51
|
Ebola Virus Delta Peptide Is a Viroporin. J Virol 2017; 91:JVI.00438-17. [PMID: 28539454 DOI: 10.1128/jvi.00438-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
The Ebola virus (EBOV) genome encodes a partly conserved 40-residue nonstructural polypeptide, called the delta peptide, that is produced in abundance during Ebola virus disease (EVD). The function of the delta peptide is unknown, but sequence analysis has suggested that delta peptide could be a viroporin, belonging to a diverse family of membrane-permeabilizing small polypeptides involved in replication and pathogenesis of numerous viruses. Full-length and conserved C-terminal delta peptide fragments permeabilize the plasma membranes of nucleated cells of rodent, dog, monkey, and human origin; increase ion permeability across confluent cell monolayers; and permeabilize synthetic lipid bilayers. Permeabilization activity is completely dependent on the disulfide bond between the two conserved cysteines. The conserved C-terminal portion of the peptide is biochemically stable in human serum, and most serum-stable fragments have full activity. Taken together, the evidence strongly suggests that Ebola virus delta peptide is a viroporin and that it may be a novel, targetable aspect of Ebola virus disease pathology.IMPORTANCE During the unparalleled West African outbreak of Ebola virus disease (EVD) that began in late 2013, the lack of effective countermeasures resulted in chains of serial infection and a high mortality rate among infected patients. A better understanding of disease pathology is desperately needed to develop better countermeasures. We show here that the Ebola virus delta peptide, a conserved nonstructural protein produced in large quantities by infected cells, has the characteristics of a viroporin. This information suggests a critical role for the delta peptide in Ebola virus disease pathology and as a possible target for novel countermeasures.
Collapse
|
52
|
The development of activatable lytic peptides for targeting triple negative breast cancer. Cell Death Discov 2017; 3:17037. [PMID: 29263848 PMCID: PMC5629628 DOI: 10.1038/cddiscovery.2017.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/14/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022] Open
Abstract
Cytolytic peptides are an emerging class of promising cancer therapeutics shown to overcome drug resistance. They eliminate cancer cells via disruption of the phospholipid bilayer of cell membranes, a mechanism that differentiates it from traditional treatments. However, applications of lytic peptides via systematic administration are hampered by nonspecific toxicity. Here, we describe activatable, masked lytic peptides that are conjugated with anionic peptides via a cleavable linker sensitive to matrix metalloproteinases (Ac-w-βA-e8-XPLG*LAG-klUklUkklUklUk-NH2; lower case letters in the sequences represent D-amino-acids, U=Aib, α-aminoisobutyric acid, *cleavage site). The peptides were activated upon being introduced into the triple negative breast cancer cell line MDA-MB-231, which overexpresses secreted matrix metalloproteinases, to selectively cleave the peptide linker. Our results indicate that the activatable design could be applied to improve the targeting ability of lytic peptides.
Collapse
|
53
|
Sundriyal S, Moniot S, Mahmud Z, Yao S, Di Fruscia P, Reynolds CR, Dexter DT, Sternberg MJE, Lam EWF, Steegborn C, Fuchter MJ. Thienopyrimidinone Based Sirtuin-2 (SIRT2)-Selective Inhibitors Bind in the Ligand Induced Selectivity Pocket. J Med Chem 2017; 60:1928-1945. [PMID: 28135086 PMCID: PMC6014686 DOI: 10.1021/acs.jmedchem.6b01690] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/06/2023]
Abstract
Sirtuins (SIRTs) are NAD-dependent deacylases, known to be involved in a variety of pathophysiological processes and thus remain promising therapeutic targets for further validation. Previously, we reported a novel thienopyrimidinone SIRT2 inhibitor with good potency and excellent selectivity for SIRT2. Herein, we report an extensive SAR study of this chemical series and identify the key pharmacophoric elements and physiochemical properties that underpin the excellent activity observed. New analogues have been identified with submicromolar SIRT2 inhibtory activity and good to excellent SIRT2 subtype-selectivity. Importantly, we report a cocrystal structure of one of our compounds (29c) bound to SIRT2. This reveals our series to induce the formation of a previously reported selectivity pocket but to bind in an inverted fashion to what might be intuitively expected. We believe these findings will contribute significantly to an understanding of the mechanism of action of SIRT2 inhibitors and to the identification of refined, second generation inhibitors.
Collapse
Affiliation(s)
- Sandeep Sundriyal
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K.
| | - Sébastien Moniot
- Department of Biochemistry, University
of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Zimam Mahmud
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Shang Yao
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Paolo Di Fruscia
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K.
| | | | - David T. Dexter
- Centre for Neuroinflammation & Neurodegeneration,
Division of Brain Sciences, Imperial College
London, London W12 0NN, U.K.
| | | | - Eric W.-F. Lam
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Clemens Steegborn
- Department of Biochemistry, University
of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | | |
Collapse
|
54
|
Wiedman G, Kim SY, Zapata-Mercado E, Wimley WC, Hristova K. pH-Triggered, Macromolecule-Sized Poration of Lipid Bilayers by Synthetically Evolved Peptides. J Am Chem Soc 2017; 139:937-945. [PMID: 28001058 PMCID: PMC5521809 DOI: 10.1021/jacs.6b11447] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
pH-triggered membrane-permeabilizing peptides could be exploited in a variety of applications, such as to enable cargo release from endosomes for cellular delivery, or as cancer therapeutics that selectively permeabilize the plasma membranes of malignant cells. Such peptides would be especially useful if they could enable the movement of macromolecules across membranes, a rare property in membrane-permeabilizing peptides. Here we approach this goal by using an orthogonal high-throughput screen of an iterative peptide library to identify peptide sequences that have the following two properties: (i) little synthetic lipid membrane permeabilization at physiological pH 7 at high peptide concentration and (ii) efficient formation of macromolecule-sized defects in synthetic lipid membranes at acidic pH 5 and low peptide concentration. The peptides we selected are remarkably potent macromolecular sized pore-formers at pH 5, while having little or no activity at pH 7, as intended. The action of these peptides likely relies on tight coupling between membrane partitioning, α-helix formation, and electrostatic repulsions between acidic side chains, which collectively drive a sharp pH-triggered transition between inactive and active configurations with apparent pKa values of 5.5-5.8. This work opens new doors to developing applications that utilize peptides with membrane-permeabilizing activities that are triggered by physiologically relevant decreases in pH.
Collapse
Affiliation(s)
- Gregory Wiedman
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Sarah Y. Kim
- Graduate Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Elmer Zapata-Mercado
- Graduate Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - William C. Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
- Graduate Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
55
|
Woo SY, Lee H. Aggregation and insertion of melittin and its analogue MelP5 into lipid bilayers at different concentrations: effects on pore size, bilayer thickness and dynamics. Phys Chem Chem Phys 2017; 19:7195-7203. [DOI: 10.1039/c6cp06834k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Melittin and its analogue MelP5 (five mutations T10A, R22A, K23A, R24Q, and Q26L of melittin) were simulated with lipid bilayers at different peptide/lipid molar ratios using all-atom and coarse-grained (CG) force fields.
Collapse
Affiliation(s)
- Sun Young Woo
- Department of Chemical Engineering
- Dankook University
- Yongin
- South Korea
| | - Hwankyu Lee
- Department of Chemical Engineering
- Dankook University
- Yongin
- South Korea
| |
Collapse
|
56
|
Wang Y, Chen CH, Hu D, Ulmschneider MB, Ulmschneider JP. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide. Nat Commun 2016; 7:13535. [PMID: 27874004 PMCID: PMC5121426 DOI: 10.1038/ncomms13535] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/12/2016] [Indexed: 12/29/2022] Open
Abstract
Many antimicrobial peptides (AMPs) selectively target and form pores in microbial membranes. However, the mechanisms of membrane targeting, pore formation and function remain elusive. Here we report an experimentally guided unbiased simulation methodology that yields the mechanism of spontaneous pore assembly for the AMP maculatin at atomic resolution. Rather than a single pore, maculatin forms an ensemble of structurally diverse temporarily functional low-oligomeric pores, which mimic integral membrane protein channels in structure. These pores continuously form and dissociate in the membrane. Membrane permeabilization is dominated by hexa-, hepta- and octamers, which conduct water, ions and small dyes. Pores form by consecutive addition of individual helices to a transmembrane helix or helix bundle, in contrast to current poration models. The diversity of the pore architectures—formed by a single sequence—may be a key feature in preventing bacterial resistance and could explain why sequence–function relationships in AMPs remain elusive. Antimicrobial peptides (AMPs) selectively form pores in microbial membranes in process not fully understood. Here the authors use experimentally guided molecular dynamics to study maculatin pore formation, showing how this AMP assembles into transient and structurally diverse oligomeric pores in cell membranes.
Collapse
Affiliation(s)
- Yukun Wang
- Institute of Natural Sciences, Shanghai Jiao-Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Department of Physics and Astronomy, Shanghai Jiao-Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Institute of NanoBioTechnology, Johns Hopkins University, 204C Schaffer Hall, 3400 North Charles Street, Baltimore, Maryland 21218-2681, USA
| | - Charles H Chen
- Institute of NanoBioTechnology, Johns Hopkins University, 204C Schaffer Hall, 3400 North Charles Street, Baltimore, Maryland 21218-2681, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 204C Schaffer Hall, 3400 North Charles Street, Baltimore, Maryland 21218-2681, USA
| | - Dan Hu
- Institute of Natural Sciences, Shanghai Jiao-Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Department of Mathematics, Shanghai Jiao-Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Martin B Ulmschneider
- Institute of NanoBioTechnology, Johns Hopkins University, 204C Schaffer Hall, 3400 North Charles Street, Baltimore, Maryland 21218-2681, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 204C Schaffer Hall, 3400 North Charles Street, Baltimore, Maryland 21218-2681, USA
| | - Jakob P Ulmschneider
- Institute of Natural Sciences, Shanghai Jiao-Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Department of Physics and Astronomy, Shanghai Jiao-Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
57
|
Song B, Zhong Y, Wu S, Chu B, Su Y, He Y. One-Dimensional Fluorescent Silicon Nanorods Featuring Ultrahigh Photostability, Favorable Biocompatibility, and Excitation Wavelength-Dependent Emission Spectra. J Am Chem Soc 2016; 138:4824-31. [DOI: 10.1021/jacs.6b00479] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bin Song
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO−CIC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yiling Zhong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO−CIC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Sicong Wu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO−CIC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Binbin Chu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO−CIC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuanyuan Su
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO−CIC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO−CIC), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
58
|
Development of a lytic peptide derived from BH3-only proteins. Cell Death Discov 2016; 2:16008. [PMID: 27551502 PMCID: PMC4979451 DOI: 10.1038/cddiscovery.2016.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/28/2022] Open
Abstract
Despite great advances in cancer therapy, drug resistance is a difficult hurdle to overcome that requires development of anticancer agents with novel and effective modes of action. In a number of studies, lytic peptides have shown remarkable ability to eliminate cancer cells through a different way from traditional treatments. Lytic peptides are positively charged, amphiphilic, and are efficient at binding and disrupting the negatively charged cell membrane of cancer cells. In this study, we described the anticancer properties of a lytic peptide that was developed on the basis of the alignment of amphiphilic BH3 peptides. Our results demonstrated that the positive charge and conformation constraint were favourable for efficient cancer cell elimination. Artificial BCL-2 homology 3 peptides (ABH3) exhibited effective anticancer effects against a series of cancer cell lines in vitro and in HeLa human cervical tumour xenografts in vivo. ABH3 induced cell death in an apoptosis-independent manner through the lytic properties of the peptide that caused disruption of cell membrane. Our results showed that charge tuning and conformation constraining in a lytic peptide could be applied to optimise the anticancer activity of lytic peptides. These results also suggest that ABH3 may be a promising beginning for the development of additional lytic peptides as anticancer reagents.
Collapse
|
59
|
Krauson AJ, Hall OM, Fuselier T, Starr CG, Kauffman WB, Wimley WC. Conformational Fine-Tuning of Pore-Forming Peptide Potency and Selectivity. J Am Chem Soc 2015; 137:16144-52. [PMID: 26632653 PMCID: PMC4697923 DOI: 10.1021/jacs.5b10595] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To better understand the sequence-structure-function relationships that control the activity and selectivity of membrane-permeabilizing peptides, we screened a peptide library, based on the archetypal pore-former melittin, for loss-of-function variants. This was accomplished by assaying library members for failure to cause leakage of entrapped contents from synthetic lipid vesicles at a peptide-to-lipid ratio of 1:20, 10-fold higher than the concentration at which melittin efficiently permeabilizes the same vesicles. Surprisingly, about one-third of the library members are inactive under these conditions. In the negative peptides, two changes of hydrophobic residues to glycine were especially abundant. We show that loss-of-function activity can be completely recapitulated by a single-residue change of the leucine at position 16 to glycine. Unlike the potently cytolytic melittin, the loss-of-function peptides, including the single-site variant, are essentially inactive against phosphatidylcholine vesicles and multiple types of eukaryotic cells. Loss of function is shown to result from a shift in the binding-folding equilibrium away from the active, bound, α-helical state toward the inactive, unbound, random-coil state. Accordingly, the addition of anionic lipids to synthetic lipid vesicles restored binding, α-helical secondary structure, and potent activity of the "negative" peptides. While nontoxic to mammalian cells, the single-site variant has potent bactericidal activity, consistent with the anionic nature of bacterial membranes. The results show that conformational fine-tuning of helical pore-forming peptides is a powerful way to modulate their activity and selectivity.
Collapse
Affiliation(s)
- Aram J Krauson
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| | - O Morgan Hall
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| | - Taylor Fuselier
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| | - Charles G Starr
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| | - W Berkeley Kauffman
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States
| |
Collapse
|
60
|
Alford RF, Koehler Leman J, Weitzner BD, Duran AM, Tilley DC, Elazar A, Gray JJ. An Integrated Framework Advancing Membrane Protein Modeling and Design. PLoS Comput Biol 2015; 11:e1004398. [PMID: 26325167 PMCID: PMC4556676 DOI: 10.1371/journal.pcbi.1004398] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.
Collapse
Affiliation(s)
- Rebecca F. Alford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Julia Koehler Leman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Brian D. Weitzner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Amanda M. Duran
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Drew C. Tilley
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, United States of America
| | - Assaf Elazar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
61
|
Giménez D, Sánchez-Muñoz OL, Salgado J. Direct observation of nanometer-scale pores of melittin in supported lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3146-58. [PMID: 25705986 DOI: 10.1021/la504293q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Melittin is the most studied membrane-active peptide and archetype within a large and diverse group of pore formers. However, the molecular characteristics of melittin pores remain largely unknown. Herein, we show by atomic force microscopy (AFM) that lipid monolayers in the presence of melittin are decorated with numerous regularly shaped circular pores that can be distinguished from nonspecific monolayer defects. The specificity of these pores is reinforced through a statistical evaluation of depressions found in Langmuir-Blodgett monolayers in the presence and absence of melittin, which eventually allows characterization of the melittin-induced pores at a quantitative low-resolution level. We observed that the large majority of pores exhibit near-circular symmetry and a Gaussian distribution in size, with a mean diameter of ∼8.7 nm. A distinctive feature is a ring of material found around the pores, made by, on average, three positive peaks, with a height over the level of the lipidic background of ∼0.23 nm. This protruding rim is most likely due to the presence of melittin near the pore border. Although the current resolution of the AFM images in the {x, y} plane does not allow distinction of the specific organization of the peptide molecules, these results provide an unprecedented view of melittin pores formed in lipidic interfaces and open new perspectives for future structural investigations of these and other pore-forming peptides and proteins using supported monolayers.
Collapse
Affiliation(s)
- Diana Giménez
- Institute of Molecular Science (ICMol), University of Valencia. C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain
| | - Orlando L Sánchez-Muñoz
- Institute of Molecular Science (ICMol), University of Valencia. C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain
| | - Jesús Salgado
- Institute of Molecular Science (ICMol), University of Valencia. C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
62
|
Wiedman G, Wimley WC, Hristova K. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:951-7. [PMID: 25572997 DOI: 10.1016/j.bbamem.2014.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 12/19/2022]
Abstract
In this work, we sought to rationally design membrane-active peptides that are triggered by low pH to form macromolecular-sized pores in lipid bilayers. Such peptides could have broad utility in biotechnology and in nanomedicine as cancer therapeutics or drug delivery vehicles that promote release of macromolecules from endosomes. Our approach to rational design was to combine the properties of a pH-independent peptide, MelP5, which forms large pores allowing passage of macromolecules, with the properties of two pH-dependent membrane-active peptides, pHlip and GALA. We created two hybrid sequences, MelP5_Δ4 and MelP5_Δ6, by using the distribution of acidic residues on pHlip and GALA as a guide to insert acidic amino acids into the amphipathic helix of MelP5. We show that the new peptides bind to lipid bilayers and acquire secondary structure in a pH-dependent manner. The peptides also destabilize bilayers in a pH-dependent manner, such that lipid vesicles release the small molecules ANTS/DPX at low pH only. Thus, we were successful in designing pH-triggered pore-forming peptides. However, no macromolecular release was observed under any conditions. Therefore, we abolished the unique macromolecular poration properties of MelP5 by introducing pH sensitivity into its sequence. We conclude that the properties of pHlip, GALA, and MelP5 are additive, but only partially so. We propose that this lack of additivity is a limitation in the rational design of novel membrane-active peptides, and that high-throughput approaches to discovery will be critical for continued progress in the field.
Collapse
Affiliation(s)
- Gregory Wiedman
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - William C Wimley
- Department of Biochemistry, Tulane University, New Orleans, LA 70112, USA.
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
63
|
Abstract
In the study of cell-penetrating and membrane-translocating peptides, a fundamental question occurs as to the contribution arising from fundamental peptide-membrane interactions, relative to the contribution arising from the biology and energy of the cell, mostly occurring in the form of endocytosis and subsequent events. A commonly used approach to begin addressing these mechanistic questions is to measure the degree to which peptides can interact with, and physically disrupt, the integrity of synthetic lipid bilayers. Here, we describe a set of experimental methods that can be used to measure the potency, kinetics, transience, and the effective size of peptide-induced membrane disruption.
Collapse
Affiliation(s)
- William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave #8543, New Orleans, LA, 70112, USA,
| |
Collapse
|
64
|
Lu X, Li X, Guo K, Xie TZ, Moorefield CN, Wesdemiotis C, Newkome GR. Probing a hidden world of molecular self-assembly: concentration-dependent, three-dimensional supramolecular interconversions. J Am Chem Soc 2014; 136:18149-55. [PMID: 25470035 DOI: 10.1021/ja511341z] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A terpyridine-based, concentration-dependent, facile self-assembly process is reported, resulting in two three-dimensional metallosupramolecular architectures, a bis-rhombus and a tetrahedron, which are formed using a two-dimensional, planar, tris-terpyridine ligand. The interconversion between these two structures is concentration-dependent: at a concentration higher than 12 mg mL(-1), only a bis-rhombus, composed of eight ligands and 12 Cd(2+) ions, is formed; whereas a self-assembled tetrahedron, composed of four ligands and six Cd(2+) ions, appears upon sufficient dilution of the tris-terpyridine-metal solution. At concentrations less than 0.5 mg mL(-1), only the tetrahedron possessing an S4 symmetry axis is detected; upon attempted isolation, it quantitatively reverts to the bis-rhombus. This observation opens an unexpected door to unusual chemical pathways under high dilution conditions.
Collapse
Affiliation(s)
- Xiaocun Lu
- Departments of †Polymer Science and ‡Chemistry, The University of Akron , 170 University Cr., Akron, Ohio 44325, United States
| | | | | | | | | | | | | |
Collapse
|