51
|
Liu SJ, Chen ZH, Chen JY, Ni SF, Zhang YC, Shi F. Rational Design of Axially Chiral Styrene-Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angew Chem Int Ed Engl 2021; 61:e202112226. [PMID: 34846087 DOI: 10.1002/anie.202112226] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/13/2022]
Abstract
A new class of axially chiral styrene-based thiourea tertiary amine catalysts, which have unique characteristics such as an efficient synthetic route, multiple chiral elements, and multiple activating groups, has been rationally designed. These new chiral catalysts have proven to be efficient organocatalysts, enabling the chemo-, diastereo-, and enantioselective (2+4) cyclization of 2-benzothiazolimines with homophthalic anhydrides in good yields (up to 96 %) with excellent stereoselectivities (all >95:5 dr, up to 98 % ee). More importantly, theoretical calculations elucidated the important role of an axially chiral styrene moiety in controlling both the reactivity and enantioselectivity. This work not only represents the first design of styrene-based chiral thiourea tertiary amine catalysts and the first catalytic asymmetric (2+4) cyclization of 2-benzothiazolimines, but also gives an in-depth understanding of axially chiral styrene-based organocatalysts.
Collapse
Affiliation(s)
- Si-Jia Liu
- School of Chemistry and Materials Science, Key Laboratory of Green Synthetic Chemistry for Functional Materials of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zhi-Han Chen
- School of Chemistry and Materials Science, Key Laboratory of Green Synthetic Chemistry for Functional Materials of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jia-Yi Chen
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science, Key Laboratory of Green Synthetic Chemistry for Functional Materials of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Key Laboratory of Green Synthetic Chemistry for Functional Materials of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
52
|
Yang C, Li F, Wu TR, Cui R, Wu BB, Jin RX, Li Y, Wang XS. Development of Axially Chiral Styrene-Type Carboxylic Acid Ligands via Palladium-Catalyzed Asymmetric C-H Alkynylation. Org Lett 2021; 23:8132-8137. [PMID: 34647750 DOI: 10.1021/acs.orglett.1c02692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A weakly coordinated carboxylate-directed palladium-catalyzed atroposelective C-H alkynylation method for the development of novel axially chiral styrene-type carboxylic acids is disclosed. This transformation exhibits good yields (up to 85%), excellent enantiocontrol (up to 99% ee), and mild conditions. Notably, the synthetic utility of the resulting alkynyl carboxylic acid derivatives was demonstrated by various derivatizations as well as their potential as chiral ligands in asymmetric C-H activations.
Collapse
Affiliation(s)
- Chi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Fei Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tian-Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
53
|
He Q, Zhu L, Yang ZH, Zhu B, Ouyang Q, Du W, Chen YC. Palladium-Catalyzed Modular and Enantioselective cis-Difunctionalization of 1,3-Enynes with Imines and Boronic Reagents. J Am Chem Soc 2021; 143:17989-17994. [PMID: 34669411 DOI: 10.1021/jacs.1c09877] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we report that a palladium(0) complex can mediate the unprecedented intermolecular coupling reaction of 1,3-enynes and N-sulfonylimines regio- and stereoselectively, and the resultant palladium(II) species undergo a cascade Suzuki reaction with organoboronic reagents. The substrate scope is substantial for the asymmetric three-component process, and the enantioenriched all-carbon tetra-substituted alkene derivatives are efficiently constructed in a modular and cis-difunctionalized manner. Control experiments and density functional theory (DFT) calculations support the idea that the palladium(0) acts as a π-Lewis base catalyst by chemoselectively forming η2-complexes with the alkene moiety of 1,3-enynes, thus increasing the nucleophilicity of the alkyne group based on the principle of vinylogy, to attack imines enantioselectively. The preferable formation of aza-palladacyclopentene intermediates, via a 90° single bond rotation from the resultant π-allyl complex, guarantees the formal cis-carbopalladation of alkyne group. In addition, a palladium(0)-catalyzed enantioselective reductive coupling of 1,3-enyne and imine is realized by using formic acid as hydrogen transfer reagent.
Collapse
Affiliation(s)
- Qing He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Zhen-Hong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
54
|
Mi R, Chen H, Zhou X, Li N, Ji D, Wang F, Lan Y, Li X. Rhodium-Catalyzed Atroposelective Access to Axially Chiral Olefins via C-H Bond Activation and Directing Group Migration. Angew Chem Int Ed Engl 2021; 61:e202111860. [PMID: 34677892 DOI: 10.1002/anie.202111860] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 01/12/2023]
Abstract
Axially chiral open-chain olefins represent an underexplored class of chiral platform. In this report, two classes of tetrasubstituted axially chiral acyclic olefins have been accessed in excellent enantioselectivity and regioselectivity via C-H activation of (hetero)arenes assisted by a migratable directing group en route to coupling with sterically hindered alkynes. The coupling of indoles bearing an N-aminocarbonyl directing group afforded C-N axially chiral acrylamides with the assistance of a racemic zinc carboxylate additive. DFT studies suggest a β-nitrogen elimination-reinsertion pathway for the directing group migration. Meanwhile, the employment of N-phenoxycarboxamide delivered C-C axially chiral enamides via migration of the oxidizing directing group. Experiments suggest that in both cases the (hetero)arene substrate adopts a well-defined orientation during the C-H activation, which in turn determines the disposition of the alkyne in migratory insertion. Synthetic applications of representative chiral olefins are demonstrated.
Collapse
Affiliation(s)
- Ruijie Mi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Xukai Zhou
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Nan Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Danqing Ji
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
55
|
Zhao QR, Jiang R, You SL. Ir-catalyzed Sequential Asymmetric Allylic Substitution/Olefin Isomerization for the Synthesis of Axially Chiral Compounds. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|