51
|
Zhang H, Yang J, Li T, Ji X, Xu Z, Zhu Y, Liu L. Alkyl Chain Grafted-Reduced Graphene Oxide Membrane for Effective Separation of Water/Alcohol Miscible Mixtures. Front Chem 2020; 8:598562. [PMID: 33344418 PMCID: PMC7744741 DOI: 10.3389/fchem.2020.598562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/13/2020] [Indexed: 11/18/2022] Open
Abstract
Separation of water/alcohol miscible mixtures via direct filtration only under gravity is a great challenge. Here, different alkyl chain grafted-reduced graphene oxide (alkyl-RGO) is synthesized and characterized. The hydrophobic alkyl chains can considerably modify the oil-wettability of the membranes and avoid water permeation. The alkyl-RGO membrane obtained by vacuum filtration can separate water/oil immiscible mixtures. Importantly, water/alcohol miscible mixtures could also be separated solely under gravity, where alcohols efficiently permeate the alkyl-RGO membrane while water is prevented through the membrane. The separation efficiency of C12H-RGO membrane reaches up to about 0.04 vol% of water content for the case of separating an n-propanol/water (90:10 v/v) mixture with high n-propanol permeability of approx. 685 mL m−2 h−1. Molecular simulations indicate that the selective absorption ability and diffusion rate also affect water/alcohol separation. The alkyl-RGO membranes via gravity driven filtration can extend the applications of separation of water/alcohol miscible mixtures.
Collapse
Affiliation(s)
- Hailong Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jianbo Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ting Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yaling Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Libin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
52
|
Wang Y, Zhou G, Yan Y, Shao B, Hou J. Construction of Natural Loofah/Poly(vinylidene fluoride) Core-Shell Electrospun Nanofibers via a Controllable Janus Nozzle for Switchable Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51917-51926. [PMID: 33147949 DOI: 10.1021/acsami.0c12912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing microstructure and multifunctional membranes toward switchable oil-water separation has been highly desired in oily wastewater treatment. Herein, a controllable Janus nozzle was employed to innovatively electrospin natural loofah/poly(vinylidene fluoride) (PVDF) nanofibers with a core-shell structure for gravity-driven water purification. By adjusting flow rates of the PVDF component, a core-shell structure of the composite fibers was obtained caused by the lower viscosity and surface tension of PVDF. In addition, a steady laminar motion of fluids was constructed based on the Reynolds number of flow fields being less than 2300. In order to investigate the formation mechanism of the microstructure, a series of Janus nozzles with different lengths were controlled to study the blending of the two immiscible components. The gravity difference between the two components might cause disturbance of the jet motion, and the PVDF component unidirectionally encapsulated the loofah to form the shell layer. Most importantly, the dry loofah/PVDF membranes could separate oil from an oil-water mixture, while the water-wetted membrane exhibited switchable separation that could separate water from the mixtures because of the hydroxyl groups of the hydrophilic loofah hydrogen-bonding with water molecules and forming a hydration layer. The composite fibers can be applied in water remediation in practice, and the method to produce core-shell structures seems attractive for technological applications involving macroscopic core-shell nano- or microfibers.
Collapse
Affiliation(s)
- Yihuan Wang
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Guibin Zhou
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Yifan Yan
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Bohui Shao
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Jiazi Hou
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| |
Collapse
|
53
|
Fu C, Gu L, Zeng Z, Xue Q. Simply Adjusting the Unidirectional Liquid Transport of Scalable Janus Membranes toward Moisture-Wicking Fabric, Rapid Demulsification, and Fast Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51102-51113. [PMID: 33111524 DOI: 10.1021/acsami.0c15158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by nature, Janus membranes with unidirectional liquid transport (ULT) were developed to be used in the fields of fog collection, moisture-wicking fabrics, demulsification, etc. However, the obtained Janus membranes are often unifunctional, and it is still a great challenge to adjust the ULT of Janus membranes for multifunctional applications. Herein, a scalable, low-cost, and machine-washable Janus membrane was developed by combining the cyclic self-assembly of phytic acid and FeIII and a one-side spraying coating of poly(dimethylsiloxane) (PDMS), featuring adjustable ULT upon challenge for multifunctional applications. By controlling the amount of PDMS, the Janus membranes exhibit two different performances, ULT and switchable permeation. The prepared Janus membranes achieved an excellent moisture-wicking fabric (1.6× the water evaporation rate of cotton), fast water collection under oil, rapid demulsification, and the efficient separation of an oil/water mixture. The separation efficiency of a light or heavy oil from water was higher than 99.9% even after 10 separation cycles, and the flux of the separation was up to 2.55 × 104 or 2.38 × 104 L m-2 h-1, respectively. This study could provide an idea for the development of more Janus membranes with adjustable performances to realize multifunctional applications.
Collapse
Affiliation(s)
- Chao Fu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Gu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Zhixiang Zeng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Qunji Xue
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
54
|
Qin Y, Shen H, Han L, Zhu Z, Pan F, Yang S, Yin X. Mechanically Robust Janus Poly(lactic acid) Hybrid Fibrous Membranes toward Highly Efficient Switchable Separation of Surfactant-Stabilized Oil/Water Emulsions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50879-50888. [PMID: 33125210 DOI: 10.1021/acsami.0c15310] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An ideal oil/water separation membrane should possess the characteristics of high flux and separation efficiency, recyclability, as well as good mechanical stability. Herein, a facile method is applied to fabricate a Janus polylactic acid (PLA) fibrous membrane for efficiently separating surfactant-stabilized oil/water mixtures. The Janus PLA fibrous membrane architecture was prepared by electrospinning a PLA/carbon nanotubes (CNTs) fibrous membrane and the subsequent electrospinning of a PLA/SiO2 nanofluids (nfs) membrane onto one side of the PLA/CNTs fibrous membrane. Due to the strong electrostatic interaction between SiO2 nfs and CNTs, synchronous enhancement and plasticization of PLA fibrous membranes were achieved, which was far superior to that reported in the literature. The introduction of CNTs had caused an upshift of the hydrophobicity of the PLA/CNTs fibrous membrane (water contact angle (WCA) > 140°). In contrast, SiO2 nfs bearing long-chain organic anions and cations located onto the surface of the fibers during electrospinning to achieve superhydrophilicity (WCA ≈ 0°). Benefiting from completely opposite wettability on both sides of the Janus membrane, the obtained asymmetric Janus membranes exhibited a high flux (1142-1485 L m-2 L-1) and excellent oil/water separation efficiency (>99%), which were superior to those reported for other Janus membranes. Furthermore, the Janus membranes showed desirable flux recovery without any treatment (>80% for water-in-oil emulsions and >90% for oil-in-water emulsions, respectively, after 11 cycles), showcasing promising applications for water treatment in the future.
Collapse
Affiliation(s)
| | | | - Lu Han
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zongmin Zhu
- High-tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu, Sichuan 610072, China
| | | | | | | |
Collapse
|
55
|
Zhu R, Liu M, Hou Y, Zhang L, Li M, Wang D, Wang D, Fu S. Biomimetic Fabrication of Janus Fabric with Asymmetric Wettability for Water Purification and Hydrophobic/Hydrophilic Patterned Surfaces for Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50113-50125. [PMID: 33085450 DOI: 10.1021/acsami.0c12646] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The long-term shortage of freshwater resources has drawn increasing research attention for water purification and collection. This work reports a facile method to prepare Janus fabrics with asymmetric wettability for on-demand oil/water separation and hydrophobic/hydrophilic patterned fabrics for efficient fog harvesting. Here, the superhydrophobic fabric was prepared by in situ polymerization of polydivinylbenzene (PDVB) on cotton fabric. By regulating the polymerization time, the PDVB polymer content was changed, thereby achieving the regulation of the surface structure and wettability of the prepared fabric. Meanwhile, the superhydrophobic fabric exhibited excellent self-cleaning and antifouling performance, mechanical abrasion and chemical resistance, and environmental durability. Moreover, the photocatalytic degradation properties of PDVB were utilized to prepare the Janus fabric with asymmetric wettability. Water droplets could spontaneously penetrate from the hydrophobic side to the hydrophilic side, while not vice versa, achieving unidirectional transport of water. In addition, the prepared Janus fabric could be used for on-demand oil/water separation, including the heavy oil/water mixture and light oil/water mixture. The separation efficiency and collected oil purity of each mixture were higher than 99.00 and 99.94%, respectively. Furthermore, the hydrophobic/hydrophilic patterned fabrics were prepared by using the lithographic masks with different apertures under UV light irradiation. Based on the fog-capturing ability of the hydrophilic areas and the water transport performance of the hydrophobic regions, efficient fog harvesting was achieved. For the patterned fabric with larger hydrophobic/hydrophilic areas, the water collection rate reached 224.7 mg cm-2 h-1. Therefore, this simple strategy to achieve controllable gradient wettability by adjusting the surface structure and chemical composition of the fabric shows great potential in the filtration of purification of oily sewage and the efficient condensed collection of water.
Collapse
Affiliation(s)
- Ruofei Zhu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mingming Liu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanyuan Hou
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liping Zhang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Li
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dong Wang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dan Wang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shaohai Fu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
56
|
Xiong Z, He Z, Mahmud S, Yang Y, Zhou L, Hu C, Zhao S. Simple Amphoteric Charge Strategy to Reinforce Superhydrophilic Polyvinylidene Fluoride Membrane for Highly Efficient Separation of Various Surfactant-Stabilized Oil-in-Water Emulsions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47018-47028. [PMID: 32941734 DOI: 10.1021/acsami.0c13508] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Long-term efficient separation of highly emulsified oily wastewater is challenging. Reported herein is the preparation of a reinforced superhydrophilic, underwater superoleophobic membrane with demulsification properties using active iron nanoparticles in situ generated on a polydopamine (PDA)/polyethylenimine (PEI)-modified polyvinylidene fluoride (PVDF) membrane surface. A stable zwitterionic structure is fabricated on the membrane surface and provides it with an excellent capability of binding a hydration layer, leading to enhanced superhydrophilic/underwater superoleophobic properties. The interaction between the membrane surface and water is quantified using the relaxation time of water. After iron nanoparticles in situ anchoring, the superhydrophilic, underwater superoleophobic PDA/PEI modified PVDF membrane shows more stable flux behaviors, higher oil separation efficiency, demulsification, and excellent antioil-fouling properties for various anionic, nonionic, and cationic surfactant-stabilized oil-in-water emulsions in a crossflow filtration system. The reinforced hydration layer and the amphoteric charged demusification properties of the membrane play important roles in enhancing the membrane separation performance. The reinforced membrane also exhibits excellent cleaning and reusability performance in long-term operations. The outstanding separation performance, as well as the simple and cost-effective fabrication process of the membrane with various favorable properties, highlight its promise in practical emulsified oily water applications.
Collapse
Affiliation(s)
- Zhu Xiong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zijun He
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Sakil Mahmud
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Yang Yang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Zhou
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials (Ministry of Education), College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shuaifei Zhao
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
57
|
Wang Y, Xiao D, Zhong Y, Liu Y, Zhang L, Chen Z, Sui X, Wang B, Feng X, Xu H, Mao Z. Preparation and characterization of carboxymethylated cotton fabrics as hemostatic wound dressing. Int J Biol Macromol 2020; 160:18-25. [PMID: 32428591 DOI: 10.1016/j.ijbiomac.2020.05.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Uncontrolled hemorrhage is a large cause of death in the global scope, thus leading to an urgent demand to develop efficient hemostatic materials. In this study, a series of modified cotton fabrics (MCFs) with different carboxymethyl group contents were prepared from cotton fabric (CF) by a carboxymethylation process to choose the appropriate one with the best hemostatic performance. The carboxymethyl group contents of MCFs rose up as the dosages of ClCH2COOH increased. The crystallinity of CF decreased after carboxymethylation, and MCFs can dissolve slightly with the phenomenon that there were vague boundaries between fibers after being treated with water. Furthermore, the MCF with the carboxymethyl group content at 0.77 mmol/g (MCF-0.77) could absorb the blood quickly, achieve dense distribution of blood cells and have high viscosity of leaching liquor. In addition, the MCF-0.77 with good biocompatibility accelerated the hemostasis time to 46.6 ± 8.4 s compared with the CF (88.8 ± 31.5 s) in a rat model of liver injury. In summary, the prepared MCF-0.77 is a potential hemostatic wound dressing for clinical use since every second counts for pre-hospital care.
Collapse
Affiliation(s)
- Yamei Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Dongdong Xiao
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yujun Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhize Chen
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
58
|
Zhang N, Qi Y, Zhang Y, Luo J, Cui P, Jiang W. A Review on Oil/Water Mixture Separation Material. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02524] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yunfei Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yana Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Jialiang Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Wei Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| |
Collapse
|
59
|
Lin Y, Salem MS, Zhang L, Shen Q, El-shazly AH, Nady N, Matsuyama H. Development of Janus membrane with controllable asymmetric wettability for highly-efficient oil/water emulsions separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118141] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
60
|
Chen C, Chen S, Chen L, Yu Y, Weng D, Mahmood A, Wang J, Parkin IP, Carmalt CJ. Underoil Superhydrophilic Metal Felt Fabricated by Modifying Ultrathin Fumed Silica Coatings for the Separation of Water-in-Oil Emulsions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27663-27671. [PMID: 32431148 DOI: 10.1021/acsami.0c03801] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although various superhydrophobic/superoleophilic porous materials have been developed and successfully applied to separate water-in-oil emulsions through the size-sieving mechanism, the separation performance is restricted by their nanoscale pore size severely. In this study, the wettability of underoil water on fumed silica was experimentally observed, and the underlying mechanism was investigated by carrying out theoretical analysis and molecular dynamic (MD) simulations. Further, we present a novel, facile, and an inexpensive technique to fabricate an underoil superhydrophilic metal felt with microscale pores for the separation of water-in-oil emulsions using SiO2 nanoparticles (NPs) as building blocks. The as-prepared underoil superhydrophilic coating is closed-packed and ultrathin (the thickness is approximately hundreds of nanometers), as well as capable of being coated on a metal felt with complex structures without blocking its pores. The as-prepared metal felt could adsorb water droplets directly from oil, which endowed it with the ability to separate both surfactant-free and surfactant-stabilized water-in-oil emulsions with high separation efficiency up to 99.7% even though its pore size is larger than that of the emulsified droplet. The filtration flux for the separation of span 80-stabilized emulsion is up to ∼4000 L·m-2·h-1. Its separation performance is better than most of the other traditional membranes and superwettable materials used for the separation of water-in-oil emulsions. Moreover, the as-prepared metal felt retained outstanding separation performance even after 30 cycles of use, which demonstrated its excellent reusability and durability. Additionally, the distinctive wettability of underoil superhydrophilicity endued coated metal felt with superior antifouling properties toward crude oil. Overall, this study not only provides a new perspective on separating water-in-oil emulsions but also gives a universal approach to develop unique wettability surfaces.
Collapse
Affiliation(s)
- Chaolang Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
- Department of Chemistry, University of College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Shuai Chen
- Institute of High Performance Computing, A*STAR, 138632 Singapore
| | - Lei Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Yu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Ding Weng
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Awais Mahmood
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Ivan P Parkin
- Department of Chemistry, University of College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Claire J Carmalt
- Department of Chemistry, University of College London, 20 Gordon Street, London WC1H 0AJ, U.K
| |
Collapse
|
61
|
Sun R, He L, Shang Q, Jiang S, Zhou C, Hong P, Zhao H, Sun S, Li C. Hydrophobic Magnetic Porous Material of Eichhornia crassipes for Highly Efficient Oil Adsorption and Separation. ACS OMEGA 2020; 5:9920-9928. [PMID: 32391479 PMCID: PMC7203981 DOI: 10.1021/acsomega.0c00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/09/2020] [Indexed: 05/08/2023]
Abstract
Many oil adsorption materials are composed of nonrenewable raw materials, and their disposal can increase resource consumption and cause new environmental pollution. In this paper, the carbonized Eichhornia crassipes (CEC) were immobilized with Fe3O4 magnetic nanoparticles and modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOS) to prepare an oil adsorption material, referred to here as CEC/Fe3O4/PFOS. The magnetic and mechanical strength of the CEC was enhanced by adding Fe3O4 magnetic particles, which enable it efficient to dispose the oil/water solution. CEC/Fe3O4/PFOS shows high porosity (83.53%), low skeletal density (0.487 g/cm3), excellent magnetism, ultrahigh oil absorption capacity (49.94-140.90 g/g), hydrophobic performances with a water contact angle of 150.1 ± 2.3°, and a sliding angle of 10.5°. It is worth noting that the material can be recycled, and the absorbed oil is obtained by distillation. Therefore, this work may provide a candidate for solving the problem of oil pollution using E. crassipes.
Collapse
Affiliation(s)
- Ruikun Sun
- School of Chemistry
and Environment, Guangdong Ocean University,
Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Lei He
- School of Chemistry
and Environment, Guangdong Ocean University,
Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Qingtong Shang
- School of Chemistry
and Environment, Guangdong Ocean University,
Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Shiqi Jiang
- School of Chemistry
and Environment, Guangdong Ocean University,
Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean
University, Shenzhen 518108, China
| | - Chunxia Zhou
- School of Chemistry
and Environment, Guangdong Ocean University,
Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean
University, Shenzhen 518108, China
| | - Pengzhi Hong
- School of Chemistry
and Environment, Guangdong Ocean University,
Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean
University, Shenzhen 518108, China
| | - Hui Zhao
- School of Chemistry
and Environment, Guangdong Ocean University,
Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Shengli Sun
- School of Chemistry
and Environment, Guangdong Ocean University,
Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry
and Environment, Guangdong Ocean University,
Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean
University, Shenzhen 518108, China
- . Fax: +86-759-2383636
| |
Collapse
|
62
|
Dual superlyophobic zeolitic imidazolate framework-8 modified membrane for controllable oil/water emulsion separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116273] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
63
|
Wang L, Zhou Y, Zhang Y, Zhang G, Zhang C, He Y, Dong C, Shuang S. A novel cell-penetrating Janus nanoprobe for ratiometric fluorescence detection of pH in living cells. Talanta 2020; 209:120436. [PMID: 31892062 DOI: 10.1016/j.talanta.2019.120436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
pH regulates the function of many organelles and plays a pivotal role in requiring multitud cellular behaviors. Compared with single fluorescent probes, ratio fluorescent probes have higher sensitivity and immunity to interference. Herein, a novel Janus ratio nanoprobe was developed for intracellular pH detection. Modified rhodamine B probe and fluorescein isothiocyanate (FITC) were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via Pickering emulsion. Moreover, it exhibits a satasified ratiometric detection of pH compared to the previous core-shell structure and organic small molecule probe. Accordingly, the Janus nanoprobe possesses many important features as an attractive sensor, including high anti-jamming capability, excellent stability, good reversibility and low cytotoxicity. Variations of the two fluorescence intensities (Fgreen/Fred) resulted in a ratiometric pH fluorescent sensor, which can respond to wide range of pH values from 3 to 8. To be more specific, with a single excitation wavelength of 488 nm, there are dual emission bands centered at 538 nm and 590 nm. Also the Janus nanoprobe displays a excellent linear relationship in the physiologically relevant pH range of 4.0-6.0. Consequently, detecting of pH and imaging was successfully achieved in living cells, which provides a simple and reliable method for detecting intracelluar pH and other similar substances.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yujian He
- College of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
64
|
El-Samak AA, Ponnamma D, Hassan MK, Ammar A, Adham S, Al-Maadeed MAA, Karim A. Designing Flexible and Porous Fibrous Membranes for Oil Water Separation—A Review of Recent Developments. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1714651] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali A. El-Samak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | | | | | - Ali Ammar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Samer Adham
- ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park, Doha, Qatar
| | | | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
65
|
Han N, Zhang Z, Gao H, Qian Y, Tan L, Yang C, Zhang H, Cui Z, Li W, Zhang X. Superhydrophobic Covalent Organic Frameworks Prepared via Pore Surface Modifications for Functional Coatings under Harsh Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2926-2934. [PMID: 31750647 DOI: 10.1021/acsami.9b17319] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Covalent organic frameworks (COFs) have been widely used in catalysis, energy storage, environmental protection, and separation. However, they require a long assembly period (∼3 days) and complex synthesis conditions; differences in water resistance have restricted their overall versatility. In this paper, the preparation of COF-DhaTab was optimized, and this process can be easily performed in air. Thus, it is feasible for the scale-up of COF-DhaTab in the near future. The superhydrophobic properties of COF-DhaTab (water contact angle, >150°) can be created by regulating the wettability of COF-DhaTab by grafting fluoride. When the grafting degree of fluoride increased to 4.32%, the water contact angle of COFs increased from 0° to more than 150°. The grafted COFs are termed COF-DhaTab fluoride (COF-DTF). The chemically modified COF-DhaTab maintains its original porosity and crystallinity. The superhydrophobic COF-DTF can be applied to various substrates, for example, foam, fabric, and glass. These all exhibit outstanding water repellency, self-healing, and excellent self-cleaning. Importantly, the coating maintains its original superhydrophobicity even under extremely acidic/basic conditions (pH = 1-14) and toward boiling water (100 °C). Furthermore, COF-DTF displays long-term stability and is easily scaled. It is a promising and practical candidate for hydrophobic modifications to various substrates.
Collapse
Affiliation(s)
- Na Han
- State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tiangong University , Tianjin 300387 , China
- Department of Textile Engineering, Chemistry & Science, College of Textiles , North Carolina State University , Raleigh , North Carolina 27606 , United States
| | - Zongxuan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Hongkun Gao
- State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Yongqiang Qian
- State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Linli Tan
- State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Chao Yang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Haoran Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Zhenyu Cui
- State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Wei Li
- State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tiangong University , Tianjin 300387 , China
- School of Materials Science and Engineering , Tiangong University , Tianjin 300387 , China
| |
Collapse
|
66
|
Han N, Wang W, Lv X, Zhang W, Yang C, Wang M, Kou X, Li W, Dai Y, Zhang X. Highly Efficient Purification of Multicomponent Wastewater by Electrospinning Kidney-Bean-Skin-like Porous H-PPAN/rGO- g-PAO@Ag +/Ag Composite Nanofibrous Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46920-46929. [PMID: 31756069 DOI: 10.1021/acsami.9b16889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the complexity of harmful wastewater components, environmental and multifunctional materials are required for sewage purification. In this paper, a novel kidney-bean-skin-like hydrophilic porous polyacrylonitrile/reduced graphene oxide-g-poly(amidoxime)-loaded Ag+ (H-PPAN/rGO-g-PAO@Ag+/Ag) composite nanofiber membrane was fabricated by combining electrospinning and hydrolysis methods. The spinning solution was pumped at a rate of 0.4 mL/h with the voltage set at a constant value of 23 kV. Then, some of the -CN groups switched to hydrophilic -COOH groups via a hydrolysis method, which acts as a linker of GO-g-PAN, Ag+, and the polyacrylonitrile (PAN) matrix. A further step of chelation and thermal treatment were used for generating Schottky junctions between rGO-g-PAO@Ag+ and Ag. After five-cycle tests, it exhibited outstanding mechanical properties ensuring the filtration and purification performance of the H-PPAN/rGO-g-PAO@Ag+/Ag composite nanofiber membrane (i.e., the tensile strength was still 7.21 MPa, and the elongation was 61.53%) for simulated wastewater. The methods of thermal treatment and high-pressure Hg lamp irradiation promoted the reduction of GO to rGO and Ag+ to Ag particles, which endows the final product H-PPAN/rGO-g-PAO@Ag+/Ag with excellent photocatalytic and bactericidal properties. Its catalytic efficiency for dyes benzoic acid (BA), Rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) was up to 99.8, 98, 95, and 91%. The antibacterial rate was 100% against Escherichia coli and 99% against Staphylococcus aureus. More importantly, the photocatalytic and antibacterial PAN-based nanofiber membrane can be simply scaled up, which provides the membrane with great potential in highly efficient wastewater treatment and augmenting water supply.
Collapse
Affiliation(s)
- Na Han
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
- Textile Engineering, Chemistry and Science Department , North Carolina State University , Raleigh , North Carolina 27606 , United States
| | - Weijing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Xingshuai Lv
- School of Physics, State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
| | - Wenxin Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Chao Yang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Menglu Wang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Xiaohui Kou
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Wei Li
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| |
Collapse
|
67
|
Zhang Z, Han N, Tan L, Qian Y, Zhang H, Wang M, Li W, Cui Z, Zhang X. Bioinspired Superwettable Covalent Organic Framework Nanofibrous Composite Membrane with a Spindle-Knotted Structure for Highly Efficient Oil/Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16545-16554. [PMID: 31755726 DOI: 10.1021/acs.langmuir.9b02661] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Covalent organic frameworks (COFs) have attracted broad interest in a number of fields including gas access, catalysis, and ionic adsorption. However, owing to the low stability in water, the application of COFs in the field of oil/water separation is extensively impeded. In this paper, we synthesized COF-DhaTab/polyacrylonitrile (PAN) nanofibrous composite membranes with a bioinspired spindle-knotted structure via a facile blending electrospinning method. The COF-DhaTab/PAN composite membrane shows prewetting-induced superoleophobicity under water and superhydrophobicity under oil. It possesses outstanding rejection ratio (>99.9%), excellent antifouling performance, and ultrahigh oil/water mixture flux up to 4229.29 L/m2h even though driven only by gravity. Specifically, an extraordinary oil contact angle under water (152.3°) and a satisfied water contact angle under oil (153.7°) were offered by the composite membrane. These are mainly attributed to the spindle-knotted structures induced by COFs. To the best of our knowledge, the application of COF/PAN composite membrane in the field of oil/water separation has never been reported. It is an innovative approach for oily wastewater treatment and oil purification.
Collapse
Affiliation(s)
| | - Na Han
- Textile Engineering, Chemistry and Science Department , North Carolina State University , Raleigh , North Carolina , 27606 , United States
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Han N, Yang C, Zhang Z, Wang W, Zhang W, Han C, Cui Z, Li W, Zhang X. Electrostatic Assembly of a Titanium Dioxide@Hydrophilic Poly(phenylene sulfide) Porous Membrane with Enhanced Wetting Selectivity for Separation of Strongly Corrosive Oil-Water Emulsions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35479-35487. [PMID: 31466446 DOI: 10.1021/acsami.9b12252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The efficient treatment of oil-water emulsions in extreme environments, such as strongly acidic and alkaline media, remains a widespread concern. Poly(phenylene sulfide) (PPS)-based porous membranes with excellent resistance to chemicals and solvents are promising for settling this challenge. However, the limited hydrophilicity and the poor hydrated ability of the hydrophilic PPS (h-PPS) membranes reported in the literature prevents them from separating oil-water emulsions with high efficiency, large fluxes, and good antifouling performances. In this study, a firm rough TiO2 layer is constructed on a h-PPS membrane via electrostatic assembly to improve the surface hydrophilization. The introduction of the TiO2 layer increases the wetting selectivity and decreases the oil adhesion, which makes it capable to efficiently treat oil-in-water emulsions (efficiency > 98%). Most importantly, the underwater critical oil intrusion pressure almost doubled after the incorporation of the TiO2 layer, which allows the membrane to withstand pressurized filtration, achieving a high flux of ∼4000 L m-2 h-1. This is more than 2 orders of magnitude larger than the flux of the reported h-PPS. Furthermore, the TiO2@h-PPS membrane displays long-term stability in separating oil-water emulsions in strong acid and strong alkali, showing a promising prospect for the treatment of strongly corrosive emulsions.
Collapse
Affiliation(s)
- Na Han
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
- Textile Engineering, Chemistry and Science Department , North Carolina State University , Raleigh , North Carolina 27606 , United States
| | - Chao Yang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Zongxuan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Weijing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Wenxin Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Changye Han
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Zhenyu Cui
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Wei Li
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| |
Collapse
|
69
|
Zhang G, Jia X, Xing J, Shen S, Zhou X, Yang J, Guo Y, Bai R. A Facile and Fast Approach To Coat Various Substrates with Poly(styrene-co-maleic anhydride) and Polyethyleneimine for Oil/Water Separation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03465] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ganwei Zhang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Xinying Jia
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Jiale Xing
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Shusu Shen
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Xiaoji Zhou
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Jingjing Yang
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Yongfu Guo
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| | - Renbi Bai
- Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
| |
Collapse
|