51
|
Boyko S, Surewicz WK. Domain-specific modulatory effects of phosphomimetic substitutions on liquid-liquid phase separation of tau protein. J Biol Chem 2023; 299:104722. [PMID: 37075845 PMCID: PMC10199205 DOI: 10.1016/j.jbc.2023.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Aggregation of tau is one of the major pathogenic events in Alzheimer's disease and several other neurodegenerative disorders. Recent reports demonstrated that tau can condense into liquid droplets that undergo time-dependent transition to a solid-like state, suggesting that liquid condensates may be on the pathway to pathological aggregation of tau. While hyperphosphorylation is a key feature of tau isolated from brains of patients with Alzheimer's disease and other tauopathies, the mechanistic role of phosphorylation in tau liquid-liquid phase separation (LLPS) remains largely unexplored. In an attempt to bridge this gap, here we performed systematic studies by introducing phosphomimetic substitutions of Ser/Thr residues with negatively charged Asp/Glu residues in different regions of the protein. Our data indicate that the phosphorylation patterns that increase the polarization of charge distribution in full-length tau (tau441) promote protein LLPS, whereas those that decrease charge polarization have an opposite effect. Overall, this study further supports the notion that tau LLPS is driven by attractive intermolecular electrostatic interactions between the oppositely charged domains. We also show that the phosphomimetic tau variants with low intrinsic propensity for LLPS can be efficiently recruited to droplets formed by the variants with high LLPS propensity. Furthermore, the present data demonstrate that phosphomimetic substitutions have a major effect on time-dependent material properties of tau droplets, generally slowing down their aging. The latter effect is most dramatic for the tau variant with substitutions within the repeat domain, which correlates with the decreased fibrillation rate of this variant.
Collapse
Affiliation(s)
- Solomiia Boyko
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
52
|
Li P, Chen J, Wang X, Su Z, Gao M, Huang Y. Liquid - liquid phase separation of tau: Driving forces, regulation, and biological implications. Neurobiol Dis 2023; 183:106167. [PMID: 37230179 DOI: 10.1016/j.nbd.2023.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023] Open
Abstract
The past 15 years have witnessed an explosion in the studies of biomolecular condensates that are implicated in numerous biological processes and play vital roles in human health and diseases. Recent findings demonstrate that the microtubule-associated protein tau forms liquid condensates through liquid-liquid phase separation (LLPS) in in vitro experiments using purified recombinant proteins and cell-based experiments. Although in vivo studies are lacking, liquid condensates have emerged as an important assembly state of physiological and pathological tau and LLPS can regulate the function of microtubules, mediate stress granule formation, and accelerate tau amyloid aggregation. In this review, we summarize recent advances in tau LLPS, aiming to unveiling the delicate interactions driving tau LLPS. We further discuss the association of tau LLPS with physiology and disease in the context of the sophisticated regulation of tau LLPS. Deciphering the mechanisms underlying tau LLPS and the liquid-to-solid transition enables rational design of molecules that inhibit or delay the formation of tau solid species, thus providing novel targeted therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Ping Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Jingxin Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xi Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
53
|
Guseva S, Schnapka V, Adamski W, Maurin D, Ruigrok RWH, Salvi N, Blackledge M. Liquid-Liquid Phase Separation Modifies the Dynamic Properties of Intrinsically Disordered Proteins. J Am Chem Soc 2023; 145:10548-10563. [PMID: 37146977 DOI: 10.1021/jacs.2c13647] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Liquid-liquid phase separation of flexible biomolecules has been identified as a ubiquitous phenomenon underlying the formation of membraneless organelles that harbor a multitude of essential cellular processes. We use nuclear magnetic resonance (NMR) spectroscopy to compare the dynamic properties of an intrinsically disordered protein (measles virus NTAIL) in the dilute and dense phases at atomic resolution. By measuring 15N NMR relaxation at different magnetic field strengths, we are able to characterize the dynamics of the protein in dilute and crowded conditions and to compare the amplitude and timescale of the different motional modes to those present in the membraneless organelle. Although the local backbone conformational sampling appears to be largely retained, dynamics occurring on all detectable timescales, including librational, backbone dihedral angle dynamics and segmental, chainlike motions, are considerably slowed down. Their relative amplitudes are also drastically modified, with slower, chain-like motions dominating the dynamic profile. In order to provide additional mechanistic insight, we performed extensive molecular dynamics simulations of the protein under self-crowding conditions at concentrations comparable to those found in the dense liquid phase. Simulation broadly reproduces the impact of formation of the condensed phase on both the free energy landscape and the kinetic interconversion between states. In particular, the experimentally observed reduction in the amplitude of the fastest component of backbone dynamics correlates with higher levels of intermolecular contacts or entanglement observed in simulations, reducing the conformational space available to this mode under strongly self-crowding conditions.
Collapse
Affiliation(s)
- Serafima Guseva
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Vincent Schnapka
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Wiktor Adamski
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Damien Maurin
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Rob W H Ruigrok
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
54
|
Imamura H, Ooishi A, Honda S. Getting Smaller by Denaturation: Acid-Induced Compaction of Antibodies. J Phys Chem Lett 2023; 14:3898-3906. [PMID: 37093025 PMCID: PMC10150727 DOI: 10.1021/acs.jpclett.3c00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Protein denaturation is a ubiquitous process that occurs both in vitro and in vivo. While our molecular understanding of the denatured structures of proteins is limited, it is commonly accepted that the loss of unique intramolecular contacts makes proteins larger. Herein, we report compaction of the immunoglobulin G1 (IgG1) protein upon acid denaturation. Small-angle X-ray scattering coupled with size exclusion chromatography revealed that IgG1 radii of gyration at pH 2 were ∼75% of those at a neutral pH. Scattering profiles showed a compact globular shape, supported by analytical ultracentrifugation. The acid denaturation of proteins with a decrease in size is energetically costly, and acid-induced compaction requires an attractive force for domain reorientation. Such intramolecular aggregation may be widespread in immunoglobulin proteins as noncanonical structures. Herein, we discuss the potential biological significance of these noncanonical structures of antibodies.
Collapse
Affiliation(s)
- Hiroshi Imamura
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department
of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
- Department
of Bio-Science, Nagahama Institute of Bio-Science
and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Ayako Ooishi
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
55
|
Chowdhury UD, Paul A, Bhargava BL. Interaction of the tau fibrils with the neuronal membrane. Biophys Chem 2023; 298:107024. [PMID: 37104971 DOI: 10.1016/j.bpc.2023.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Tau proteins are recently gaining a lot of interest due to their active role in causing a range of tauopathies. Molecular mechanisms underlying the tau interaction with the neuronal membrane are hitherto unknown and difficult to characterize using experimental methods. Using the cryo-EM structure of the tau-fibrils we have used atomistic molecular dynamics simulation to model the tau fibril and neuronal membrane interaction using explicit solvation. The dynamics and structural characteristics of the tau fibril with the neuronal membrane are compared to the tau fibril in the aqueous phase to corroborate the effect of the neuronal membrane in the tau structure. Tau fibrils have been modelled using CHARMM-36m force field and the six component neuronal membrane composition is taken from the earlier simulation results. The timescale conceivable in our molecular dynamics simulations is of the order of microseconds which captures the onset of the interaction of the tau fibrils with the neuronal membrane. This interaction is found to impact the tau pathogenesis that finally causes neuronal toxicity. Our study initiates the understanding of tau conformational ensemble in the presence of neuronal membrane and sheds the light on the significant tau-membrane interactions.
Collapse
Affiliation(s)
- Unmesh D Chowdhury
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - Arnav Paul
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
56
|
Sun X, Dyson HJ, Wright PE. Role of conformational dynamics in pathogenic protein aggregation. Curr Opin Chem Biol 2023; 73:102280. [PMID: 36878172 PMCID: PMC10033434 DOI: 10.1016/j.cbpa.2023.102280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
The accumulation of pathogenic protein oligomers and aggregates is associated with several devastating amyloid diseases. As protein aggregation is a multi-step nucleation-dependent process beginning with unfolding or misfolding of the native state, it is important to understand how innate protein dynamics influence aggregation propensity. Kinetic intermediates composed of heterogeneous ensembles of oligomers are frequently formed on the aggregation pathway. Characterization of the structure and dynamics of these intermediates is critical to the understanding of amyloid diseases since oligomers appear to be the main cytotoxic agents. In this review, we highlight recent biophysical studies of the roles of protein dynamics in driving pathogenic protein aggregation, yielding new mechanistic insights that can be leveraged for design of aggregation inhibitors.
Collapse
Affiliation(s)
- Xun Sun
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
57
|
Ji J, Wang W, Chen C. Single-molecule techniques to visualize and to characterize liquid-liquid phase separation and phase transition. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1023-1033. [PMID: 36876423 PMCID: PMC10415186 DOI: 10.3724/abbs.2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023] Open
Abstract
Biomolecules forming membraneless structures via liquid-liquid phase separation (LLPS) is a common event in living cells. Some liquid-like condensates can convert into solid-like aggregations, and such a phase transition process is related to some neurodegenerative diseases. Liquid-like condensates and solid-like aggregations usually exhibit distinctive fluidity and are commonly distinguished via their morphology and dynamic properties identified through ensemble methods. Emerging single-molecule techniques are a group of highly sensitive techniques, which can offer further mechanistic insights into LLPS and phase transition at the molecular level. Here, we summarize the working principles of several commonly used single-molecule techniques and demonstrate their unique power in manipulating LLPS, examining mechanical properties at the nanoscale, and monitoring dynamic and thermodynamic properties at the molecular level. Thus, single-molecule techniques are unique tools to characterize LLPS and liquid-to-solid phase transition under close-to-physiological conditions.
Collapse
Affiliation(s)
- Jinyao Ji
- School of Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructureTsinghua UniversityBeijing100084China
| | - Wenjuan Wang
- School of Life SciencesTechnology Center for Protein SciencesTsinghua UniversityBeijing100084China
| | - Chunlai Chen
- School of Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructureTsinghua UniversityBeijing100084China
| |
Collapse
|
58
|
Shillcock JC, Thomas DB, Ipsen JH, Brown AD. Macromolecular Crowding Is Surprisingly Unable to Deform the Structure of a Model Biomolecular Condensate. BIOLOGY 2023; 12:181. [PMID: 36829460 PMCID: PMC9952705 DOI: 10.3390/biology12020181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
The crowded interior of a living cell makes performing experiments on simpler in vitro systems attractive. Although these reveal interesting phenomena, their biological relevance can be questionable. A topical example is the phase separation of intrinsically disordered proteins into biomolecular condensates, which is proposed to underlie the membrane-less compartmentalization of many cellular functions. How a cell reliably controls biochemical reactions in compartments open to the compositionally-varying cytoplasm is an important question for understanding cellular homeostasis. Computer simulations are often used to study the phase behavior of model biomolecular condensates, but the number of relevant parameters increases as the number of protein components increases. It is unfeasible to exhaustively simulate such models for all parameter combinations, although interesting phenomena are almost certainly hidden in their high-dimensional parameter space. Here, we have studied the phase behavior of a model biomolecular condensate in the presence of a polymeric crowding agent. We used a novel compute framework to execute dozens of simultaneous simulations spanning the protein/crowder concentration space. We then combined the results into a graphical representation for human interpretation, which provided an efficient way to search the model's high-dimensional parameter space. We found that steric repulsion from the crowder drives a near-critical system across the phase boundary, but the molecular arrangement within the resulting biomolecular condensate is rather insensitive to the crowder concentration and molecular weight. We propose that a cell may use the local cytoplasmic concentration to assist the formation of biomolecular condensates, while relying on the dense phase to reliably provide a stable, structured, fluid milieu for cellular biochemistry despite being open to its changing environment.
Collapse
Affiliation(s)
- Julian C. Shillcock
- Blue Brain Project and Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - David B. Thomas
- Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - John H. Ipsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Andrew D. Brown
- Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
59
|
Zhang M, Xue B, Li Q, Shi R, Cao Y, Wang W, Li J. Sequence Tendency for the Interaction between Low-Complexity Intrinsically Disordered Proteins. JACS AU 2023; 3:93-104. [PMID: 36711093 PMCID: PMC9875249 DOI: 10.1021/jacsau.2c00414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Reversible interaction between intrinsically disordered proteins (IDPs) is considered as the driving force for liquid-liquid phase separation (LLPS), while the detailed description of such a transient interaction process still remains a challenge. And the mechanisms underlying the behavior of IDP interaction, for example, the possible relationship with its inherent conformational fluctuations and sequence features, remain elusive. Here, we use atomistic molecular dynamics (MD) simulation to investigate the reversible association of the LAF-1 RGG domain, the IDP with ultra-low LLPS concentration (0.06 mM). We find that the duration of the association between two RGG domains is highly heterogeneous, and the sustained associations essentially dominate the IDP interaction. More interestingly, such sustained associations are mediated by a finite region, that is, the C-terminal region 138-168 (denoted as a contact-prone region). We noticed that such sequence tendency is attributed to the extended conformation of the RGG domain during its inherent conformational fluctuations. Hence, our results suggest that there is a certain region in this low-complexity IDP which can essentially dominate their interaction and should be also important to the LLPS. And the inherent conformational fluctuations are actually essential for the emergence of such a hot region of IDP interaction. The importance of this hot region to LLPS is verified by experiment.
Collapse
Affiliation(s)
- Moxin Zhang
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, School of
Physics, Zhejiang University, Hangzhou310058, China
| | - Bin Xue
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Qingtai Li
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Rui Shi
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, School of
Physics, Zhejiang University, Hangzhou310058, China
| | - Yi Cao
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Wei Wang
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Jingyuan Li
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, School of
Physics, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
60
|
Altendorf T, Gering I, Santiago-Schübel B, Aghabashlou Saisan S, Tamgüney G, Tusche M, Honold D, Schemmert S, Hoyer W, Mohrlüder J, Willbold D. Stabilization of Monomeric Tau Protein by All D-Enantiomeric Peptide Ligands as Therapeutic Strategy for Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2023; 24:ijms24032161. [PMID: 36768484 PMCID: PMC9917023 DOI: 10.3390/ijms24032161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease and other tauopathies are the world's leading causes of dementia and memory loss. These diseases are thought to be caused by the misfolding and aggregation of the intracellular tau protein, ultimately leading to neurodegeneration. The tau protein is involved in a multitude of different neurodegenerative diseases. During the onset of tauopathies, tau undergoes structural changes and posttranslational modifications and aggregates into amyloid fibrils that are able to spread with a prion-like behavior. Up to now, there is no therapeutic agent which effectively controls or reverses the disease. Most of the therapeutics that were developed and underwent clinical trials targeted misfolded or aggregated forms of tau. In the current manuscript, we present the selection and characterization of two all D-enantiomeric peptides that bind monomeric tau protein with a low nanomolar KD, stabilize tau in its monomeric intrinsically disordered conformation, and stop the conversion of monomers into aggregates. We show that the effect of the two all D-enantiomeric peptides is strong enough to stop ongoing tau aggregation in vitro and is able to significantly reduce tau fibril assembly in cell culture. Both compounds may serve as new lead components for the development of therapeutic agents against Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Tim Altendorf
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Ian Gering
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Beatrix Santiago-Schübel
- Zentralinstitut für Engineering, Elektronik und Analytik, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Selma Aghabashlou Saisan
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gültekin Tamgüney
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Markus Tusche
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dominik Honold
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Sarah Schemmert
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Jeannine Mohrlüder
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, 52425 Jülich, Germany
- Correspondence: (J.M.); (D.W.); Tel.: +49-2461-613518 (J.M.); +49-2461-612100 (D.W.)
| | - Dieter Willbold
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: (J.M.); (D.W.); Tel.: +49-2461-613518 (J.M.); +49-2461-612100 (D.W.)
| |
Collapse
|
61
|
Gui X, Feng S, Li Z, Li Y, Reif B, Shi B, Niu Z. Liquid-liquid phase separation of amyloid-β oligomers modulates amyloid fibrils formation. J Biol Chem 2023; 299:102926. [PMID: 36682493 PMCID: PMC9974441 DOI: 10.1016/j.jbc.2023.102926] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Soluble amyloid-β oligomers (AβOs) are proposed to instigate and mediate the pathology of Alzheimer's disease, but the mechanisms involved are not clear. In this study, we reported that AβOs can undergo liquid-liquid phase separation (LLPS) to form liquid-like droplets in vitro. We determined that AβOs exhibited an α-helix conformation in a membrane-mimicking environment of SDS. Importantly, SDS is capable of reconfiguring the assembly of different AβOs to induce their LLPS. Moreover, we found that the droplet formation of AβOs was promoted by strong hydrated anions and weak hydrated cations, suggesting that hydrophobic interactions play a key role in mediating phase separation of AβOs. Finally, we observed that LLPS of AβOs can further promote Aβ to form amyloid fibrils, which can be modulated by (-)-epigallocatechin gallate. Our study highlights amyloid oligomers as an important entity involved in protein liquid-to-solid phase transition and reveals the regulatory role of LLPS underlying amyloid protein aggregation, which may be relevant to the pathological process of Alzheimer's disease.
Collapse
Affiliation(s)
- Xinrui Gui
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuang Feng
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Pharmacy, Henan University, Kaifeng, China
| | - Zilong Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - Yanyan Li
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Pharmacy, Henan University, Kaifeng, China
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry, Technische Universität München (TUM), Garching, Germany; Deutsches Forschungszentrum für Gesundheit und Umwelt Institute of Structural Biology, Helmholtz-Zentrum München (HMGU), Neuherberg, Germany.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China; Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Zheng Niu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Pharmacy, Henan University, Kaifeng, China; Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry, Technische Universität München (TUM), Garching, Germany.
| |
Collapse
|
62
|
Tesei G, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. OPEN RESEARCH EUROPE 2023; 2:94. [PMID: 37645312 PMCID: PMC10450847 DOI: 10.12688/openreseurope.14967.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 08/31/2023]
Abstract
The formation and viscoelastic properties of condensates of intrinsically disordered proteins (IDPs) is dictated by amino acid sequence and solution conditions. Because of the involvement of biomolecular condensates in cell physiology and disease, advancing our understanding of the relationship between protein sequence and phase separation (PS) may have important implications in the formulation of new therapeutic hypotheses. Here, we present CALVADOS 2, a coarse-grained model of IDPs that accurately predicts conformational properties and propensities to undergo PS for diverse sequences and solution conditions. In particular, we systematically study the effect of varying the range of the nonionic interactions and use our findings to improve the temperature scale of the model. We further optimize the residue-specific model parameters against experimental data on the conformational properties of 55 proteins, while also leveraging 70 hydrophobicity scales from the literature to avoid overfitting the training data. Extensive testing shows that the model accurately predicts chain compaction and PS propensity for sequences of diverse length and charge patterning, as well as at different temperatures and salt concentrations.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
63
|
Tesei G, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. OPEN RESEARCH EUROPE 2023; 2:94. [PMID: 37645312 PMCID: PMC10450847 DOI: 10.12688/openreseurope.14967.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/13/2024]
Abstract
The formation and viscoelastic properties of condensates of intrinsically disordered proteins (IDPs) is dictated by amino acid sequence and solution conditions. Because of the involvement of biomolecular condensates in cell physiology and disease, advancing our understanding of the relationship between protein sequence and phase separation (PS) may have important implications in the formulation of new therapeutic hypotheses. Here, we present CALVADOS 2, a coarse-grained model of IDPs that accurately predicts conformational properties and propensities to undergo PS for diverse sequences and solution conditions. In particular, we systematically study the effect of varying the range of the nonionic interactions and use our findings to improve the temperature scale of the model. We further optimize the residue-specific model parameters against experimental data on the conformational properties of 55 proteins, while also leveraging 70 hydrophobicity scales from the literature to avoid overfitting the training data. Extensive testing shows that the model accurately predicts chain compaction and PS propensity for sequences of diverse length and charge patterning, as well as at different temperatures and salt concentrations.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
64
|
Incicco JJ, Roy D, Stuchell-Brereton MD, Soranno A. Fluorescence Correlation Spectroscopy and Phase Separation. Methods Mol Biol 2023; 2563:161-198. [PMID: 36227473 DOI: 10.1007/978-1-0716-2663-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A quantitative understanding of the forces controlling the assembly and functioning of biomolecular condensates requires the identification of phase boundaries at which condensates form as well as the determination of tie-lines. Here, we describe in detail how Fluorescence Correlation Spectroscopy (FCS) provides a versatile approach to estimate phase boundaries of single-component and multicomponent solutions as well as insights about the transport properties of the condensate.
Collapse
Affiliation(s)
- Juan Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA
| | - Debjit Roy
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA
| | - Melissa D Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO, USA.
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St Louis, St. Louis, MO, USA.
| |
Collapse
|
65
|
Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid–liquid phase separation. Essays Biochem 2022; 66:891-900. [DOI: 10.1042/ebc20220148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Abstract
Biomolecular condensate formation via liquid–liquid phase separation (LLPS) has emerged as a ubiquitous mechanism underlying the spatiotemporal organization of biomolecules in the cell. These membraneless condensates form and disperse dynamically in response to environmental stimuli. Growing evidence indicates that the liquid-like condensates not only play functional physiological roles but are also implicated in a wide range of human diseases. As a major component of biomolecular condensates, intrinsically disordered proteins (IDPs) are intimately involved in the LLPS process. During the last decade, great efforts have been made on the macroscopic characterization of the physicochemical properties and biological functions of liquid condensates both in vitro and in the cellular context. However, characterization of the conformations and interactions at the molecular level within phase-separated condensates is still at an early stage. In the present review, we summarize recent biophysical studies investigating the intramolecular conformational changes of IDPs upon LLPS and the intermolecular clustering of proteins undergoing LLPS, with a particular focus on single-molecule fluorescence detection. We also discuss how these microscopic features are linked to the macroscopic phase transitions that are relevant to the physiological and pathological roles of the condensates.
Collapse
|
66
|
Otis JB, Sharpe S. Sequence Context and Complex Hofmeister Salt Interactions Dictate Phase Separation Propensity of Resilin-like Polypeptides. Biomacromolecules 2022; 23:5225-5238. [PMID: 36378745 DOI: 10.1021/acs.biomac.2c01027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resilin is an elastic material found in insects with exceptional durability, resilience, and extensibility, making it a promising biomaterial for tissue engineering. The monomeric precursor, pro-resilin, undergoes thermo-responsive self-assembly through liquid-liquid phase separation (LLPS). Understanding the molecular details of this assembly process is critical to developing complex biomaterials. The present study investigates the interplay between the solvent, sequence syntax, structure, and dynamics in promoting LLPS of resilin-like-polypeptides (RLPs) derived from domains 1 and 3 of Drosophila melanogaster pro-resilin. NMR, UV-vis, and microscopy data demonstrate that while kosmotropic salts and low pH promote LLPS, the effects of chaotropic salts with increasing pH are more complex. Subtle variations between the repeating amino acid motifs of resilin domain 1 and domain 3 lead to significantly different salt and pH dependence of LLPS, with domain 3 sequence motifs more strongly favoring phase separation under most conditions. These findings provide new insight into the molecular drivers of RLP phase separation and the complex roles of both RLP sequence and solution composition in fine-tuning assembly conditions.
Collapse
Affiliation(s)
- James Brandt Otis
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
67
|
Lipiński WP, Visser BS, Robu I, Fakhree MAA, Lindhoud S, Claessens MMAE, Spruijt E. Biomolecular condensates can both accelerate and suppress aggregation of α-synuclein. SCIENCE ADVANCES 2022; 8:eabq6495. [PMID: 36459561 PMCID: PMC10942789 DOI: 10.1126/sciadv.abq6495] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Biomolecular condensates present in cells can fundamentally affect the aggregation of amyloidogenic proteins and play a role in the regulation of this process. While liquid-liquid phase separation of amyloidogenic proteins by themselves can act as an alternative nucleation pathway, interaction of partly disordered aggregation-prone proteins with preexisting condensates that act as localization centers could be a far more general mechanism of altering their aggregation behavior. Here, we show that so-called host biomolecular condensates can both accelerate and slow down amyloid formation. We study the amyloidogenic protein α-synuclein and two truncated α-synuclein variants in the presence of three types of condensates composed of nonaggregating peptides, RNA, or ATP. Our results demonstrate that condensates can markedly speed up amyloid formation when proteins localize to their interface. However, condensates can also significantly suppress aggregation by sequestering and stabilizing amyloidogenic proteins, thereby providing living cells with a possible protection mechanism against amyloid formation.
Collapse
Affiliation(s)
- Wojciech P. Lipiński
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Brent S. Visser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Irina Robu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Mohammad A. A. Fakhree
- Nanobiophysics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, Netherlands
| | - Saskia Lindhoud
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Mireille M. A. E. Claessens
- Nanobiophysics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
68
|
The biophysics of disordered proteins from the point of view of single-molecule fluorescence spectroscopy. Essays Biochem 2022; 66:875-890. [PMID: 36416865 PMCID: PMC9760427 DOI: 10.1042/ebc20220065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) have emerged as key players across many biological functions and diseases. Differently from structured proteins, disordered proteins lack stable structure and are particularly sensitive to changes in the surrounding environment. Investigation of disordered ensembles requires new approaches and concepts for quantifying conformations, dynamics, and interactions. Here, we provide a short description of the fundamental biophysical properties of disordered proteins as understood through the lens of single-molecule fluorescence observations. Single-molecule Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) provides an extensive and versatile toolbox for quantifying the characteristics of conformational distributions and the dynamics of disordered proteins across many different solution conditions, both in vitro and in living cells.
Collapse
|
69
|
Mohanty P, Kapoor U, Sundaravadivelu Devarajan D, Phan TM, Rizuan A, Mittal J. Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry 2022; 61:2443-2455. [PMID: 35802394 PMCID: PMC9669140 DOI: 10.1021/acs.biochem.2c00210] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of membraneless organelles, often termed "biological condensates", play an important role in the regulation of cellular processes such as gene transcription, translation, and protein quality control. On the basis of experimental and theoretical investigations, liquid-liquid phase separation (LLPS) has been proposed as a possible mechanism for the origin of biological condensates. LLPS requires multivalent macromolecules that template the formation of long-range, intermolecular interaction networks and results in the formation of condensates with defined composition and material properties. Multivalent interactions driving LLPS exhibit a wide range of modes from highly stereospecific to nonspecific and involve both folded and disordered regions. Multidomain proteins serve as suitable macromolecules for promoting phase separation and achieving disparate functions due to their potential for multivalent interactions and regulation. Here, we aim to highlight the influence of the domain architecture and interdomain interactions on the phase separation of multidomain protein condensates. First, the general principles underlying these interactions are illustrated on the basis of examples of multidomain proteins that are predominantly associated with nucleic acid binding and protein quality control and contain both folded and disordered regions. Next, the examples showcase how LLPS properties of folded and disordered regions can be leveraged to engineer multidomain constructs that form condensates with the desired assembly and functional properties. Finally, we highlight the need for improvements in coarse-grained computational models that can provide molecular-level insights into multidomain protein condensates in conjunction with experimental efforts.
Collapse
Affiliation(s)
- Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Utkarsh Kapoor
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | | | - Tien Minh Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
70
|
Xing Y, Andrikopoulos N, Zhang Z, Sun Y, Ke PC, Ding F. Modulating Nanodroplet Formation En Route to Fibrillization of Amyloid Peptides with Designed Flanking Sequences. Biomacromolecules 2022; 23:4179-4191. [PMID: 36137260 PMCID: PMC9618360 DOI: 10.1021/acs.biomac.2c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble oligomers populating early amyloid aggregation can be regarded as nanodroplets of liquid-liquid phase separation (LLPS). Amyloid peptides typically contain hydrophobic aggregation-prone regions connected by hydrophilic linkers and flanking sequences, and such a sequence hydropathy pattern drives the formation of supramolecular structures in the nanodroplets and modulates subsequent fibrillization. Here, we studied LLPS and fibrillization of coarse-grained amyloid peptides with increasing flanking sequences. Nanodroplets assumed lamellar, cylindrical micellar, and spherical micellar structures with increasing peptide hydrophilic/hydrophobic ratios, and such morphologies governed subsequent fibrillization processes. Adding glycine-serine repeats as flanking sequences to Aβ16-22, the amyloidogenic core of amyloid-β, our computational predictions of morphological transitions were corroborated experimentally. The uncovered inter-relationships between the peptide sequence pattern, oligomer/nanodroplet morphology, and fibrillization pathway, kinetics, and structure may contribute to our understanding of pathogenic amyloidosis in aging, facilitate future efforts ameliorating amyloidosis through peptide engineering, and aid in the design of novel amyloid-based functional nanobiomaterials and nanocomposites.
Collapse
Affiliation(s)
- Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
71
|
Liquid-Liquid Phase Separation Promotes Protein Aggregation and Its Implications in Ferroptosis in Parkinson’s Disease Dementia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7165387. [PMID: 36246407 PMCID: PMC9560807 DOI: 10.1155/2022/7165387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
The pathological features of PDD are represented by dopaminergic neuronal death and intracellular α-synuclein (α-syn) aggregation. The interaction of iron accumulation with α-syn and tau was further explored as an essential pathological mechanism of PDD. However, the links and mechanisms between these factors remain unclear. Studies have shown that the occurrence and development of neurodegenerative diseases such as PDD are closely related to the separation of abnormal phases. Substances such as proteins can form droplets through liquid-liquid phase separation (LLPS) under normal physiological conditions and even undergo further liquid-solid phase transitions to form solid aggregates under disease or regulatory disorders, leading to pathological phenomena. By analyzing the existing literature, we propose that LLPS is the crucial mechanism causing abnormal accumulation of α-syn, tau, and other proteins in PDD, and its interaction with iron metabolism disorder is the key factor driving ferroptosis in PDD. Therefore, we believe that LLPS can serve as one of the means to explain the pathological mechanism of PDD. Determining the significance of LLPS in neurodegenerative diseases such as PDD will stimulate interest in research into treatments based on interference with abnormal LLPS.
Collapse
|
72
|
Tejedor AR, Sanchez-Burgos I, Estevez-Espinosa M, Garaizar A, Collepardo-Guevara R, Ramirez J, Espinosa JR. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it. Nat Commun 2022; 13:5717. [PMID: 36175408 PMCID: PMC9522849 DOI: 10.1038/s41467-022-32874-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Biomolecular condensates, some of which are liquid-like during health, can age over time becoming gel-like pathological systems. One potential source of loss of liquid-like properties during ageing of RNA-binding protein condensates is the progressive formation of inter-protein β-sheets. To bridge microscopic understanding between accumulation of inter-protein β-sheets over time and the modulation of FUS and hnRNPA1 condensate viscoelasticity, we develop a multiscale simulation approach. Our method integrates atomistic simulations with sequence-dependent coarse-grained modelling of condensates that exhibit accumulation of inter-protein β-sheets over time. We reveal that inter-protein β-sheets notably increase condensate viscosity but does not transform the phase diagrams. Strikingly, the network of molecular connections within condensates is drastically altered, culminating in gelation when the network of strong β-sheets fully percolates. However, high concentrations of RNA decelerate the emergence of inter-protein β-sheets. Our study uncovers molecular and kinetic factors explaining how the accumulation of inter-protein β-sheets can trigger liquid-to-solid transitions in condensates, and suggests a potential mechanism to slow such transitions down. In this work the authors propose a multiscale computational approach, integrating atomistic and coarse-grained models simulations, to study the thermodynamic and kinetic factors playing a major role in the liquid-to-solid transition of biomolecular condensates. It is revealed how the gradual accumulation of inter-protein β-sheets increases the viscosity of functional liquid-like condensates, transforming them into gel-like pathological aggregates, and it is also shown how high concentrations of RNA can decelerate such transition.
Collapse
Affiliation(s)
- Andres R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.,Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Maria Estevez-Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.,Department of Biochemistry, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Jorge Ramirez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
73
|
Chowdhury UD, Paul A, Bhargava BL. The effect of lipid composition on the dynamics of tau fibrils. Proteins 2022; 90:2103-2115. [DOI: 10.1002/prot.26401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Unmesh Dutta Chowdhury
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| | - Arnav Paul
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| | - B. L. Bhargava
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| |
Collapse
|
74
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
75
|
Jonchhe S, Pan W, Pokhrel P, Mao H. Small Molecules Modulate Liquid-to-Solid Transitions in Phase-Separated Tau Condensates. Angew Chem Int Ed Engl 2022; 61:e202113156. [PMID: 35320624 PMCID: PMC9156559 DOI: 10.1002/anie.202113156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/08/2022]
Abstract
In Tau protein condensates formed by the Liquid-Liquid Phase Separation (LLPS) process, liquid-to-solid transitions lead to the formation of fibrils implicated in Alzheimer's disease. Here, by tracking two contacting Tau-rich droplets using a simple and nonintrusive video microscopy, we found that the halftime of the liquid-to-solid transition in the Tau condensate is affected by the Hofmeister series according to the solvation energy of anions. After dissecting functional groups of physiologically relevant small molecules using a multivariate approach, we found that charged groups facilitate the liquid-to-solid transition in a manner similar to the Hofmeister effect, whereas hydrophobic alkyl chains and aromatic rings inhibit the transition. Our results not only elucidate the driving force of the liquid-to-solid transition in Tau condensates, but also provide guidelines to design small molecules to modulate this important transition for many biological functions for the first time.
Collapse
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Wei Pan
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Advanced Materials and Liquid Crystal Institute, Department of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
76
|
Jonchhe S, Pan W, Pokhrel P, Mao H. Small Molecules Modulate Liquid‐to‐Solid Transitions in Phase‐Separated Tau Condensates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry & Biochemistry Kent State University Kent OH 44242 USA
| | - Wei Pan
- Department of Chemistry & Biochemistry Kent State University Kent OH 44242 USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry Kent State University Kent OH 44242 USA
| | - Hanbin Mao
- Department of Chemistry & Biochemistry Advanced Materials and Liquid Crystal Institute Department of Biomedical Sciences Kent State University Kent OH 44242 USA
| |
Collapse
|
77
|
Stelzl L, Pietrek LM, Holla A, Oroz J, Sikora M, Köfinger J, Schuler B, Zweckstetter M, Hummer G. Global Structure of the Intrinsically Disordered Protein Tau Emerges from Its Local Structure. JACS AU 2022; 2:673-686. [PMID: 35373198 PMCID: PMC8970000 DOI: 10.1021/jacsau.1c00536] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 05/13/2023]
Abstract
The paradigmatic disordered protein tau plays an important role in neuronal function and neurodegenerative diseases. To disentangle the factors controlling the balance between functional and disease-associated conformational states, we build a structural ensemble of the tau K18 fragment containing the four pseudorepeat domains involved in both microtubule binding and amyloid fibril formation. We assemble 129-residue-long tau K18 chains with atomic detail from an extensive fragment library constructed with molecular dynamics simulations. We introduce a reweighted hierarchical chain growth (RHCG) algorithm that integrates experimental data reporting on the local structure into the assembly process in a systematic manner. By combining Bayesian ensemble refinement with importance sampling, we obtain well-defined ensembles and overcome the problem of exponentially varying weights in the integrative modeling of long-chain polymeric molecules. The resulting tau K18 ensembles capture nuclear magnetic resonance (NMR) chemical shift and J-coupling measurements. Without further fitting, we achieve very good agreement with measurements of NMR residual dipolar couplings. The good agreement with experimental measures of global structure such as single-molecule Förster resonance energy transfer (FRET) efficiencies is improved further by ensemble refinement. By comparing wild-type and mutant ensembles, we show that pathogenic single-point P301L, P301S, and P301T mutations shift the population from the turn-like conformations of the functional microtubule-bound state to the extended conformations of disease-associated tau fibrils. RHCG thus provides us with an atomically detailed view of the population equilibrium between functional and aggregation-prone states of tau K18, and demonstrates that global structural characteristics of this intrinsically disordered protein emerge from its local structure.
Collapse
Affiliation(s)
- Lukas
S. Stelzl
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Faculty
of Biology, Johannes Gutenberg University
Mainz, Gresemundweg 2, 55128 Mainz, Germany
- KOMET 1, Institute of Physics, Johannes
Gutenberg University Mainz, 55099 Mainz, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Lisa M. Pietrek
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Andrea Holla
- Department
of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Javier Oroz
- German
Center for Neurodegenerative Diseases (DZNE), von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Rocasolano
Institute for Physical Chemistry, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Mateusz Sikora
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Faculty
of Physics, University of Vienna, Kolingasse 14-16, 1090 Vienna, Austria
| | - Jürgen Köfinger
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
- Department
of Physics, University of Zurich, 8057 Zurich, Switzerland
| | - Markus Zweckstetter
- German
Center for Neurodegenerative Diseases (DZNE), von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute
for Biophysics, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
78
|
Yao QQ, Wen J, Perrett S, Wu S. Distinct lipid membrane-mediated pathways of Tau assembly revealed by single-molecule analysis. NANOSCALE 2022; 14:4604-4613. [PMID: 35260870 DOI: 10.1039/d1nr05960b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The conversion of intrinsically disordered Tau to highly ordered amyloid aggregates is associated with a wide range of neurodegenerative diseases termed tauopathies. The presence of lipid bilayer membranes is a critical factor that accelerates the abnormal aggregation of Tau protein. However, the lipid membrane-induced conformational changes of Tau and the mechanism for the accelerated fibrillation remain elusive. In this study, single-molecule Förster resonance energy transfer (smFRET) and fluorescence correlation spectroscopy (FCS) were applied to detect the conformational changes and intermolecular interactions of full-length Tau in the presence of different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylserine (DMPS) vesicles. The results show that the conformation of Tau becomes expanded with opening of the N-terminal and C-terminal domains of Tau upon binding to DMPS. At low DMPS concentrations, Tau forms oligomers with a partially extended conformation which facilitates the amyloid fibrillization process. At high DMPS concentrations, Tau monomer binds to lipid membranes in a fully expanded conformation at low density thus inhibiting intermolecular aggregation. Our study reveals the underlying mechanisms by which lipid membranes influence amyloid formation of Tau, providing a foundation for further understanding of the pathogenesis and physiology of the interplay between Tau protein and lipid membranes.
Collapse
Affiliation(s)
- Qiong-Qiong Yao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jitao Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
79
|
Ye H, Han Y, Li P, Su Z, Huang Y. The Role of Post-Translational Modifications on the Structure and Function of Tau Protein. J Mol Neurosci 2022; 72:1557-1571. [PMID: 35325356 DOI: 10.1007/s12031-022-02002-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Involving addition of chemical groups or protein units to specific residues of the target protein, post-translational modifications (PTMs) alter the charge, hydrophobicity, and conformation of a protein, which in tune influences protein function, protein - protein interaction, and protein aggregation. While the occurrence of PTMs is dynamic and subject to regulations, conformational disorder of the target protein facilitates PTMs. The microtubule-associated protein tau is a typical intrinsically disordered protein that undergoes a variety of PTMs including phosphorylation, acetylation, ubiquitination, methylation, and oxidation. Accumulated evidence shows that these PTMs play a critical role in regulating tau-microtubule interaction, tau localization, tau degradation and aggregation, and reinforces the correlation between tau PTMs and pathogenesis of neurodegenerative disease. Here, we review tau PTMs with an emphasis on their influence on tau structure. With available biophysical characterization results, we describe how PTMs induce conformational changes in tau monomer and regulate tau aggregation. Compared to functional analysis of tau PTMs, biophysical characterization of tau PTMs is lagging. While it is challenging, characterizing the specific effects of PTMs on tau conformation and interaction is indispensable to unravel the tau PTM code.
Collapse
Affiliation(s)
- Haiqiong Ye
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Yue Han
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China. .,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China. .,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
80
|
Agarwal A, Arora L, Rai SK, Avni A, Mukhopadhyay S. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion. Nat Commun 2022; 13:1154. [PMID: 35241680 PMCID: PMC8894376 DOI: 10.1038/s41467-022-28797-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 12/30/2022] Open
Abstract
Biomolecular condensation via liquid-liquid phase separation of proteins and nucleic acids is associated with a range of critical cellular functions and neurodegenerative diseases. Here, we demonstrate that complex coacervation of the prion protein and α-synuclein within narrow stoichiometry results in the formation of highly dynamic, reversible, thermo-responsive liquid droplets via domain-specific electrostatic interactions between the positively-charged intrinsically disordered N-terminal segment of prion and the acidic C-terminal tail of α-synuclein. The addition of RNA to these coacervates yields multiphasic, vesicle-like, hollow condensates. Picosecond time-resolved measurements revealed the presence of transient electrostatic nanoclusters that are stable on the nanosecond timescale and can undergo breaking-and-making of interactions on slower timescales giving rise to a liquid-like behavior in the mesoscopic regime. The liquid-to-solid transition drives a rapid conversion of complex coacervates into heterotypic amyloids. Our results suggest that synergistic prion-α-synuclein interactions within condensates provide mechanistic underpinnings of their physiological role and overlapping neuropathological features.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Sandeep K Rai
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Anamika Avni
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
81
|
Abyzov A, Blackledge M, Zweckstetter M. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chem Rev 2022; 122:6719-6748. [PMID: 35179885 PMCID: PMC8949871 DOI: 10.1021/acs.chemrev.1c00774] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Motions in biomolecules
are critical for biochemical reactions.
In cells, many biochemical reactions are executed inside of biomolecular
condensates formed by ultradynamic intrinsically disordered proteins.
A deep understanding of the conformational dynamics of intrinsically
disordered proteins in biomolecular condensates is therefore of utmost
importance but is complicated by diverse obstacles. Here we review
emerging data on the motions of intrinsically disordered proteins
inside of liquidlike condensates. We discuss how liquid–liquid
phase separation modulates internal motions across a wide range of
time and length scales. We further highlight the importance of intermolecular
interactions that not only drive liquid–liquid phase separation
but appear as key determinants for changes in biomolecular motions
and the aging of condensates in human diseases. The review provides
a framework for future studies to reveal the conformational dynamics
of intrinsically disordered proteins in the regulation of biomolecular
condensate chemistry.
Collapse
Affiliation(s)
- Anton Abyzov
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Martin Blackledge
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble, France.,CEA, DSV, IBS, 38044 Grenoble, France.,CNRS, IBS, 38044 Grenoble, France
| | - Markus Zweckstetter
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
82
|
Tesei G, Schulze TK, Crehuet R, Lindorff-Larsen K. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc Natl Acad Sci U S A 2021; 118:2111696118. [PMID: 34716273 DOI: 10.1101/2021.06.23.449550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2021] [Indexed: 05/25/2023] Open
Abstract
Many intrinsically disordered proteins (IDPs) may undergo liquid-liquid phase separation (LLPS) and participate in the formation of membraneless organelles in the cell, thereby contributing to the regulation and compartmentalization of intracellular biochemical reactions. The phase behavior of IDPs is sequence dependent, and its investigation through molecular simulations requires protein models that combine computational efficiency with an accurate description of intramolecular and intermolecular interactions. We developed a general coarse-grained model of IDPs, with residue-level detail, based on an extensive set of experimental data on single-chain properties. Ensemble-averaged experimental observables are predicted from molecular simulations, and a data-driven parameter-learning procedure is used to identify the residue-specific model parameters that minimize the discrepancy between predictions and experiments. The model accurately reproduces the experimentally observed conformational propensities of a set of IDPs. Through two-body as well as large-scale molecular simulations, we show that the optimization of the intramolecular interactions results in improved predictions of protein self-association and LLPS.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Thea K Schulze
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ramon Crehuet
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC), E-08034 Barcelona, Spain
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| |
Collapse
|
83
|
Tesei G, Schulze TK, Crehuet R, Lindorff-Larsen K. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc Natl Acad Sci U S A 2021; 118:e2111696118. [PMID: 34716273 PMCID: PMC8612223 DOI: 10.1073/pnas.2111696118] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
Many intrinsically disordered proteins (IDPs) may undergo liquid-liquid phase separation (LLPS) and participate in the formation of membraneless organelles in the cell, thereby contributing to the regulation and compartmentalization of intracellular biochemical reactions. The phase behavior of IDPs is sequence dependent, and its investigation through molecular simulations requires protein models that combine computational efficiency with an accurate description of intramolecular and intermolecular interactions. We developed a general coarse-grained model of IDPs, with residue-level detail, based on an extensive set of experimental data on single-chain properties. Ensemble-averaged experimental observables are predicted from molecular simulations, and a data-driven parameter-learning procedure is used to identify the residue-specific model parameters that minimize the discrepancy between predictions and experiments. The model accurately reproduces the experimentally observed conformational propensities of a set of IDPs. Through two-body as well as large-scale molecular simulations, we show that the optimization of the intramolecular interactions results in improved predictions of protein self-association and LLPS.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Thea K Schulze
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ramon Crehuet
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC), E-08034 Barcelona, Spain
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| |
Collapse
|