51
|
Ji L, Wang J, Luo Q, Ding Q, Tang W, Chen X, Liu L. Enhancing L-malate production of Aspergillus oryzae by nitrogen regulation strategy. Appl Microbiol Biotechnol 2021; 105:3101-3113. [PMID: 33818672 DOI: 10.1007/s00253-021-11149-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/01/2022]
Abstract
Regulating morphology engineering and fermentation of Aspergillus oryzae makes it possible to increase the titer of L-malate. However, the existing L-malate-producing strain has limited L-malate production capacity and the fermentation process is insufficiently mature, which cannot meet the needs of industrial L-malate production. To further increase the L-malate production capacity of A. oryzae, we screened out a mutant strain (FMME-S-38) that produced 79.8 g/L L-malate in 250-mL shake flasks, using a newly developed screening system based on colony morphology on the plate. We further compared the extracellular nitrogen (N1) and intracellular nitrogen (N2) contents of the control and mutant strain (FMME-S-38) to determine the relationship between the curve of nitrogen content (N1 and N2) and the L-malate titer. This correlation was then used to optimize the conditions for developing a novel nitrogen supply strategy (initial tryptone concentration of 6.5 g/L and feeding with 3 g/L tryptone at 24 h). Fermentation in a 7.5-L fermentor under the optimized conditions further increased the titer and productivity of L-malate to 143.3 g/L and 1.19 g/L/h, respectively, corresponding to 164.9 g/L and 1.14 g/L/h in a 30-L fermentor. This nitrogen regulation-based strategy cannot only enhance industrial-scale L-malate production but also has generalizability and the potential to increase the production of similar metabolites.Key Points• Construction of a new screening system based on colony morphology on the plate.• A novel nitrogen regulation strategy used to regulate the production of L-malate.• A nitrogen supply strategy used to maximize the production of L-malate.
Collapse
Affiliation(s)
- Lihao Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ju Wang
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenxiu Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
52
|
Li W, Shen X, Wang J, Sun X, Yuan Q. Engineering microorganisms for the biosynthesis of dicarboxylic acids. Biotechnol Adv 2021; 48:107710. [PMID: 33582180 DOI: 10.1016/j.biotechadv.2021.107710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 01/02/2023]
Abstract
Dicarboxylic acids (DCAs) are important commodity chemicals which have been widely applied in polymer, food and pharmaceutical industries. Biosynthesis of DCAs from renewable carbon sources represents a promising alternative to chemical synthesis. Over the years, the recombinant strains have been constructed to produce an increasing number of DCAs. In this review, recent advances on the microbial synthesis of various DCAs have been summarized and categorized into three groups: the tricarboxylic acid cycle-derived, lysine metabolism-related, and aromatic compounds degradation-derived DCAs. We focused mainly on the metabolic engineering and synthetic biology strategies for improving the production efficiency, including metabolic flux analysis, fine-tuning of gene expression, cofactor balancing, metabolic compartmentalization, dynamic regulation and co-culture to regulate the production at multiple levels. The current challenges and perspectives have also been discussed.
Collapse
Affiliation(s)
- Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
53
|
Zhou X, Zhan L, Huang K, Wang X. The functions and clinical significance of circRNAs in hematological malignancies. J Hematol Oncol 2020; 13:138. [PMID: 33069241 PMCID: PMC7568356 DOI: 10.1186/s13045-020-00976-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
With covalently closed circular structures, circular RNAs (circRNAs) were once misinterpreted as by-products of mRNA splicing. Being abundant, stable, highly conserved, and tissue-specific, circRNAs are recently identified as a type of regulatory RNAs. CircRNAs bind to certain miRNAs or proteins to participate in gene transcription and translation. Emerging evidence has indicated that the dysregulation of circRNAs is closely linked to the tumorigenesis and treatment response of hematological malignancies. CircRNAs play critical roles in various biological processes, including tumorigenesis, drug resistance, tumor metabolism, autophagy, pyroptosis, and ferroptosis. The N6-methyladenosine modification of circRNAs and discovery of fusion-circRNAs provide novel insights into the functions of circRNAs. Targeting circRNAs in hematological malignancies will be an attractive treatment strategy. In this review, we systematically summarize recent advances toward the novel functions and molecular mechanisms of circRNAs in hematological malignancies, and highlight the potential clinical applications of circRNAs as novel biomarkers and therapeutic targets for future exploration.
Collapse
Affiliation(s)
- Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, People's Republic of China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, People's Republic of China.
| | - Linquan Zhan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Kai Huang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, People's Republic of China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, People's Republic of China.
| |
Collapse
|
54
|
Sun L, Gong M, Lv X, Huang Z, Gu Y, Li J, Du G, Liu L. Current advance in biological production of short-chain organic acid. Appl Microbiol Biotechnol 2020; 104:9109-9124. [DOI: 10.1007/s00253-020-10917-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
|