51
|
Lecat-Guillet N, Monnier C, Rovira X, Kniazeff J, Lamarque L, Zwier JM, Trinquet E, Pin JP, Rondard P. FRET-Based Sensors Unravel Activation and Allosteric Modulation of the GABA B Receptor. Cell Chem Biol 2017; 24:360-370. [PMID: 28286129 DOI: 10.1016/j.chembiol.2017.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/21/2016] [Accepted: 02/10/2017] [Indexed: 01/11/2023]
Abstract
The main inhibitory neurotransmitter, γ-aminobutyric acid (GABA), modulates many synapses by activating the G protein-coupled receptor GABAB, which is a target for various therapeutic applications. It is an obligatory heterodimer made of GB1 and GB2 that can be regulated by positive allosteric modulators (PAMs). The molecular mechanism of activation of the GABAB receptor remains poorly understood. Here, we have developed FRET-based conformational GABAB sensors compatible with high-throughput screening. We identified conformational changes occurring within the extracellular and transmembrane domains upon receptor activation, which are smaller than those observed in the related metabotropic glutamate receptors. These sensors also allow discrimination between agonists of different efficacies and between PAMs that have different modes of action, which has not always been possible using conventional functional assays. Our study brings important new information on the activation mechanism of the GABAB receptor and should facilitate the screening and identification of new chemicals targeting this receptor.
Collapse
Affiliation(s)
- Nathalie Lecat-Guillet
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Carine Monnier
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Xavier Rovira
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | | | | | | | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France.
| |
Collapse
|
52
|
High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc Natl Acad Sci U S A 2017; 114:1789-1794. [PMID: 28179565 DOI: 10.1073/pnas.1613541114] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Intercellular communication via chemical signaling proceeds with both spatial and temporal components, but analytical tools, such as microfabricated electrodes, have been limited to just a few probes per cell. In this work, we use a nonphotobleaching fluorescent nanosensor array based on single-walled carbon nanotubes (SWCNTs) rendered selective to dopamine to study its release from PC12 neuroprogenitor cells at a resolution exceeding 20,000 sensors per cell. This allows the spatial and temporal dynamics of dopamine release, following K+ stimulation, to be measured at exceedingly high resolution. We observe localized, unlabeled release sites of dopamine spanning 100 ms to seconds that correlate with protrusions but not predominately the positive curvature associated with the tips of cellular protrusions as intuitively expected. The results illustrate how directionality of chemical signaling is shaped by membrane morphology, and highlight the advantages of nanosensor arrays that can provide high spatial and temporal resolution of chemical signaling.
Collapse
|
53
|
Scholler P, Moreno-Delgado D, Lecat-Guillet N, Doumazane E, Monnier C, Charrier-Savournin F, Fabre L, Chouvet C, Soldevila S, Lamarque L, Donsimoni G, Roux T, Zwier JM, Trinquet E, Rondard P, Pin JP. HTS-compatible FRET-based conformational sensors clarify membrane receptor activation. Nat Chem Biol 2017; 13:372-380. [DOI: 10.1038/nchembio.2286] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
|
54
|
Farrants H, Hiblot J, Griss R, Johnsson K. Rational Design and Applications of Semisynthetic Modular Biosensors: SNIFITs and LUCIDs. Methods Mol Biol 2017; 1596:101-117. [PMID: 28293883 DOI: 10.1007/978-1-4939-6940-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Biosensors are used in many fields to measure the concentration of analytes, both in a cellular context and in human samples for medical care. Here, we outline the design of two types of modular biosensors: SNAP-tag-based indicators with a Fluorescent Intramolecular Tether (SNIFITs) and LUCiferase-based Indicators of Drugs (LUCIDs). These semisynthetic biosensors quantitatively measure analyte concentrations in vitro and on cell surfaces by an intramolecular competitive mechanism. We provide an overview of how to design and apply SNIFITs and LUCIDs.
Collapse
Affiliation(s)
- Helen Farrants
- National Centre of Competence in Research (NCCR) Chemical Biology, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, École Polytechnique Fédéralede Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Julien Hiblot
- National Centre of Competence in Research (NCCR) Chemical Biology, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, École Polytechnique Fédéralede Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rudolf Griss
- National Centre of Competence in Research (NCCR) Chemical Biology, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, École Polytechnique Fédéralede Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kai Johnsson
- National Centre of Competence in Research (NCCR) Chemical Biology, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, École Polytechnique Fédéralede Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Max-Planck Institute for Medical Research, Department of Chemical Biology, 69120, Heidelberg, Germany.
| |
Collapse
|
55
|
Method for Developing Optical Sensors Using a Synthetic Dye-Fluorescent Protein FRET Pair and Computational Modeling and Assessment. Methods Mol Biol 2017; 1596:89-99. [PMID: 28293882 DOI: 10.1007/978-1-4939-6940-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Biosensors that exploit Förster resonance energy transfer (FRET) can be used to visualize biological and physiological processes and are capable of providing detailed information in both spatial and temporal dimensions. In a FRET-based biosensor, substrate binding is associated with a change in the relative positions of two fluorophores, leading to a change in FRET efficiency that may be observed in the fluorescence spectrum. As a result, their design requires a ligand-binding protein that exhibits a conformational change upon binding. However, not all ligand-binding proteins produce responsive sensors upon conjugation to fluorescent proteins or dyes, and identifying the optimum locations for the fluorophores often involves labor-intensive iterative design or high-throughput screening. Combining the genetic fusion of a fluorescent protein to the ligand-binding protein with site-specific covalent attachment of a fluorescent dye can allow fine control over the positions of the two fluorophores, allowing the construction of very sensitive sensors. This relies upon the accurate prediction of the locations of the two fluorophores in bound and unbound states. In this chapter, we describe a method for computational identification of dye-attachment sites that allows the use of cysteine modification to attach synthetic dyes that can be paired with a fluorescent protein for the purposes of creating FRET sensors.
Collapse
|
56
|
Construction of Protein-Based Biosensors Using Ligand-Directed Chemistry for Detecting Analyte Binding. Methods Enzymol 2017; 589:253-280. [DOI: 10.1016/bs.mie.2017.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
57
|
Abstract
![]()
Genetically encoded
FRET-based sensor proteins have significantly
contributed to our current understanding of the intracellular functions
of Zn2+. However, the external excitation required for
these fluorescent sensors can give rise to photobleaching and phototoxicity
during long-term imaging, limits applications that suffer from autofluorescence
and light scattering, and is not compatible with light-sensitive cells.
For these applications, sensor proteins based on Bioluminescence Resonance
Energy Transfer (BRET) would provide an attractive alternative. In
this work, we used the bright and stable luciferase NanoLuc to create
the first genetically encoded BRET sensors for measuring intracellular
Zn2+. Using a new sensor approach, the NanoLuc domain was
fused to the Cerulean donor domain of two previously developed FRET
sensors, eCALWY and eZinCh-2. In addition to preserving the excellent
Zn2+ affinity and specificity of their predecessors, these
newly developed sensors enable both BRET- and FRET-based detection.
While the dynamic range of the BRET signal for the eCALWY-based BLCALWY-1
sensor was limited by the presence of two competing BRET pathways,
BRET/FRET sensors based on the eZinCh-2 scaffold (BLZinCh-1 and -2)
yielded robust 25–30% changes in BRET ratio. In addition, introduction
of a chromophore-silencing mutation resulted in a BRET-only sensor
(BLZinCh-3) with increased BRET response (50%) and an unexpected 10-fold
increase in Zn2+ affinity. The combination of robust ratiometric
response, physiologically relevant Zn2+ affinities, and
stable and bright luminescence signal offered by the BLZinCh sensors
allowed monitoring of intracellular Zn2+ in plate-based
assays as well as intracellular BRET-based imaging in single living
cells in real time.
Collapse
Affiliation(s)
- Stijn J. A. Aper
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems (ICMS),
Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Pieterjan Dierickx
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Division
of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten Merkx
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems (ICMS),
Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
58
|
Bolbat A, Schultz C. Recent developments of genetically encoded optical sensors for cell biology. Biol Cell 2016; 109:1-23. [PMID: 27628952 DOI: 10.1111/boc.201600040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future.
Collapse
Affiliation(s)
- Andrey Bolbat
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| |
Collapse
|
59
|
A Guide to Fluorescent Protein FRET Pairs. SENSORS 2016; 16:s16091488. [PMID: 27649177 PMCID: PMC5038762 DOI: 10.3390/s16091488] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022]
Abstract
Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies.
Collapse
|
60
|
Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry. Nat Chem Biol 2016; 12:822-30. [DOI: 10.1038/nchembio.2150] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
61
|
Aper SJ, Merkx M. Rewiring Multidomain Protein Switches: Transforming a Fluorescent Zn(2+) Sensor into a Light-Responsive Zn(2+) Binding Protein. ACS Synth Biol 2016; 5:698-709. [PMID: 27031076 DOI: 10.1021/acssynbio.6b00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein-based sensors and switches provide attractive tools for the real-time monitoring and control of molecular processes in complex biological environments. Fluorescent sensor proteins have been developed for a wide variety of small molecules, but the construction of genetically encoded light-responsive ligand binding proteins remains mostly unexplored. Here we present a generic approach to reengineer a previously developed FRET-based Zn(2+) sensor into a light-activatable Zn(2+) binding protein using a design strategy based on mutually exclusive domain interactions. These so-called VividZn proteins consist of two light-responsive Vivid domains that homodimerize upon illumination with blue light, thus preventing the binding of Zn(2+) between two Zn(2+) binding domains, Atox1 and WD4. Following optimization of the linker between WD4 and the N-terminus of one of the Vivid domains, VividZn variants were obtained that show a 9- to 55-fold decrease in Zn(2+) affinity upon illumination, which is fully reversible following dark adaptation. The Zn(2+) affinities of the switch could be rationally tuned between 1 pM and 2 nM by systematic variation of linker length and mutation of one of the Zn(2+) binding residues. Similarly, introduction of mutations in the Vivid domains allowed tuning of the switching kinetics between 10 min and 7 h. Low expression levels in mammalian cells precluded the demonstration of light-induced perturbation of cytosolic Zn(2+) levels. Nonetheless, our results firmly establish the use of intramolecular Vivid dimerization as an attractive light-sensitive input module to rationally engineer light-responsive protein switches based on mutually exclusive domain interactions.
Collapse
Affiliation(s)
- Stijn J.A. Aper
- Laboratory
of Chemical Biology
and Institute for Complex Molecular Systems (ICMS), Department of
Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory
of Chemical Biology
and Institute for Complex Molecular Systems (ICMS), Department of
Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
62
|
Xue L, Prifti E, Johnsson K. A General Strategy for the Semisynthesis of Ratiometric Fluorescent Sensor Proteins with Increased Dynamic Range. J Am Chem Soc 2016; 138:5258-61. [DOI: 10.1021/jacs.6b03034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lin Xue
- Institute
of Chemical Sciences
and Engineering (ISIC), Institute of Bioengineering, National Centre
of Competence in Research (NCCR) Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Efthymia Prifti
- Institute
of Chemical Sciences
and Engineering (ISIC), Institute of Bioengineering, National Centre
of Competence in Research (NCCR) Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Kai Johnsson
- Institute
of Chemical Sciences
and Engineering (ISIC), Institute of Bioengineering, National Centre
of Competence in Research (NCCR) Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
63
|
Stumpf AD, Hoffmann C. Optical probes based on G protein-coupled receptors - added work or added value? Br J Pharmacol 2015; 173:255-66. [PMID: 26562218 DOI: 10.1111/bph.13382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/22/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022] Open
Abstract
In 2003, the first report was published that presented proof of principle for a novel class of FRET biosensors for use in living cells. This novel sensor class was built on the base of GPCRs, which represent an integral transmembrane receptor family passing the membrane seven times and are thus also called the 7TM receptor family. As an estimated number of 30% of all marketed drugs exert their effects by modulating GPCR function, these initial reports promised the gain of novel insights into receptor function. Such FRET sensors have slowly, but progressively, made their way into the standard toolbox for GPCR research as several groups are now reporting on the generation and use of these sensors. By now, FRET sensors have been reported for 18 different GPCRs, and more are expected to be added. These particular receptor sensors have been used to investigate receptor dynamics in living cells to evaluate ligand binding and ligand efficacy in real time, to study voltage and mechanosensitivity of GPCRs or to study the influence of receptor polymorphisms on receptor function in real-time. In this review we will describe the different design principles of these GPCR-based sensors and will summarize their current biological applications in living cells.
Collapse
Affiliation(s)
- A D Stumpf
- Bio-Imaging Center, Rudolf-Virchow-Zentrum für Experimentelle Medizin, University of Würzburg, Würzburg, Germany.,Department of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - C Hoffmann
- Bio-Imaging Center, Rudolf-Virchow-Zentrum für Experimentelle Medizin, University of Würzburg, Würzburg, Germany.,Department of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
64
|
Nanosensors for neurotransmitters. Anal Bioanal Chem 2015; 408:2727-41. [DOI: 10.1007/s00216-015-9160-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 01/14/2023]
|
65
|
Imaging and manipulating proteins in live cells through covalent labeling. Nat Chem Biol 2015; 11:917-23. [PMID: 26575238 DOI: 10.1038/nchembio.1959] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022]
Abstract
The past 20 years have witnessed the advent of numerous technologies to specifically and covalently label proteins in cellulo and in vivo with synthetic probes. These technologies range from self-labeling proteins tags to non-natural amino acids, and the question is no longer how we can specifically label a given protein but rather with what additional functionality we wish to equip it. In addition, progress in fields such as super-resolution microscopy and genome editing have either provided additional motivation to label proteins with advanced synthetic probes or removed some of the difficulties of conducting such experiments. By focusing on two particular applications, live-cell imaging and the generation of reversible protein switches, we outline the opportunities and challenges of the field and how the synergy between synthetic chemistry and protein engineering will make it possible to conduct experiments that are not feasible with conventional approaches.
Collapse
|
66
|
|
67
|
Schena A, Griss R, Johnsson K. Modulating protein activity using tethered ligands with mutually exclusive binding sites. Nat Commun 2015. [PMID: 26198003 PMCID: PMC4525150 DOI: 10.1038/ncomms8830] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The possibility to design proteins whose activities can be switched on and off by unrelated effector molecules would enable applications in various research areas, ranging from biosensing to synthetic biology. We describe here a general method to modulate the activity of a protein in response to the concentration of a specific effector. The approach is based on synthetic ligands that possess two mutually exclusive binding sites, one for the protein of interest and one for the effector. Tethering such a ligand to the protein of interest results in an intramolecular ligand–protein interaction that can be disrupted through the presence of the effector. Specifically, we introduce a luciferase controlled by another protein, a human carbonic anhydrase whose activity can be controlled by proteins or small molecules in vitro and on living cells, and novel fluorescent and bioluminescent biosensors. Designing proteins whose activities can be switched on and off by effector molecules is a central challenge in protein engineering. Here, the authors use tethered chemical ligands with two mutually exclusive binding sites as a general method to modulate protein activity in response to specific effectors.
Collapse
Affiliation(s)
- Alberto Schena
- 1] École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Avenue Forel 2, EPFL SB ISIC LIP BCH-4303, CH-1015 Lausanne, Switzerland [2] École Polytechnique Fédérale de Lausanne, Institute of Bioengineering, CH-1015 Lausanne, Switzerland [3] National Centre of Competence in Research in Chemical Biology, CH-1015 Lausanne, Switzerland
| | - Rudolf Griss
- 1] École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Avenue Forel 2, EPFL SB ISIC LIP BCH-4303, CH-1015 Lausanne, Switzerland [2] École Polytechnique Fédérale de Lausanne, Institute of Bioengineering, CH-1015 Lausanne, Switzerland [3] National Centre of Competence in Research in Chemical Biology, CH-1015 Lausanne, Switzerland
| | - Kai Johnsson
- 1] École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Avenue Forel 2, EPFL SB ISIC LIP BCH-4303, CH-1015 Lausanne, Switzerland [2] École Polytechnique Fédérale de Lausanne, Institute of Bioengineering, CH-1015 Lausanne, Switzerland [3] National Centre of Competence in Research in Chemical Biology, CH-1015 Lausanne, Switzerland
| |
Collapse
|
68
|
Klockow JL, Hettie KS, Secor KE, Barman DN, Glass TE. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters. Chemistry 2015; 21:11446-51. [DOI: 10.1002/chem.201501379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Jessica L. Klockow
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Kenneth S. Hettie
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Kristen E. Secor
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Dipti N. Barman
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Timothy E. Glass
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| |
Collapse
|
69
|
Bosch PJ, Corrêa IR, Sonntag MH, Ibach J, Brunsveld L, Kanger JS, Subramaniam V. Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells. Biophys J 2015; 107:803-14. [PMID: 25140415 DOI: 10.1016/j.bpj.2014.06.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/22/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022] Open
Abstract
Single-molecule tracking has become a widely used technique for studying protein dynamics and their organization in the complex environment of the cell. In particular, the spatiotemporal distribution of membrane receptors is an active field of study due to its putative role in the regulation of signal transduction. The SNAP-tag is an intrinsically monovalent and highly specific genetic tag for attaching a fluorescent label to a protein of interest. Little information is currently available on the choice of optimal fluorescent dyes for single-molecule microscopy utilizing the SNAP-tag labeling system. We surveyed 6 green and 16 red excitable dyes for their suitability in single-molecule microscopy of SNAP-tag fusion proteins in live cells. We determined the nonspecific binding levels and photostability of these dye conjugates when bound to a SNAP-tag fused membrane protein in live cells. We found that only a limited subset of the dyes tested is suitable for single-molecule tracking microscopy. The results show that a careful choice of the dye to conjugate to the SNAP-substrate to label SNAP-tag fusion proteins is very important, as many dyes suffer from either rapid photobleaching or high nonspecific staining. These characteristics appear to be unpredictable, which motivated the need to perform the systematic survey presented here. We have developed a protocol for evaluating the best dyes, and for the conditions that we evaluated, we find that Dy 549 and CF 640 are the best choices tested for single-molecule tracking. Using an optimal dye pair, we also demonstrate the possibility of dual-color single-molecule imaging of SNAP-tag fusion proteins. This survey provides an overview of the photophysical and imaging properties of a range of SNAP-tag fluorescent substrates, enabling the selection of optimal dyes and conditions for single-molecule imaging of SNAP-tagged fusion proteins in eukaryotic cell lines.
Collapse
Affiliation(s)
- Peter J Bosch
- Nanobiophysics, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | - Michael H Sonntag
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jenny Ibach
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Johannes S Kanger
- Nanobiophysics, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Vinod Subramaniam
- Nanobiophysics, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
70
|
Li D, Liu L, Li WH. Genetic targeting of a small fluorescent zinc indicator to cell surface for monitoring zinc secretion. ACS Chem Biol 2015; 10:1054-63. [PMID: 25572404 DOI: 10.1021/cb5007536] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Numerous mammalian cells contain Zn2+ in their secretory granules. During secretion, Zn2+ is coreleased with granular cargos into extracellular medium so Zn2+ serves as a convenient surrogate marker for tracking the dynamics of secretion. Fluorescent Zn2+ sensors that can be selectively targeted to cells of interest would be invaluable tools for imaging Zn2+ release in multicellular systems including tissues and live animals. Exploiting the HaloTag labeling technology and using an optimized linker, we have engineered a fluorescent Zn2+ indicator that displayed a 15-fold fluorescence enhancement upon Zn2+ binding while reacting efficiently with a HaloTag enzyme in a cellular environment. Two-color imaging of ZIMIR-HaloTag and a red-emitting calcium indicator in pancreatic islet beta cells demonstrated that photoactivation of a channelrhodopsin was able to induce exocytosis of Zn2+/insulin granules and revealed heterogeneity in secretory activity along the cell membrane that was uncoupled from cellular Ca2+ activity. This integrated photonic approach for imaging and controlling the release of large dense core granules provides exquisite cellular selectivity and should facilitate future studies of stimulus-secretion coupling and paracrine signaling in secretory cells.
Collapse
Affiliation(s)
- Daliang Li
- Departments of Cell Biology
and Biochemistry, University of Texas Southwestern Medical Center, 6000
Harry Hines Boulevard, Dallas, Texas 75390-9039, United States
| | - Lin Liu
- Departments of Cell Biology
and Biochemistry, University of Texas Southwestern Medical Center, 6000
Harry Hines Boulevard, Dallas, Texas 75390-9039, United States
| | - Wen-Hong Li
- Departments of Cell Biology
and Biochemistry, University of Texas Southwestern Medical Center, 6000
Harry Hines Boulevard, Dallas, Texas 75390-9039, United States
| |
Collapse
|
71
|
Stein V, Alexandrov K. Synthetic protein switches: design principles and applications. Trends Biotechnol 2015; 33:101-10. [DOI: 10.1016/j.tibtech.2014.11.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022]
|
72
|
Liang R, Broussard GJ, Tian L. Imaging chemical neurotransmission with genetically encoded fluorescent sensors. ACS Chem Neurosci 2015; 6:84-93. [PMID: 25565280 DOI: 10.1021/cn500280k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A major challenge in neuroscience is to decipher the logic of neural circuitry and to link it to learning, memory, and behavior. Synaptic transmission is a critical event underlying information processing within neural circuitry. In the extracellular space, the concentrations and distributions of excitatory, inhibitory, and modulatory neurotransmitters impact signal integration, which in turn shapes and refines the function of neural networks. Thus, the determination of the spatiotemporal relationships between these chemical signals with synaptic resolution in the intact brain is essential to decipher the codes for transferring information across circuitry and systems. Here, we review approaches and probes that have been employed to determine the spatial and temporal extent of neurotransmitter dynamics in the brain. We specifically focus on the design, screening, characterization, and application of genetically encoded indicators directly probing glutamate, the most abundant excitatory neurotransmitter. These indicators provide synaptic resolution of glutamate dynamics with cell-type specificity. We also discuss strategies for developing a suite of genetically encoded probes for a variety of neurotransmitters and neuromodulators.
Collapse
Affiliation(s)
- Ruqiang Liang
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| | - Gerard Joseph Broussard
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| | - Lin Tian
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| |
Collapse
|
73
|
Abstract
Chemists and biologists have long recognized small molecule probes as powerful tools for functional genomics and proteomics studies. The possibility of specifically attaching chemical probes to individual proteins with spatial and temporal resolution has greatly improved our ability to visualize and characterize proteins in their native environment. The continued development of novel molecular probes for protein labeling is, therefore, of fundamental importance to gain new insights into biological processes in living cells and organisms. Several excellent approaches for the site-specific labeling of fusion proteins with chemical probes exist. Herein I discuss the design and generation of chemical probes for the SNAP-tag and CLIP-tag systems. The first part of this chapter is dedicated to reviewing the principles of the SNAP-tag technology, followed by a section dedicated to the development of chemical probes for unique applications, such as super-resolution imaging, protein trafficking and recycling, protein-protein interactions, and biomolecular sensing. The last part of the chapter contains experimental protocols and technical notes for the synthesis of selected SNAP-tag substrates and labeling of SNAP-tag fusion proteins in vitro and in living cells.
Collapse
Affiliation(s)
- Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA,
| |
Collapse
|
74
|
Tamura T, Hamachi I. Recent progress in design of protein-based fluorescent biosensors and their cellular applications. ACS Chem Biol 2014; 9:2708-17. [PMID: 25317665 DOI: 10.1021/cb500661v] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein-based fluorescent biosensors have emerged as key bioanalytical tools to visualize and quantify a wide range of biological substances and events in vitro, in cells, and even in vivo. On the basis of the construction method, the protein-based fluorescent biosensors can be principally classified into two classes: (1) genetically encoded fluorescent biosensors harnessing fluorescent proteins (FPs) and (2) semisynthetic biosensors comprised of protein scaffolds and synthetic fluorophores. Recent advances in protein engineering and chemical biology not only allowed the further optimization of conventional biosensors but also facilitated the creation of novel biosensors based on unique strategies. In this review, we survey the recent studies in the development and improvement of protein-based fluorescent biosensors and highlight the successful applications to live cell and in vivo imaging. Furthermore, we provide perspectives on possible future directions of the technique.
Collapse
Affiliation(s)
- Tomonori Tamura
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
75
|
Cifuentes Castro VH, López Valenzuela CL, Salazar Sánchez JC, Peña KP, López Pérez SJ, Ibarra JO, Villagrán AM. An update of the classical and novel methods used for measuring fast neurotransmitters during normal and brain altered function. Curr Neuropharmacol 2014; 12:490-508. [PMID: 25977677 PMCID: PMC4428024 DOI: 10.2174/1570159x13666141223223657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 11/22/2022] Open
Abstract
To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alberto Morales Villagrán
- Department of Molecular and Cellular Biology, Camino Ramón Padilla Sánchez 2100, Nextipac, Zapopan,
Jalisco, México, Zip code: 45110, Mexico
| |
Collapse
|
76
|
Ma Z, Du L, Li M. Toward fluorescent probes for G-protein-coupled receptors (GPCRs). J Med Chem 2014; 57:8187-203. [PMID: 24983484 DOI: 10.1021/jm401823z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
G-protein-coupled receptors (GPCRs), a superfamily of cell-surface receptors that are the targets of about 40% of prescription drugs on the market, can sense numerous critical extracellular signals. Recent breakthroughs in structural biology, especially in holo-form X-ray crystal structures, have contributed to our understanding of GPCR signaling. However, actions of GPCRs at the cellular and molecular level, interactions between GPCRs, and the role of protein dynamics in receptor activities still remain controversial. To overcome these dilemmas, fluorescent probes of GPCRs have been employed, which have advantages of in vivo safety and real-time monitoring. Various probes that depend on specific mechanisms and/or technologies have been used to study GPCRs. The present review focuses on surveying the design and applications of fluorescent probes for GPCRs that are derived from small molecules or using protein-labeling techniques, as well as discussing some design strategies for new probes.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University , Jinan, Shandong 250012, China
| | | | | |
Collapse
|
77
|
Griss R, Schena A, Reymond L, Patiny L, Werner D, Tinberg CE, Baker D, Johnsson K. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nat Chem Biol 2014; 10:598-603. [DOI: 10.1038/nchembio.1554] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/15/2014] [Indexed: 02/05/2023]
|
78
|
Corrêa IR. Live-cell reporters for fluorescence imaging. Curr Opin Chem Biol 2014; 20:36-45. [PMID: 24835389 DOI: 10.1016/j.cbpa.2014.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/14/2023]
Abstract
Advances in the development of new fluorescent reporters and imaging techniques have revolutionized our ability to directly visualize biological processes in living systems. Real-time analysis of protein localization, dynamics, and interactions has been made possible by site-specific protein labeling with custom designed probes. This review outlines some of the most recent advances in the design and application of live-cell imaging probes, with a particular focus on SNAP-tag technology. Specific examples illustrating applications in superresolution and single-molecule imaging, protein trafficking and recycling, and protein-protein interactions are presented.
Collapse
Affiliation(s)
- Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
79
|
Prifti E, Reymond L, Umebayashi M, Hovius R, Riezman H, Johnsson K. A fluorogenic probe for SNAP-tagged plasma membrane proteins based on the solvatochromic molecule Nile Red. ACS Chem Biol 2014; 9:606-12. [PMID: 24471525 DOI: 10.1021/cb400819c] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A fluorogenic probe for plasma membrane proteins based on the dye Nile Red and SNAP-tag is introduced. It takes advantage of Nile Red, a solvatochromic molecule highly fluorescent in an apolar environment, such as cellular membranes, but almost dark in a polar aqueous environment. The probe possesses a tuned affinity for membranes allowing its Nile Red moiety to insert into the lipid bilayer of the plasma membrane, becoming fluorescent, only after its conjugation to a SNAP-tagged plasma membrane protein. The fluorogenic character of the probe was demonstrated for different SNAP-tag fusion proteins, including the human insulin receptor. This work introduces a new approach for generating a powerful turn-on probe for "no-wash" labeling of plasma membrane proteins with numerous applications in bioimaging.
Collapse
Affiliation(s)
- Efthymia Prifti
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, National
Centre of Competence in Research (NCCR) in Chemical Biology, 1015 Lausanne, Switzerland
| | - Luc Reymond
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, National
Centre of Competence in Research (NCCR) in Chemical Biology, 1015 Lausanne, Switzerland
| | - Miwa Umebayashi
- University of Geneva, Department of Biochemistry, National Centre of Competence in Research
(NCCR) in Chemical Biology, Sciences II, 30 quai E. Ansermet, CH-1211 Genève 4, Switzerland
| | - Ruud Hovius
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, National
Centre of Competence in Research (NCCR) in Chemical Biology, 1015 Lausanne, Switzerland
| | - Howard Riezman
- University of Geneva, Department of Biochemistry, National Centre of Competence in Research
(NCCR) in Chemical Biology, Sciences II, 30 quai E. Ansermet, CH-1211 Genève 4, Switzerland
| | - Kai Johnsson
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, National
Centre of Competence in Research (NCCR) in Chemical Biology, 1015 Lausanne, Switzerland
| |
Collapse
|
80
|
|
81
|
Kruss S, Landry MP, Vander Ende E, Lima BM, Reuel NF, Zhang J, Nelson J, Mu B, Hilmer A, Strano M. Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors. J Am Chem Soc 2014; 136:713-24. [DOI: 10.1021/ja410433b] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sebastian Kruss
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Markita P. Landry
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Emma Vander Ende
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Barbara M.A. Lima
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nigel F. Reuel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jingqing Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Justin Nelson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Mu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew Hilmer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
82
|
Fluorescent biosensors: design and application to motor proteins. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 105:25-47. [PMID: 25095989 DOI: 10.1007/978-3-0348-0856-9_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reagentless biosensors are single molecular species that report the concentration of a specific target analyte, while having minimal impact on the system being studied. This chapter reviews such biosensors with emphasis on the ones that use fluorescence as readout and can be used for real-time assays of concentration changes with reasonably high time resolution and sensitivity. Reagentless biosensors can be designed with different types of recognition elements, particularly specific binding proteins and nucleic acids, including aptamers. Different ways are described in which a fluorescence signal can be used to report the target concentration. These include the use of single, environmentally sensitive fluorophores; FRET pairs, often used in genetically encoded biosensors; and pairs of identical fluorophores that undergo reversible stacking interactions to change fluorescence intensity. The applications of these biosensors in different types of real-time assays with motor proteins are described together with some specific examples. These encompass regulation and mechanism of motor proteins, using both steady-state assays and single-turnover measurements.
Collapse
|
83
|
Schena A, Johnsson K. Sensing Acetylcholine and Anticholinesterase Compounds. Angew Chem Int Ed Engl 2013; 53:1302-5. [DOI: 10.1002/anie.201307754] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/24/2013] [Indexed: 01/14/2023]
|
84
|
Protein labeling with fluorogenic probes for no-wash live-cell imaging of proteins. Curr Opin Chem Biol 2013; 17:644-50. [DOI: 10.1016/j.cbpa.2013.05.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
|
85
|
Li WH, Li D. Fluorescent probes for monitoring regulated secretion. Curr Opin Chem Biol 2013; 17:672-81. [PMID: 23711436 DOI: 10.1016/j.cbpa.2013.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 01/14/2023]
Abstract
Numerous secretory cells use the regulated secretory pathway to release signaling molecules. Regulated secretion is an essential component of the intercellular communication network of a multicellular organism and serves diverse functions in neurobiology, endocrinology, and many other aspects of animal physiology. Probes that can monitor a specific exocytotic event with high temporal and spatial resolution would be invaluable tools for studying the molecular and cellular mechanisms underlying stimulus-secretion coupling, and for characterizing secretion defects that are found in different human diseases. This review summarizes different strategies and recent progress in developing fluorescent sensors for imaging regulated cell secretion.
Collapse
Affiliation(s)
- Wen-hong Li
- Department of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, United States.
| | | |
Collapse
|
86
|
Ma Z, Du L, Li M. Lighting up GPCRs with a Fluorescent Multiprobe Dubbed “Snifit”. Chembiochem 2013; 14:184-6. [DOI: 10.1002/cbic.201200721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Indexed: 01/07/2023]
|