwhile, pseudo-second order kinetic model was found to be suitable for illustration of adsorption kinetics of MR onto OND-UiO. Thermodynamic investigation suggested that the adsorption process was spontaneous and endothermic, and controlled by an entropy change instead of enthalpy effect. The experimental adsorption results indicated that OND-UiO hybrid nanoparticle could simultaneously adsorb 59% of MR and 43% of MG from the mixture of both dyes in only 2 min showing synergistic effect compared with single UiO-66 and OND nanoparticles in terms of adsorption rate and removal capacity of anionic dyes. The appropriate removal efficiency, rapid adsorption kinetic, high water stability, and good reusability make OND-UiO hybrid nanoparticle attractive candidate for simultaneously removal of both anionic MR and cationic MG dyes from wastewater.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Milad Neshastehgar
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Hossein Ghashghaeinejad
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
63
|
Wang H, Tang S, Ni Y, Zhang C, Zhu X, Zhao Q. Covalent cross-linking for interface engineering of high flux UiO-66-TMS/PDMS pervaporation membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
64
|
Covalent organic frameworks hybird membrane with optimized mass transport nanochannel for aromatic/aliphatic mixture pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
65
|
Kalaj M, Bentz KC, Ayala S, Palomba JM, Barcus KS, Katayama Y, Cohen SM. MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. Chem Rev 2020; 120:8267-8302. [PMID: 31895556 DOI: 10.1021/acs.chemrev.9b00575] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal-organic frameworks (MOFs) are inherently crystalline, brittle porous solids. Conversely, polymers are flexible, malleable, and processable solids that are used for a broad range of commonly used technologies. The stark differences between the nature of MOFs and polymers has motivated efforts to hybridize crystalline MOFs and flexible polymers to produce composites that retain the desired properties of these disparate materials. Importantly, studies have shown that MOFs can be used to influence polymer structure, and polymers can be used to modulate MOF growth and characteristics. In this Review, we highlight the development and recent advances in the synthesis of MOF-polymer mixed-matrix membranes (MMMs) and applications of these MMMs in gas and liquid separations and purifications, including aqueous applications such as dye removal, toxic heavy metal sequestration, and desalination. Other elegant ways of synthesizing MOF-polymer hybrid materials, such as grafting polymers to and from MOFs, polymerization of polymers within MOFs, using polymers to template MOFs, and the bottom-up synthesis of polyMOFs and polyMOPs are also discussed. This review highlights recent papers in the advancement of MOF-polymer hybrid materials, as well as seminal reports that significantly advanced the field.
Collapse
Affiliation(s)
- Mark Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Kyle C Bentz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Sergio Ayala
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Joseph M Palomba
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Kyle S Barcus
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Yuji Katayama
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States.,Asahi Kasei Corporation, 2-1 Samejima, Fuji-city, Shizuoka 416-8501, Japan
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
66
|
Thür R, Van Velthoven N, Lemmens V, Bastin M, Smolders S, De Vos D, Vankelecom IFJ. Modulator-Mediated Functionalization of MOF-808 as a Platform Tool to Create High-Performance Mixed-Matrix Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44792-44801. [PMID: 31687797 DOI: 10.1021/acsami.9b19774] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Modulator-mediated functionalization (MoFu) is introduced as a new and versatile platform tool to improve the separation performance of metal-organic framework (MOF)-based membranes, exemplified here by the creation of mixed-matrix membranes (MMMs) with enhanced CO2 separation efficiency. The unique structure of MOF-808 allows incorporation of CO2-philic modulators in the MOF framework during a one-pot synthesis procedure in water, thus creating a straightforward way to functionalize both MOF and corresponding MMM. As a proof of concept, a series of fluorinated carboxylic acids [trifluoroacetic acid (TFA), pentafluoropropionic acid (PFPA), and heptafluorobutyric acid (HFBA)] and nonfluorinated alkyl carboxylic acids (acetic acid (AA), propionic acid (PA), and butyric acid (BA)) were used as a modulator during MOF-808 synthesis. Two of the best MMMs prepared with 30 wt % MOF-TFA (100% increase in CO2/CH4 separation factor, 350% increase in CO2 permeability) and 10 wt % MOF-PFPA (140% increase in CO2/CH4 separation factor, 100% increase in CO2 permeability) scored very close to or even crossed the 2008 and 2018 upper bound limits for CO2/CH4. Because of its facile functionalization (and its subsequent excellent performance), MOF-808 is proposed as an alternative for widely used UiO-66, which is, from a functionalization point-of-view and despite its widespread use, a rather limited MOF.
Collapse
Affiliation(s)
- Raymond Thür
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Niels Van Velthoven
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Vincent Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Maarten Bastin
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Simon Smolders
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| | - Ivo F J Vankelecom
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) , KU Leuven , Celestijnenlaan 200F , Box 2454, 3001 Heverlee , Vlaams-Brabant , Belgium
| |
Collapse
|
67
|
Sadeghi M, Isfahani AP, Shamsabadi AA, Favakeh S, Soroush M. Improved gas transport properties of polyurethane–urea membranes through incorporating a cadmium‐based metal organic framework. J Appl Polym Sci 2019. [DOI: 10.1002/app.48704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Morteza Sadeghi
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | | | | | - Sahar Favakeh
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Masoud Soroush
- Department of Chemical and Biological EngineeringDrexel University Philadelphia USA
| |
Collapse
|
68
|
Protein corona of metal-organic framework nanoparticals: Study on the adsorption behavior of protein and cell interaction. Int J Biol Macromol 2019; 140:709-718. [PMID: 31445155 DOI: 10.1016/j.ijbiomac.2019.08.183] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/21/2022]
Abstract
Nanoscale metal-organic frameworks (NMOFs) have attracted considerable attention for controlled drug delivery. However, the interaction between nanoparticles and the biological macromolecules of physiological system must be valued because the formed protein corona will endow NMOFs with new biorecognition properties. In this study, we carried out detailed protein adsorption studies in vitro and cell uptake tests of HeLa cells for nanospherical Uio66 and nanooctahedral Uio67. Uio67 with higher binding constants to human serum albumin needed to combine more protein molecules to achieve colloidal stability state than that needed by Uio66, and this phenomenon led Uio67 to aggregate under the same incubation condition due to the formation of a single-layer protein. Uio67 also induced an evident conformation change in protein to stabilize the combination. In particular, the cell uptake efficiencies of the two systems showed a significant thickness dependence on the protein corona. When samples incubated in 10% fetal bovine serum (FBS), the intracellular rate was the highest for both systems, but the rate was not proportional to the FBS concentration. Results of this work are important to the development of the considerable potential NMOFs-based medicals and also provide additional insight into protein corona.
Collapse
|
69
|
Li QY, Li YA, Guan Q, Li WY, Dong XJ, Dong YB. UiO-68-PT MOF-Based Sensor and Its Mixed Matrix Membrane for Detection of HClO in Water. Inorg Chem 2019; 58:9890-9896. [DOI: 10.1021/acs.inorgchem.9b01032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qian-Ying Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiao-Jie Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
70
|
Ahmadijokani F, Ahmadipouya S, Molavi H, Arjmand M. Amino-silane-grafted NH2-MIL-53(Al)/polyethersulfone mixed matrix membranes for CO2/CH4 separation. Dalton Trans 2019; 48:13555-13566. [DOI: 10.1039/c9dt02328c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mixed-matrix membranes (MMMs) are promising candidates for carbon dioxide separation.
Collapse
Affiliation(s)
| | - Salman Ahmadipouya
- Department of Chemical and Petroleum Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Mohammad Arjmand
- School of Engineering
- University of British Columbia
- Kelowna
- Canada V1 V 1 V7
| |
Collapse
|
71
|
Forgan RS. The surface chemistry of metal–organic frameworks and their applications. Dalton Trans 2019; 48:9037-9042. [DOI: 10.1039/c9dt01710k] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent highlights in the surface modification of metal–organic frameworks, from new functionalization protocols to visualisation and application, are discussed.
Collapse
Affiliation(s)
- Ross S. Forgan
- WestCHEM School of Chemistry
- University of Glasgow
- Glasgow G12 8QQ
- UK
| |
Collapse
|