51
|
Ranjan N, Kumar S, Watkins D, Wang D, Appella DH, Arya DP. Recognition of HIV-TAR RNA using neomycin-benzimidazole conjugates. Bioorg Med Chem Lett 2013; 23:5689-93. [PMID: 24012122 PMCID: PMC4048829 DOI: 10.1016/j.bmcl.2013.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Synthesis of a novel class of compounds and their biophysical studies with TAR-RNA are presented. The synthesis of these compounds was achieved by conjugating neomycin, an aminoglycoside, with benzimidazoles modeled from a B-DNA minor groove binder, Hoechst 33258. The neomycin-benzimidazole conjugates have varying linkers that connect the benzimidazole and neomycin units. The linkers of varying length (5-23 atoms) in these conjugates contain one to three triazole units. The UV thermal denaturation experiments showed that the conjugates resulted in greater stabilization of the TAR-RNA than either neomycin or benzimidazole used in the synthesis of conjugates. These results were corroborated by the FID displacement and tat-TAR inhibition assays. The binding of ligands to the TAR-RNA is affected by the length and composition of the linker. Our results show that increasing the number of triazole groups and the linker length in these compounds have diminishing effect on the binding to TAR-RNA. Compounds that have shorter linker length and fewer triazole units in the linker displayed increased affinity towards the TAR RNA.
Collapse
Affiliation(s)
- Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
| | - Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
| | - Derrick Watkins
- NUBAD LLC, 900 B West Faris Road, Greenville, SC 29630, United States
| | - Deyun Wang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892, United States
| | - Daniel H. Appella
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892, United States
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina , United States 29634
- NUBAD LLC, 900 B West Faris Road, Greenville, SC 29630, United States
| |
Collapse
|
52
|
Zhitnikova MY, Boryskina OP, Shestopalova AV. Sequence-specific transitions of the torsion angle gamma change the polar-hydrophobic profile of the DNA grooves: implication for indirect protein-DNA recognition. J Biomol Struct Dyn 2013; 32:1670-85. [PMID: 23998351 DOI: 10.1080/07391102.2013.830579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5'-C5'-C4'-C3') are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein-nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein-DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.
Collapse
Affiliation(s)
- Mariia Yu Zhitnikova
- a O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine , Acad. Proskura Street, 12, Kharkiv , 61085 , Ukraine
| | | | | |
Collapse
|
53
|
Zhao J, Li W, Ma R, Chen S, Ren S, Jiang T. Design, synthesis and DNA interaction study of new potential DNA bis-intercalators based on glucuronic acid. Int J Mol Sci 2013; 14:16851-65. [PMID: 23955268 PMCID: PMC3759939 DOI: 10.3390/ijms140816851] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/30/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022] Open
Abstract
A series of novel potential DNA bis-intercalators were designed and synthesized, in which two glucuronic acids were linked by ethylenediamine, and the glucuronic acid was coupled with various chromophores, including quinoline, acridine, indole and purine, at the C-1 position. The preliminary binding properties of these compounds to calf thymus DNA (CT-DNA) have been investigated by UV-absorption and fluorescence spectroscopy. The results indicated that all the target compounds can interact with CT-DNA, and the acridine derivative, 3b, showed the highest key selection vector (KSV) value, which suggested that compound 3b binds most strongly to CT-DNA.
Collapse
Affiliation(s)
- Jiuyang Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
| | - Wei Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
- School of Pharmacy, Jining Medical University, Rizhao 276826, China
| | - Rui Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
| | - Shaopeng Chen
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
| | - Sumei Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
| | - Tao Jiang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Pharmacy, Ocean University of China, Qingdao 266003, China; E-Mails: (J.Z.); (W.L.); (R.M.); (S.C.); (S.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-532-8203-2712; Fax: +86-532-8203-3054
| |
Collapse
|
54
|
Nanjunda R, Wilson WD. Binding to the DNA minor groove by heterocyclic dications: from AT-specific monomers to GC recognition with dimers. ACTA ACUST UNITED AC 2013; Chapter 8:Unit8.8. [PMID: 23255206 DOI: 10.1002/0471142700.nc0808s51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Compounds that bind in the DNA minor groove have provided critical information on DNA molecular recognition, have found extensive uses in biotechnology, and are providing clinically useful drugs against diseases as diverse as cancer and sleeping sickness. This review focuses on the development of clinically useful heterocyclic diamidine minor groove binders. These compounds have shown us that the classical model for minor groove binding in AT DNA sequences must be expanded in several ways: compounds with nonstandard shapes can bind strongly to the groove, water can be directly incorporated into the minor groove complex in an interfacial interaction, and the compounds can form cooperative stacked dimers to recognize GC and mixed AT/GC base pair sequences.
Collapse
Affiliation(s)
- Rupesh Nanjunda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | | |
Collapse
|
55
|
Watkins D, Norris FA, Kumar S, Arya DP. A fluorescence-based screen for ribosome binding antibiotics. Anal Biochem 2012; 434:300-7. [PMID: 23262284 DOI: 10.1016/j.ab.2012.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022]
Abstract
The development of new antibacterial agents has become necessary to treat the large number of emerging bacterial strains resistant to current antibiotics. Despite the different methods of resistance developed by these new strains, the A-site of the bacterial ribosome remains an attractive target for new antibiotics. To develop new drugs that target the ribosomal A-site, a high-throughput screen is necessary to identify compounds that bind to the target with high affinity. To this end, we present an assay that uses a novel fluorescein-conjugated neomycin (F-neo) molecule as a binding probe to determine the relative binding affinity of a drug library. We show here that the binding of F-neo to a model Escherichia coli ribosomal A-site results in a large decrease in the fluorescence of the molecule. Furthermore, we have determined that the change in fluorescence is due to the relative change in the pK(a) of the probe resulting from the change in the electrostatic environment that occurs when the probe is taken from the solvent and localized into the negative potential of the A-site major groove. Finally, we demonstrate that F-neo can be used in a robust, highly reproducible assay, determined by a Z'-factor greater than 0.80 for 3 consecutive days. The assay is capable of rapidly determining the relative binding affinity of a compound library in a 96-well plate format using a single channel electronic pipette. The current assay format will be easily adaptable to a high-throughput format with the use of a liquid handling robot for large drug libraries currently available and under development.
Collapse
|
56
|
Riechert-Krause F, Autenrieth K, Eick A, Weisz K. Spectroscopic and calorimetric studies on the binding of an indoloquinoline drug to parallel and antiparallel DNA triplexes. Biochemistry 2012; 52:41-52. [PMID: 23234257 DOI: 10.1021/bi301381h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
11-Phenyl-substituted indoloquinolines have been found to exhibit significant antiproliferative potency in cancer cells but to show only moderate affinity toward genomic double-helical DNA. In this study, parallel as well as antiparallel triple-helical DNA targets are employed to evaluate the triplex binding of these ligands. UV melting experiments with parallel triplexes indicate considerable interactions with the drug and a strong preference for TAT-rich triplexes in line with an increasing number of potential intercalation sites of similar binding strength between two TAT base triads. Via substitution of a singly charged aminoethylamine side chain by a longer and doubly charged bis(aminopropyl)amine substituent at the ligand, binding affinities increase and also start to exhibit long-range effects as indicated by a strong correlation between the binding affinity and the overall length of the TAT tract within the triplex stem. Compared to parallel triplexes, an antiparallel triplex with a GT-containing third strand constitutes a preferred target for the indoloquinoline drug. On the basis of pH-dependent titration experiments and corroborated by a Job analysis of continuous variation, binding of the drug to the GT triplex not only is strongly enhanced when the solution pH is lowered from 7 to 5 but also reveals a pH-dependent stoichiometry upon formation of the complex. Calorimetric data demonstrate that stronger binding of a protonated drug at acidic pH is associated with a more exothermic binding process. However, at pH 7 and 5, binding is enthalpically driven with additional favorable entropic contributions.
Collapse
Affiliation(s)
- Fanny Riechert-Krause
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
57
|
Tan L, Xie L, Sun X, Zeng L, Yang G. Biophysical insights into the interaction of Ru(II) polypyridyl complexes with the RNA triplex poly(U)•poly(A)*poly(U). Intercalative ligand shape effect on third-strand stabilization. J Inorg Biochem 2012; 120:32-8. [PMID: 23268790 DOI: 10.1016/j.jinorgbio.2012.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/14/2023]
Abstract
To explore the correlating thermodynamic factors to the structural aspects that account for the stability of the RNA triplex, two functional Ru(II) complexes containing the same ancillary ligands and different intercalative ligands, [Ru(bpy)(2)(mip)](2+) (bpy=2,2'-bipyridine, mip=2'-(3",4"-methylene-dioxyphenyl)imidazo[4',5'-f][1,10]phenanthroline) and [Ru(bpy)(2)(bdip)](2+) (bdip=2-(1,3-benzodioxol-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) have been synthesized. The binding properties of [Ru(bpy)(2)(mip)](2+) and [Ru(bpy)(2)(bdip)](2+) to the RNA triplex poly(U)•poly(A)*poly(U) have been investigated by various biophysical techniques and quantum chemistry calculations. Compared with [Ru(bpy)(2)(bdip)](2+), remarkably higher binding and stabilization of the triplex RNA structure by [Ru(bpy)(2)(mip)](2+) is achieved upon changing the substituent positions on the intercalative ligand. The result reveals that the intercalative ligand shape plays a critical role in third-strand stabilization.
Collapse
Affiliation(s)
- Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| | | | | | | | | |
Collapse
|
58
|
Binding properties of Ru(II) polypyridyl complexes with poly(U)·poly(A)*poly(U) triplex: the ancillary ligand effect on third-strand stabilization. J Biol Inorg Chem 2012; 18:71-80. [PMID: 23111627 DOI: 10.1007/s00775-012-0950-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
The binding properties of [RuL(2)(mip)](2+) {where L is 1,10-phenanthroline (phen) or 4,7-dimethyl-1,10-phenanthrollne (4,7-dmp) and mip is 2'-(3",4"-methylenedioxyphenyl)imidazo[4',5'-f][1,10]phenanthroline} with regard to the triplex RNA poly(U)·poly(A)*poly(U) were investigated using various biophysical techniques and quantum chemistry calculations. In comparison with [Ru(4,7-dmp)(2)(mip)](2+), remarkably higher binding affinity of [Ru(phen)(2)(mip)](2+) for the triplex RNA poly(U)·poly(A)*poly(U) was achieved by changing the ancillary ligands. The stabilization of the Hoogsteen-base-paired third strand was improved by about 10.9 °C by [Ru(phen)(2)(mip)](2+) against 6.6 °C by [Ru(4,7-dmp)(2)(mip)](2+). To the best of our knowledge, [Ru(phen)(2)(mip)](2+) is the first metal complex able to raise the third-strand stabilization of poly(U)·poly(A)*poly(U) from 37.5 to 48.4 °C. The results reveal that the ancillary ligands have an important effect on third-strand stabilization of the triplex RNA poly(U)·poly(A)*poly(U) when metal complexes contain the same intercalative ligands.
Collapse
|
59
|
3,6-bis(3-alkylguanidino)acridines as DNA-intercalating antitumor agents. Eur J Med Chem 2012; 57:283-95. [PMID: 23072739 DOI: 10.1016/j.ejmech.2012.09.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/20/2022]
Abstract
A series of 3,6-bis(3-alkylguanidino) acridines was prepared and the interaction of these novel compounds with calf thymus DNA was investigated with UV-vis, fluorescence and circular dichroism spectroscopy, in addition to DNA melting techniques. The binding constants K were estimated to range from 1.25 to 5.26 × 10(5) M(-1), and the percentage of hypochromism was found to be 17-42% (from spectral titration). UV-vis, fluorescence and circular dichroism measurements indicated that the compounds act as effective DNA-intercalating agents. Electrophoretic separation proved that ligands 6a-e relaxed topoisomerase I at a concentration of 60 μM, although only those with longer alkyl chains were able to penetrate cell membranes and suppress cell proliferation effectively. The biological activity of novel compounds was assessed using different techniques (cell cycle distribution, phosphatidylserine externalization, caspase-3 activation, changes in mitochondrial membrane potential) and demonstrated mostly transient cytostatic action of the ethyl 6c and pentyl 6d derivatives. The hexyl derivative 6e proved to be the most cytotoxic. Different patterns of cell penetration were also observed for individual derivatives. Principles of molecular dynamics were applied to explore DNA-ligand interactions at the molecular level.
Collapse
|
60
|
Charles I, Davis E, Arya DP. Efficient stabilization of phosphodiester (PO), phosphorothioate (PS), and 2'-O-methoxy (2'-OMe) DNA·RNA hybrid duplexes by amino sugars. Biochemistry 2012; 51:5496-505. [PMID: 22639785 DOI: 10.1021/bi3004507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antisense strategies that target DNA·RNA hybrid structures offer potential for the development of new therapeutic drugs. The α-sarcin loop region of the 23S [corrected] rRNA domain has been shown to be a high value target for such strategies. Herein, aminoglycoside interaction with three RNA·DNA α-sarcin targeted duplexes (rR·dY, rR·S-dY, and rR·2'OMe-rY) have been investigated to determine the overall effect of aminoglycoside interaction on the stability, affinity, and conformation of these hybrid duplexes. To this end, UV thermal denaturation, circular dichroism spectroscopy, fluorescence intercalator displacement, and ITC as well as DSC calorimetry experiments were carried out. The results suggest the following. (1) Of all the aminoglycosides studied, neomycin confers the highest thermal stability on all three hybrid duplexes studied. (2) There is no appreciable difference in aminoglycoside-induced thermal stability between the unmodified rR·dY and phophorothioate modified rR·S-dY duplexes. (3) The rR·2'OMe-rY duplexes thermal stability is slightly less than the other two hybrids. (4) In all three duplexes, aminoglycoside-induced thermal stability decreased as the number of amino groups decreased. (5) CD scans revealed similar spectra for the rR·dY and rR·S-dY duplexes as well as a more pronounced A-form signal for the rR·2'OMe-rY duplex. (6) FID assays paralleled the CD results, yielding similar affinity values between the rR·dY and rR·S-dY duplexes and higher affinities with the rR·2'OMe-rY duplex. (7) The overall affinity trend between aminoglycosides and the three duplexes was determined to be neomycin > paromomycin > neamine > ribostamycin. (8) ITC K(a) values revealed similar binding constants for the rR·dY and rR·S-dY duplexes with rR·dY having a K(1) of (1.03 ± 0.58) × 10(7) M(-1) and K(2) of (1.13 ± 0.07) × 10(5) M(-1) while rR·S-dY produced a K(1) of (1.17 ± 0.54) × 10(7) M(-1) and K(2) of (1.27 ± 0.69) × 10(5) M(-1). (8) The rR·2'OMe-rY produced a slightly higher binding constant values with a K(1) of (1.25 ± 0.24) × 10(7) M(-1) and K(2) of (3.62 ± 0.18) × 10(5) M(-1). (9) The ΔT(m)-derived K(Tm) of 3.81 × 10(7) M(-1) for rR·S-dY was in relative agreement with the corresponding K(1) of 1.17 × 10(7) M(-1) derived constant from the fitted ITC. These results illustrate that the increased DNA·RNA hybrid duplex stability in the presence of aminoglycosides can help extend the roles of aminoglycosides in designing modified ODNs for targeting RNA.
Collapse
Affiliation(s)
- I Charles
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, South Carolina 29634, United States
| | | | | |
Collapse
|
61
|
Beccia MR, Biver T, Pardini A, Spinelli J, Secco F, Venturini M, Busto Vázquez N, Lopez Cornejo MP, Martin Herrera VI, Prado Gotor R. The Fluorophore 4′,6‐Diamidino‐2‐phenylindole (DAPI) Induces DNA Folding in Long Double‐Stranded DNA. Chem Asian J 2012; 7:1803-10. [DOI: 10.1002/asia.201200177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Rosa Beccia
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Tarita Biver
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Alberto Pardini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Jacopo Spinelli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Fernando Secco
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Marcella Venturini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56126 Pisa (Italy), Fax: (+39) 050‐2219260
| | - Natalia Busto Vázquez
- Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s.n., 09001 Burgos (Spain)
| | - Maria Pilar Lopez Cornejo
- Departamento de Química Física, University of Seville, C/Profesor García González s/n, 41012, Seville (Spain)
| | | | - Rafael Prado Gotor
- Departamento de Química Física, University of Seville, C/Profesor García González s/n, 41012, Seville (Spain)
| |
Collapse
|
62
|
Tan LF, Liu J, Shen JL, Liu XH, Zeng LL, Jin LH. First ruthenium(II) polypyridyl complex as a true molecular "light switch" for triplex RNA structure: [Ru(phen)2(mdpz)]2+ enhances the stability of Poly(U)·Poly(A)*Poly(U). Inorg Chem 2012; 51:4417-9. [PMID: 22462534 DOI: 10.1021/ic300093h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stabilization of triple helical structures is extremely important for carrying out their biological functions. Nucleic acid triple helices may be formed with DNA or RNA strands. In contrast to many studies in DNA, little has been reported concerning the recognition of the RNA triplex by transition-metal complexes. In this article, [Ru(phen)(2)(mdpz)](2+) (Ru1) is the first metal complex able to enhance the stability of the RNA triplex Poly(U)·Poly(A)*Poly(U) and serve as a prominent molecular "light switch" for the RNA triplex.
Collapse
Affiliation(s)
- Li-Feng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
63
|
Chang YM, Chen CKM, Hou MH. Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int J Mol Sci 2012; 13:3394-3413. [PMID: 22489158 PMCID: PMC3317384 DOI: 10.3390/ijms13033394] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 11/16/2022] Open
Abstract
Circular dichroism (CD) spectroscopy is an optical technique that measures the difference in the absorption of left and right circularly polarized light. This technique has been widely employed in the studies of nucleic acids structures and the use of it to monitor conformational polymorphism of DNA has grown tremendously in the past few decades. DNA may undergo conformational changes to B-form, A-form, Z-form, quadruplexes, triplexes and other structures as a result of the binding process to different compounds. Here we review the recent CD spectroscopic studies of the induction of DNA conformational changes by different ligands, which includes metal derivative complex of aureolic family drugs, actinomycin D, neomycin, cisplatin, and polyamine. It is clear that CD spectroscopy is extremely sensitive and relatively inexpensive, as compared with other techniques. These studies show that CD spectroscopy is a powerful technique to monitor DNA conformational changes resulting from drug binding and also shows its potential to be a drug-screening platform in the future.
Collapse
Affiliation(s)
- Yu-Ming Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; E-Mails: (Y.-M.C.); (C.K.-M.C.)
| | - Cammy K.-M. Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; E-Mails: (Y.-M.C.); (C.K.-M.C.)
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
64
|
Kumar S, Kellish P, Robinson WE, Wang D, Appella DH, Arya DP. Click dimers to target HIV TAR RNA conformation. Biochemistry 2012; 51:2331-47. [PMID: 22339203 DOI: 10.1021/bi201657k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of neomycin dimers have been synthesized using "click chemistry" with varying functionality and length in the linker region to target the human immunodeficiency virus type 1 (HIV-1) TAR RNA region of the HIV virus. The TAR (Trans-Activation Responsive) RNA region, a 59 bp stem-loop structure located at the 5'-end of all nascent viral transcripts, interacts with its target, a key regulatory protein, Tat, and necessitates the replication of HIV-1. Neomycin, an aminosugar, has been shown to exhibit multiple binding sites on TAR RNA. This observation prompted us to design and synthesize a library of triazole-linked neomycin dimers using click chemistry. The binding between neomycin dimers and TAR RNA was characterized using spectroscopic techniques, including FID (fluorescent intercalator displacement), a FRET (fluorescence resonance energy transfer) competitive assay, circular dichroism (CD), and UV thermal denaturation. UV thermal denaturation studies demonstrate that binding of neomycin dimers increases the melting temperature (T(m)) of the HIV TAR RNA up to 10 °C. Ethidium bromide displacement (FID) and a FRET competition assay revealed nanomolar binding affinity between neomycin dimers and HIV TAR RNA, while in case of neomycin, only weak binding was detected. More importantly, most of the dimers exhibited lower IC(50) values toward HIV TAR RNA, when compared to the fluorescent Tat peptide, and show increased selectivity over mutant TAR RNA. Cytopathic effects investigated using MT-2 cells indicate a number of the dimers with high affinity toward TAR show promising anti-HIV activity.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | | | | | | | | |
Collapse
|
65
|
|
66
|
Szafraniec M, Stokowa-Sołtys K, Nagaj J, Kasprowicz A, Wrzesiński J, Jeżowska-Bojczuk M, Ciesiołka J. Capreomycin and hygromycin B modulate the catalytic activity of the delta ribozyme in a manner that depends on the protonation and complexation with Cu2+ ions of these antibiotics. Dalton Trans 2012; 41:9728-36. [DOI: 10.1039/c2dt30794d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|