51
|
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nat Rev Chem 2022; 6:405-427. [PMID: 35965690 PMCID: PMC9364982 DOI: 10.1038/s41570-022-00388-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
C─H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals, and polymer precursors. Radical C─H functionalization reactions, initiated by hydrogen-atom transfer (HAT) and proceeding via open-shell radical intermediates, have been expanding rapidly in recent years. These methods introduce strategic opportunities to functionalize C(sp3)─H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, proceed via "radical relay" whereby HAT generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C─H cross-coupling methods with diverse partners. In the present review, highlights of recent radical-chain and radical-rebound methods provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)─H functionalization and cross coupling.
Collapse
Affiliation(s)
- Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
52
|
Park C, Lee S. One‐pot
sulfa‐Michael
addition reactions of disulfides using a pyridine‐borane complex under blue light irradiation. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Changhee Park
- Department of Physics and Chemistry DGIST Daegu South Korea
| | - Sunggi Lee
- Department of Physics and Chemistry DGIST Daegu South Korea
- Center for Basic Science DGIST Daegu South Korea
| |
Collapse
|
53
|
Zhou X, Yu T, Dong G. Site-Specific and Degree-Controlled Alkyl Deuteration via Cu-Catalyzed Redox-Neutral Deacylation. J Am Chem Soc 2022; 144:9570-9575. [PMID: 35613457 DOI: 10.1021/jacs.2c04382] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deuterated organic compounds have become increasingly important in many areas; however, it remains challenging to install deuterium site-selectively to unactivated aliphatic positions with control of the degree of deuteration. Here, we report a Cu-catalyzed degree-controlled deacylative deuteration of diverse alkyl groups with the methylketone (acetyl) moiety as a traceless activating group. The use of N-methylpicolino-hydrazonamide (MPHA) promotes efficient aromatization-driven C-C cleavage. Mono-, di-, and trideuteration at specific sites can be selectively achieved. The reaction is redox-neutral with broad functional group tolerance. The utility of this method has been demonstrated in forming a complete set of deuterated ethyl groups, merging with the Diels-Alder reaction, a net devinylative deuteration, and the synthesis of the d2-analogue of Austedo.
Collapse
Affiliation(s)
- Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Tingting Yu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
54
|
Sanosa N, Peñin B, Sampedro D, Funes-Ardoiz I. On the Mechanism of Halogen Atom Transfer from C‐X Bonds to α‐Aminoalkyl Radicals: A Computational Study. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nil Sanosa
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) C/Madre de Dios,53 26004 Logroño SPAIN
| | - Beatriz Peñin
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) Madre de Dios,53 26004 Logroño SPAIN
| | - Diego Sampedro
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) C/Madre de Dios,53 26004 Logroño SPAIN
| | - Ignacio Funes-Ardoiz
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) Madre de Dios, 53 26004 Logroño SPAIN
| |
Collapse
|
55
|
Bonciolini S, Noël T, Capaldo L. Synthetic Applications of Photocatalyzed Halogen‐radical mediated Hydrogen Atom Transfer for C−H Bond Functionalization. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stefano Bonciolini
- University of Amsterdam: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences NETHERLANDS
| | - Timothy Noël
- University of Amsterdam: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences NETHERLANDS
| | - Luca Capaldo
- University of Amsterdam: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences Science Park 904 1098 XH Amsterdam NETHERLANDS
| |
Collapse
|
56
|
Sun Y, Tan F, Hu R, Hu C, Li Y. Visible‐Light Photoredox‐Catalyzed
Hydrodecarboxylation and Deuterodecarboxylation of Fatty Acids. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuan‐Li Sun
- Center for Organic Chemistry Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 P. R. China
| | - Fang‐Fang Tan
- Center for Organic Chemistry Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 P. R. China
| | - Rong‐Gui Hu
- Center for Organic Chemistry Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 P. R. China
| | - Chun‐Hong Hu
- Center for Organic Chemistry Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 P. R. China
| | - Yang Li
- Center for Organic Chemistry Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 P. R. China
| |
Collapse
|
57
|
Peng TY, Xu ZY, Zhang FL, Li B, Xu WP, Fu Y, Wang YF. Dehydroxylative Alkylation of α‐Hydroxy Carboxylic Acids Derivatives via Spin‐center Shift. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tian-Yu Peng
- University of Science and Technology of China Department of Chemistry CHINA
| | - Zhe-Yuan Xu
- University of Science and Technology of China Department of Chemistry CHINA
| | - Feng-Lian Zhang
- University of Science and Technology of China Department of Chemistry CHINA
| | - Bin Li
- University of Science and Technology of China Department of Chemistry CHINA
| | - Wen-Ping Xu
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yao Fu
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yi-Feng Wang
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
58
|
Chen B, Du Y, Shu W. Organophotocatalytic Regioselective C−H Alkylation of Electron‐Rich Arenes Using Activated and Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bi‐Hong Chen
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Yi‐Dan Du
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
59
|
Duan S, Zi Y, Wang L, Cong J, Chen W, Li M, Zhang H, Yang X, Walsh PJ. α-Branched amines through radical coupling with 2-azaallyl anions, redox active esters and alkenes. Chem Sci 2022; 13:3740-3747. [PMID: 35432903 PMCID: PMC8966660 DOI: 10.1039/d2sc00500j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
α-Branched amines are fundamental building blocks in a variety of natural products and pharmaceuticals. Herein is reported a unique cascade reaction that enables the preparation of α-branched amines bearing aryl or alkyl groups at the β- or γ-positions. The cascade is initiated by reduction of redox active esters to alkyl radicals. The resulting alkyl radicals are trapped by styrene derivatives, leading to benzylic radicals. The persistent 2-azaallyl radicals and benzylic radicals are proposed to undergo a radical-radical coupling leading to functionalized amine products. Evidence is provided that the role of the nickel catalyst is to promote formation of the alkyl radical from the redox active ester and not promote the C-C bond formation. The synthetic method introduced herein tolerates a variety of imines and redox active esters, allowing for efficient construction of amine building blocks.
Collapse
Affiliation(s)
- Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Yujin Zi
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Lingling Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Jielun Cong
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Minyan Li
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Province Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| |
Collapse
|
60
|
Liu C, Li K, Shang R. Arenethiolate as a Dual Function Catalyst for Photocatalytic Defluoroalkylation and Hydrodefluorination of Trifluoromethyls. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Can Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kang Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rui Shang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
61
|
Lin S, Cheng X, Hasimujiang B, Xu Z, Li F, Ruan Z. Electrochemical regioselective C-H selenylation of 2 H-indazole derivatives. Org Biomol Chem 2021; 20:117-121. [PMID: 34870669 DOI: 10.1039/d1ob02108g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selenium-substituted heteroarenes are biologically active compounds and useful building blocks. In this study, we have developed a metal- and oxidant-free, environmentally friendly protocol for the regioselective selenylation of 2H-indazole derivatives by an electrochemical strategy. A number of selenylated 2H-indazoles with a wide range of functional groups have been synthesized in moderate to good yields under mild and environment-friendly reaction conditions.
Collapse
Affiliation(s)
- Shengsheng Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| | - Xiaomei Cheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| | - Balati Hasimujiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| | - Zhongnan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| | - Fengtan Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.
| |
Collapse
|
62
|
Veeraraghavan Ramachandran P, Hamann HJ, Lin R. Activation of sodium borohydride via carbonyl reduction for the synthesis of amine- and phosphine-boranes. Dalton Trans 2021; 50:16770-16774. [PMID: 34762079 DOI: 10.1039/d1dt03495b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A highly versatile synthesis of amine-boranes via carbonyl reduction by sodium borohydride is described. Unlike the prior bicarbonate-mediated protocol, which proceeds via a salt metathesis reaction, the carbon dioxide-mediated synthesis proceeds via reduction to a monoformatoborohydride intermediate. This has been verified by spectroscopic analysis, and by using aldehydes and ketones as the carbonyl source for the activation of sodium borohydride. This process has been used to produce borane complexes with 1°-, 2°-, and 3°-amines, including those with borane reactive functionalities, heteroarylamines, and a series of phosphines.
Collapse
Affiliation(s)
| | - Henry J Hamann
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA.
| | - Randy Lin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
63
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|