51
|
Zhang X, Wang X, Li C, Hu T, Fan L. Nanoporous {Co 3}-Organic framework for efficiently seperating gases and catalyzing cycloaddition of epoxides with CO 2 and Knoevenagel condensation. J Colloid Interface Sci 2023; 656:127-136. [PMID: 37988780 DOI: 10.1016/j.jcis.2023.11.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Enhancing the catalysis of metal-organic frameworks (MOFs) by regulating inherent Lewis acid-base sites to realize the efficient seperation and chemical fixation of inert carbon dioxide (CO2) is crucial but challenging. Herein, the solvothermal self-assembly of Co2+, 5'-(4-carboxy-2-nitrophenyl)-2,2',2'',4',6'-pentanitro-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid (H3TNBTB) and 4'-phenyl-4,2':6',4''-terpyridine (PTP) generated a highly robust cobalt-organic framework of {[Co3(TNBTB)2(PTP)]·7DMF·6H2O}n (NUC-82). In NUC-82, the tri-core clusters of {Co3} with linear shape are bridged by TNBTB3- to form two-dimensional structure in ac plane, which is further linked by PTP to generate a three-dimensional framework with two kinds of solvent-accessible channels: rhombic-like (ca. 11.57 × 10.76 Å) along a axis and rectangular-like (ca. 7.32 × 11.56 Å) along b axis. Furthermore, it is worth emphasizing that the confined pore environments are characterized by plentiful Lewis acid-base sites of tricobalt clusters, grafted nitro groups and free pyridinyl, high specific surface area and solvent-free nano-caged windows. Activated NUC-82a owns the ultra-high ethylene (C2H2) separation performance over the mixture of C2H2/CH4 and CO2/CH4 with the selectivity of 223.1 and 44.7. Thanks to the great Lewis-acid sites as well as the large pore volume, activated NUC-82a displays the high catalytic performace on the cycloaddition of CO2 with epoxides under wield condtions such as amibient pressure. Furthermore, because of the rich Lewis base sites, NUC-82a can efficiently catalyze Knoevenagel condensation of aldehydes and malononitrile. In the above organic reactions, NUC-82a not only shows the high catalytic activity, but also exhibits the high selectivity, satifactory recyclability and easy-to-separate heterogeneity, confirming that NUC-82a is a promising catalyst. Hence, this work provides in-depth insight into the construction of multifunctional MOFs by modifying the traditional ligands with as many Lewis acid-base active sites as possible.
Collapse
Affiliation(s)
- Xiutang Zhang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| | - Xiaotong Wang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Chong Li
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Tuoping Hu
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Liming Fan
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
52
|
Wen HM, Yu C, Liu M, Lin C, Zhao B, Wu H, Zhou W, Chen B, Hu J. Construction of Negative Electrostatic Pore Environments in a Scalable, Stable and Low-Cost Metal-organic Framework for One-Step Ethylene Purification from Ternary Mixtures. Angew Chem Int Ed Engl 2023; 62:e202309108. [PMID: 37699125 DOI: 10.1002/anie.202309108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
One-step separation of C2 H4 from ternary C2 mixtures by physisorbents remains a challenge to combine excellent separation performance with high stability, low cost, and easy scalability for industrial applications. Herein, we report a strategy of constructing negative electrostatic pore environments in a stable, low-cost, and easily scaled-up aluminum MOF (MOF-303) for efficient one-step C2 H2 /C2 H6 /C2 H4 separation. This material exhibits not only record high C2 H2 and C2 H6 uptakes, but also top-tier C2 H2 /C2 H4 and C2 H6 /C2 H4 selectivities at ambient conditions. Theoretical calculations combined with in situ infrared spectroscopy indicate that multiple N/O sites on pore channels can build a negative electro-environment to provide stronger interactions with C2 H2 and C2 H6 over C2 H4 . Breakthrough experiments confirm its exceptional separation performance for ternary mixtures, affording one of the highest C2 H4 productivity of 1.35 mmol g-1 . This material is highly stable and can be easily synthesized at kilogram-scale from cheap raw materials using a water-based green synthesis. The benchmark combination of excellent separation properties with high stability and low cost in scalable MOF-303 has unlocked its great potential in this challenging industrial separation.
Collapse
Affiliation(s)
- Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenyi Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Miaoyu Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenyan Lin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Beiyu Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
53
|
Wu E, Gu XW, Liu D, Zhang X, Wu H, Zhou W, Qian G, Li B. Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification. Nat Commun 2023; 14:6146. [PMID: 37783674 PMCID: PMC10545795 DOI: 10.1038/s41467-023-41692-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
One-step adsorption separation of C2H4 from ternary C2 hydrocarbon mixtures remains an important and challenging goal for petrochemical industry. Current physisorbents either suffer from unsatisfied separation performance, poor stability, or are difficult to scale up. Herein, we report a strategy of constructing multiple supramolecular binding sites in a robust and scalable MOF (Al-PyDC) for highly efficient one-step C2H4 purification from ternary mixtures. Owing to suitable pore confinement with multiple supramolecular binding sites, Al-PyDC exhibits one of the highest C2H2 and C2H6 uptakes and selectivities over C2H4 at ambient conditions. The gas binding sites have been visualized by single-crystal X-ray diffraction studies, unveiling that the low-polarity pore surfaces with abundant electronegative N/O sites provide stronger multiple supramolecular interactions with C2H2 and C2H6 over C2H4. Breakthrough experiments showed that polymer-grade C2H4 can be separated from ternary mixtures with a maximum productivity of 1.61 mmol g-1. This material can be prepared from two simple reagents using a green synthesis method with water as the sole solvent, and its synthesis can be easily scaled to multikilogram batches. Al-PyDC achieves an effective combination of benchmark separation performance, high stability/recyclability, green synthesis and easy scalability to address major challenges for industrial one-step C2H4 purification.
Collapse
Affiliation(s)
- Enyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Wen Gu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Di Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
54
|
Li K, Ge S, Wei X, Zou W, Wang X, Qian Q, Gao B, Dong L. Asymmetric Ligands of a Metal-Organic Framework on Enhanced Photocatalytic CO 2 Reduction. Inorg Chem 2023; 62:15824-15828. [PMID: 37721412 DOI: 10.1021/acs.inorgchem.3c02272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Metal-organic frameworks (MOFs) have been studied extensively in the catalytic field. However, the role of ligands in catalysis has been less well investigated. Here, an asymmetric ligand photocatalytic strategy for CO2 reduction in MOFs is first proposed. MOF-303(Al) with asymmetric ligands (pyrazolyldicarboxylic acid) exhibits synergistic catalytic effects. Specifically, pyrazoles participate in CO2 activation; i.e., pyrazole and μ2-OH form hydrogen bonds with CO2 to polarize C═O bonds. Furthermore, the lowest unoccupied molecular orbital (LUMO; A pyrazole) and highest occupied molecular orbital (HOMO; B pyrazole) act as the electron donor and acceptor to spatially separate the excited electron-hole, with A and B pyrazoles for CO2 and H2O adsorption to avoid competition, respectively. Owing to its advantages, MOF-303-modified g-C3N4 achieves nonsacrificial and transition-metal-free photocatalytic CO2 reduction to CO of 16.19 μmol·g-1·h-1, significantly higher than that of g-C3N4. This work provides fresh insights into asymmetric ligands in photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Sulong Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoqian Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Weixin Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| | - Xiuwen Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Jiangjun Road 29, Jiangning, Nanjing 211106, P. R. China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
55
|
Li Y, Wang X, Zhang H, He L, Huang J, Wei W, Yuan Z, Xiong Z, Chen H, Xiang S, Chen B, Zhang Z. A Microporous Hydrogen Bonded Organic Framework for Highly Selective Separation of Carbon Dioxide over Acetylene. Angew Chem Int Ed Engl 2023; 62:e202311419. [PMID: 37563095 DOI: 10.1002/anie.202311419] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
The separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) is a very important but challenging task due to their similar molecular dimensions and physical properties. In terms of porous adsorbents for this separation, the CO2 -selective porous materials are superior to the C2 H2 -selective ones because of the cost- and energy-efficiency but have been rarely achieved. Herein we report our unexpected discovery of the first hydrogen bonded organic framework (HOF) constructed from a simple organic linker 2,4,6-tri(1H-pyrazol-4-yl)pyridine (PYTPZ) (termed as HOF-FJU-88) as the highly CO2 -selective porous material. HOF-FJU-88 is a two-dimensional HOFs with a pore pocket of about 7.6 Å. The activated HOF-FJU-88 takes up a high amount of CO2 (59.6 cm3 g-1 ) at ambient conditions with the record IAST selectivity of 1894. Its high performance for the CO2 /C2 H2 separation has been further confirmed through breakthrough experiments, in situ diffuse reflectance infrared spectroscopy and molecular simulations.
Collapse
Affiliation(s)
- Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xue Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lei He
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Jiali Huang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Wuji Wei
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Huadan Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
56
|
Ling BK, Zeng M, Zhang T, Cao JW, Yang R, Cheng L, Zhang CY, Wang Y, Chen KJ. Inverse CO 2/C 2H 2 separation assisted by coordinated water in a dysprosium(III) metal-organic framework. Chem Commun (Camb) 2023; 59:10952-10955. [PMID: 37606637 DOI: 10.1039/d3cc03519k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
An ultramicroporous metal-organic framework (MOF) constructed from dysprosium(III) and oxalate, termed Dy-F-oxa, is carefully studied for inverse separation of CO2 from C2H2. Adsorption experiments and modeling studies reveal that the high CO2 adsorption is attributed to the preferential sites for CO2 by coordinated water. After the equimolar gas mixture breakthrough experiment, C2H2 can be directly produced as a pure effluent.
Collapse
Affiliation(s)
- Bo-Kai Ling
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Min Zeng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Tao Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Jian-Wei Cao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Rong Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Lu Cheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Chi-Yu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Yu Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| |
Collapse
|
57
|
Zhang Y, Sun W, Luan B, Li J, Luo D, Jiang Y, Wang L, Chen B. Topological Design of Unprecedented Metal-Organic Frameworks Featuring Multiple Anion Functionalities and Hierarchical Porosity for Benchmark Acetylene Separation. Angew Chem Int Ed Engl 2023; 62:e202309925. [PMID: 37458603 DOI: 10.1002/anie.202309925] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) or ethylene (C2 H4 ) is industrially important but still challenging so far. Herein, we developed two novel robust metal organic frameworks AlFSIX-Cu-TPBDA (ZNU-8) with znv topology and SIFSIX-Cu-TPBDA (ZNU-9) with wly topology for efficient capture of C2 H2 from CO2 and C2 H4 . Both ZNU-8 and ZNU-9 feature multiple anion functionalities and hierarchical porosity. Notably, ZNU-9 with more anionic binding sites and three distinct cages displays both an extremely large C2 H2 capacity (7.94 mmol/g) and a high C2 H2 /CO2 (10.3) or C2 H2 /C2 H4 (11.6) selectivity. The calculated capacity of C2 H2 per anion (4.94 mol/mol at 1 bar) is the highest among all the anion pillared metal organic frameworks. Theoretical calculation indicated that the strong cooperative hydrogen bonds exist between acetylene and the pillared SiF6 2- anions in the confined cavity, which is further confirmed by in situ IR spectra. The practical separation performance was explicitly demonstrated by dynamic breakthrough experiments with equimolar C2 H2 /CO2 mixtures and 1/99 C2 H2 /C2 H4 mixtures under various conditions with excellent recyclability and benchmark productivity of pure C2 H2 (5.13 mmol/g) or C2 H4 (48.57 mmol/g).
Collapse
Affiliation(s)
- Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Binquan Luan
- IBM Thomas J. Watson Research, 10598, Yorktown Heights, NY, USA
| | - Jiahao Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, 510632, Guangzhou, P. R. China
| | - Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, China
| |
Collapse
|
58
|
Chen C, Chen Z, Zhang M, Zheng S, Zhang W, Li S, Pan F. Closo-[B 12 H 12 ] 2- Derivatives with Polar Groups As Promising Building Blocks in Metal-Organic Frameworks for Gas Separation. CHEMSUSCHEM 2023; 16:e202300434. [PMID: 37253197 DOI: 10.1002/cssc.202300434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Engineering design of metal organic frameworks (MOFs) for gas separation applications is nowadays a thriving field of investigation. Based on the recent experimental studies of dodecaborate-hybrid MOFs as potential materials to separate industry-relevant gas mixtures, we herein present a systematic theoretical study on the derivatives of the closo-dodecaborate anion [B12 H12 ]2- , which can serve as building blocks for MOFs. We discover that amino functionalization can impart a greater ability to selectively capture carbon dioxide from its mixtures with other gases such as nitrogen, ethylene and acetylene. The main advantage lies in the polarization effect induced by amino group, which favors the localization of the negative charges on the boron-cluster anion and offers a nucleophilic anchoring site to accommodate the carbon atom in carbon dioxide. This work suggests an appealing strategy of polar functionalization to optimize the molecule discrimination ability via preferential adsorption.
Collapse
Affiliation(s)
- Chuanxi Chen
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055, Shenzhen, People's Republic of China
| | - Zhefeng Chen
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055, Shenzhen, People's Republic of China
| | - Mingzheng Zhang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055, Shenzhen, People's Republic of China
| | - Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055, Shenzhen, People's Republic of China
| | - Wentao Zhang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055, Shenzhen, People's Republic of China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055, Shenzhen, People's Republic of China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, 518055, Shenzhen, People's Republic of China
| |
Collapse
|
59
|
Wang W, Yang H, Chen Y, Bu X, Feng P. Cyclobutanedicarboxylate Metal-Organic Frameworks as a Platform for Dramatic Amplification of Pore Partition Effect. J Am Chem Soc 2023; 145:17551-17556. [PMID: 37540011 DOI: 10.1021/jacs.3c05980] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Ultrafine tuning of MOF structures at subangstrom or picometer levels can help improve separation selectivity for gases with subtle differences. However, for MOFs with a large enough pore size, the effect from ultrafine tuning on sorption can be muted. Here we show an integrative strategy that couples extreme pore compression with ultrafine pore tuning. This strategy is made possible by unique combination of two features of the partitioned acs (pacs) platform: multimodular framework and exceptional tolerance toward isoreticular replacement. Specifically, we use one module (ligand 1, L1) to shrink the pore size to an extreme minimum on pacs. A compression ratio of about 30% was achieved (based on the unit cell c/a ratio) from prototypical 1,4-benzenedicarboxylate-pacs to trans-1,3-cyclobutanedicarboxylate-pacs. This is followed by using another module (ligand 2, L2) for ultrafine pore tuning (<3% compression). This L1-L2 strategy increases the C2H2/CO2 selectivity from 2.6 to 20.8 and gives rise to an excellent experimental breakthrough performance. As the shortest cyclic dicarboxylate that mimics p-benzene-based moieties using a bioisosteric (BIS) strategy on pacs, trans-1,3-cyclobutanedicarboxylate offers new opportunities in MOF chemistry.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Huajun Yang
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
60
|
Gu XW, Wu E, Wang JX, Wen HM, Chen B, Li B, Qian G. Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene. SCIENCE ADVANCES 2023; 9:eadh0135. [PMID: 37540740 PMCID: PMC10403210 DOI: 10.1126/sciadv.adh0135] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C2H2 binding affinity for benchmark trace C2H2 capture from C2H4. A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C2H2 binding affinity. ZJU-300a exhibits a record-high C2H2 uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C2H2/C2H4 selectivity (1672). The adsorption binding of C2H2 and C2H4 was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C2H2/C2H4 mixtures, affording the maximal dynamic selectivity (264) and C2H4 productivity of 436.7 millimoles per gram.
Collapse
Affiliation(s)
- Xiao-Wen Gu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Enyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jia-Xin Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Bin Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
61
|
Seehamart K, Busayaporn W, Chanajaree R. Molecular adsorption and self-diffusion of NO 2, SO 2, and their binary mixture in MIL-47(V) material. RSC Adv 2023; 13:19207-19219. [PMID: 37362329 PMCID: PMC10289206 DOI: 10.1039/d3ra02724d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
The loading dependence of self-diffusion coefficients (Ds) of NO2, SO2, and their equimolar binary mixture in MIL-47(V) have been investigated by using classical molecular dynamics (MD) simulations. The Ds of NO2 are found to be two orders of magnitude greater than SO2 at low loadings and temperatures, and its Ds decreases monotonically with loading. The Ds of SO2 exhibit two diffusion patterns, indicating the specific interaction between the gas molecules and the MIL-47(V) lattice. The maximum activation energy (Ea) in the pure component and in the mixture for SO2 are 16.43 and 18.35 kJ mol-1, and for NO2 are 2.69 and 1.89 kJ mol-1, respectively. It is shown that SO2 requires more amount of energy than NO2 to increase the diffusion rate. The radial distribution functions (RDFs) of gas-gas and gas-lattice indicate that the Oh of MIL-47(V) are preferential adsorption site for both NO2 and SO2 molecules. However, the presence of the hydrogen bonding (HB) interaction between the O of SO2 and the H of MIL-47(V) and also their binding angle (θ(OHC)) of 120° with the linkers of lattice indicate a stronger binding interaction between the SO2 and the MIL-47(V), but it does not occur with NO2. The jump-diffusion of SO2 between adsorption sites within the lattice has been confirmed by the 2D density distribution plots. Moreover, the extraordinarily high Sdiff for NO2/SO2 of 623.4 shows that NO2 can diffuse through the MIL-47(V) significantly faster than SO2, especially at low loading and temperature.
Collapse
Affiliation(s)
- Kompichit Seehamart
- Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology Isan Khon Kaen Campus Khon Kaen 40000 Thailand
| | - Wutthikrai Busayaporn
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima 30000 Thailand
| | - Rungroj Chanajaree
- Metallurgy and Materials Science Research Institfute (MMRI), Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
62
|
Niu H, Bu H, Zhao J, Zhu Y. Metal-Organic Frameworks-Based Nanoplatforms for the Theranostic Applications of Neurological Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206575. [PMID: 36908079 DOI: 10.1002/smll.202206575] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Indexed: 06/08/2023]
Abstract
Neurological diseases are the foremost cause of disability and the second leading cause of death worldwide. Owing to the special microenvironment of neural tissues and biological characteristics of neural cells, a considerable number of neurological disorders are currently incurable. In the past few years, the development of nanoplatforms based on metal-organic frameworks (MOFs) has broadened opportunities for offering sensitive diagnosis/monitoring and effective therapy of neurology-related diseases. In this article, the obstacles for neurotherapeutics, including delayed diagnosis and misdiagnosis, the existence of blood brain barrier (BBB), off-target treatment, irrepressible inflammatory storm/oxidative stress, and irreversible nerve cell death are summarized. Correspondingly, MOFs-based diagnostic/monitoring strategies such as neuroimaging and biosensors (electrochemistry, fluorometry, colorimetry, electrochemiluminescence, etc.) and MOFs-based therapeutic strategies including higher BBB permeability, targeting specific lesion sites, attenuation of neuroinflammation/oxidative stress as well as regeneration of nerve cells, are extensively highlighted for the management of neurological diseases. Finally, the challenges of the present research from perspective of clinical translation are discussed, hoping to facilitate interdisciplinary studies at the intersections between MOFs-based nanoplatforms and neurotheranostics.
Collapse
Affiliation(s)
- Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P. R. China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
63
|
Fan Y, Liu Z, Sun S, Huang W, Ma L, Qu Z, Yan N, Xu H. Metal-Organic Frameworks Encaged Ru Single Atoms for Rapid Acetylene Harvest and Activation in Hydrochlorination. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24701-24712. [PMID: 37167560 DOI: 10.1021/acsami.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ruthenium (Ru)-based catalysts have been candidates in hydrochlorination for vinyl chloride monomer (VCM) production, yet they are limited by efficient acetylene (C2H2) utilization. The strong adsorption performance of HCl can deactivate Ru active sites which resulted in weak C2H2 adsorption and slow activation kinetics. Herein, we designed a channel that employed metal-organic framework (MOF)-encaged Ru single atoms to achieve rapid adsorption and activation of C2H2. Low-Ru (∼0.5 wt %) single-atom catalysts (named Ru-NC@MIL) were assembled by hydrogen-bonding nanotraps (the H-C≡C-Hδ+···Oδ- interactions between C2H2 and carboxylate groups/furan rings). Results confirmed that C2H2 could easily enter the encapsulation channels in an optimal mode perpendicular to the channel with a potential energy of 42.3 kJ/mol. The harvested C2H2 molecules can be quickly passed to Ru-N4 active sites for activation by stretching the length of carbon-carbon triple bonds (C≡C) to 1.212 Å. Such a strategy guaranteed >99% C2H2 conversion efficiency and >99% VCM selectivity. Moreover, a stable long-term (>150 h) catalysis with high efficiency (∼0.85 kgvcm/h/kgcat.) and a low deactivation constant (0.001 h-1) was also achieved. This work provides an innovative strategy for precise C2H2 adsorption and activation and guidance for designing multi-functional Ru-based catalysts.
Collapse
Affiliation(s)
- Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Songyuan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
64
|
Han X, Yang S. Molecular Mechanisms behind Acetylene Adsorption and Selectivity in Functional Porous Materials. Angew Chem Int Ed Engl 2023; 62:e202218274. [PMID: 36718911 DOI: 10.1002/anie.202218274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Since its first industrial production in 1890s, acetylene has played a vital role in manufacturing a wide spectrum of materials. Although current methods and infrastructures for various segments of acetylene industries are well-established, with emerging functional porous materials that enabled desired selectivity toward target molecules, it is of timely interest to develop new efficient technologies to promote safer acetylene processes with a higher energy efficiency and lower carbon footprint. In this Minireview, we, from the perspective of materials chemistry, review state-of-the-art examples of advanced porous materials, namely metal-organic frameworks and decorated zeolites, that have been applied to the purification and storage of acetylene. We also discuss the challenges on the roadmap of translational research in the development of new solid sorbent-based separation technologies and highlight areas which require future research efforts.
Collapse
Affiliation(s)
- Xue Han
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
65
|
Metal-organic frameworks for C2H2/CO2 separation: Recent development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
66
|
Zhu X, Ke T, Zhou J, Song Y, Xu Q, Zhang Z, Bao Z, Yang Y, Ren Q, Yang Q. Vertex Strategy in Layered 2D MOFs: Simultaneous Improvement of Thermodynamics and Kinetics for Record C 2H 2/CO 2 Separation Performance. J Am Chem Soc 2023; 145:9254-9263. [PMID: 37053465 DOI: 10.1021/jacs.3c01784] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Developing adsorbents with multiple merits in capacity, selectivity, mass transfer, and stability toward C2H2/CO2 separation is crucial and challenging for producing high-purity C2H2 for advanced polymers and the electronic industry. Here, we demonstrate a vertex strategy to create adsorbents combining these merits through rationally designing the vertex groups of a wavy-shaped framework in layered 2D metal-organic frameworks (MOFs) to finely regulate the local conformation and stacking interactions, which creates the optimal inter- and intralayer space to realize simultaneous improvement of adsorption thermodynamics and kinetics. Two new hydrolytically stable MOFs, ZUL-330 and ZUL-430, were prepared, and diverse experiments and modeling on both adsorption equilibrium and diffusion were performed. Record separation selectivities coupled with extraordinary dynamic C2H2 capacities were achieved for C2H2/CO2 mixtures with different proportions (50/50 or 10/5, v/v), along with a small diffusion barrier and fast mass transfer. Consequently, polymer-grade (99.9%) and electronic-grade (99.99%) C2H2 were obtained with excellent productivities of up to ∼6 mmol cm-3.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Yifei Song
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qianqian Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- School of Pharmaceutical and Materials Engineering, Taizhou University, 318000 Taizhou, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| |
Collapse
|
67
|
Zhang T, Lin S, Yan T, Li B, Liang Y, Liu D, He Y. Integrating Self-Partitioned Pore Space and Amine Functionality into an Aromatic-Rich Coordination Framework with Ph Stability for Effective Purification of C 2 Hydrocarbons. Inorg Chem 2023; 62:5593-5601. [PMID: 36989440 DOI: 10.1021/acs.inorgchem.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A great demand for high-purity C2 hydrocarbons calls for the development of chemically stable porous materials for the effective isolation of C2 hydrocarbons from CH4 and CO2. However, such separations are challenged by their similar physiochemical parameters and have not been systematically studied to date. In this work, we reported a cadmium-based rod-packing coordination framework compound ZJNU-140 of a new 5,6,7-c topology built up from a custom-designed tricarboxylate ligand. The metal-organic framework (MOF) features an aromatic-abundant pore surface, uncoordinated amine functionality, and self-partitioned pore space of suitable size. These structural characteristics act synergistically to provide the MOF with both selective recognition ability and the confinement effect toward C2 hydrocarbons. As a result, the MOF displays promising potential for adsorptive separation of C2-CH4 and C2-CO2 mixtures. The IAST-predicted C2/CH4 and C2/CO2 adsorption selectivities, respectively, fall in the ranges of 7.3-10.2 and 2.1-2.9 at 298 K and 109 kPa. The real separation performance was also confirmed by dynamic breakthrough experiments. In addition, the MOF can maintain skeleton intactness in aqueous solutions with a wide pH range of 3-11, as confirmed by powder X-ray diffraction (PXRD) and isotherm measurements, showing no loss of framework integrity and porosity. The excellent hydrostability, considerable uptake capacity, impressive adsorption selectivity, and mild regeneration make ZJNU-140 a promising adsorbent material applied for the separation and purification of C2 hydrocarbons.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shengjie Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Tongan Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ye Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
68
|
Guo L, Hurd J, He M, Lu W, Li J, Crawshaw D, Fan M, Sapchenko S, Chen Y, Zeng X, Kippax-Jones M, Huang W, Zhu Z, Manuel P, Frogley MD, Lee D, Schröder M, Yang S. Efficient capture and storage of ammonia in robust aluminium-based metal-organic frameworks. Commun Chem 2023; 6:55. [PMID: 36964287 PMCID: PMC10039057 DOI: 10.1038/s42004-023-00850-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/06/2023] [Indexed: 03/26/2023] Open
Abstract
The development of stable sorbent materials to deliver reversible adsorption of ammonia (NH3) is a challenging task. Here, we report the efficient capture and storage of NH3 in a series of robust microporous aluminium-based metal-organic framework materials, namely MIL-160, CAU-10-H, Al-fum, and MIL-53(Al). In particular, MIL-160 shows high uptakes of NH3 of 4.8 and 12.8 mmol g-1 at both low and high pressure (0.001 and 1.0 bar, respectively) at 298 K. The combination of in situ neutron powder diffraction, synchrotron infrared micro-spectroscopy and solid-state nuclear magnetic resonance spectroscopy reveals the preferred adsorption domains of NH3 molecules in MIL-160, with H/D site-exchange between the host and guest and an unusual distortion of the local structure of [AlO6] moieties being observed. Dynamic breakthrough experiments confirm the excellent ability of MIL-160 to capture of NH3 with a dynamic uptake of 4.2 mmol g-1 at 1000 ppm. The combination of high porosity, pore aperture size and multiple binding sites promotes the significant binding affinity and capacity for NH3, which makes it a promising candidate for practical applications.
Collapse
Affiliation(s)
- Lixia Guo
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Joseph Hurd
- Department of Chemical Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Meng He
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Wanpeng Lu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Jiangnan Li
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Danielle Crawshaw
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Mengtian Fan
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Sergei Sapchenko
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Yinlin Chen
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Xiangdi Zeng
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Meredydd Kippax-Jones
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK
| | - Wenyuan Huang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Zhaodong Zhu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Pascal Manuel
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK
| | - Daniel Lee
- Department of Chemical Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
69
|
Xiang F, Zhang H, Yang Y, Li L, Que Z, Chen L, Yuan Z, Chen S, Yao Z, Fu J, Xiang S, Chen B, Zhang Z. Tetranuclear Cu II Cluster as the Ten Node Building Unit for the Construction of a Metal-Organic Framework for Efficient C 2 H 2 /CO 2 Separation. Angew Chem Int Ed Engl 2023; 62:e202300638. [PMID: 36726350 DOI: 10.1002/anie.202300638] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
Rational design of high nuclear copper cluster-based metal-organic frameworks has not been established yet. Herein, we report a novel MOF (FJU-112) with the ten-connected tetranuclear copper cluster [Cu4 (PO3 )2 (μ2 -H2 O)2 (CO2 )4 ] as the node which was capped by the deprotonated organic ligand of H4 L (3,5-Dicarboxyphenylphosphonic acid). With BPE (1,2-Bis(4-pyridyl)ethane) as the pore partitioner, the pore spaces in the structure of FJU-112 were divided into several smaller cages and smaller windows for efficient gas adsorption and separation. FJU-112 exhibits a high separation performance for the C2 H2 /CO2 separation, which were established by the temperature-dependent sorption isotherms and further confirmed by the lab-scale dynamic breakthrough experiments. The grand canonical Monte Carlo simulations (GCMC) studies show that its high C2 H2 /CO2 separation performance is contributed to the strong π-complexation interactions between the C2 H2 molecules and framework pore surfaces, leading to its more C2 H2 uptakes over CO2 molecules.
Collapse
Affiliation(s)
- Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.,Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhenni Que
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shimin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Jianwei Fu
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
70
|
Liu D, Pei J, Zhang X, Gu XW, Wen HM, Chen B, Qian G, Li B. Scalable Green Synthesis of Robust Ultra-Microporous Hofmann Clathrate Material with Record C 3 H 6 Storage Density for Efficient C 3 H 6 /C 3 H 8 Separation. Angew Chem Int Ed Engl 2023; 62:e202218590. [PMID: 36691771 DOI: 10.1002/anie.202218590] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Developing porous materials for C3 H6 /C3 H8 separation faces the challenge of merging excellent separation performance with high stability and easy scalability of synthesis. Herein, we report a robust Hofmann clathrate material (ZJU-75a), featuring high-density strong binding sites to achieve all the above requirements. ZJU-75a adsorbs large amount of C3 H6 with a record high storage density of 0.818 g mL-1 , and concurrently shows high C3 H6 /C3 H8 selectivity (54.2) at 296 K and 1 bar. Single-crystal structure analysis unveil that the high-density binding sites in ZJU-75a not only provide much stronger interactions with C3 H6 but also enable the dense packing of C3 H6 . Breakthrough experiments on gas mixtures afford both high separation factor of 14.7 and large C3 H6 uptake (2.79 mmol g-1 ). This material is highly stable and can be easily produced at kilogram-scale using a green synthesis method, making it as a benchmark material to address major challenges for industrial C3 H6 /C3 H8 separation.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiyan Pei
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Xiao-Wen Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
71
|
Li Y, Wang X, Yang X, Liu H, Chai X, Wang Y, Fan W, Sun D. Fe-MOF with U-Shaped Channels for C 2H 2/CO 2 and C 2H 2/C 2H 4 Separation. Inorg Chem 2023; 62:3722-3726. [PMID: 36802567 DOI: 10.1021/acs.inorgchem.2c03236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The development of high-performance adsorbents is critical for the low-energy separation of acetylene. Herein, we synthesized an Fe-MOF (MOF, metal-organic framework) with U-shaped channels. The adsorption isotherms of C2H2, C2H4, and CO2 show that the adsorption capacity of acetylene is significantly larger than that of the other two gases. Meanwhile, the actual separation performance was verified by breakthrough experiments, indicating the potential to separate C2H2/CO2 and C2H2/C2H4 mixtures at normal temperatures. Grand Canonical Monte Carlo (GCMC) simulation demonstrates that the framework with U-shaped channels interacts more strongly with C2H2 than with C2H4 and CO2. The high C2H2 uptake and low adsorption enthalpy highlight Fe-MOF as a promising candidate for C2H2/CO2 separation with a low regeneration energy.
Collapse
Affiliation(s)
- Yue Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xinlei Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xianyi Chai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yutong Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weidong Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
72
|
Zheng X, Chen L, Zhang H, Yao Z, Yang Y, Xiang F, Li Y, Xiang S, Zhang Z, Chen B. Optimized Sieving Effect for Ethanol/Water Separation by Ultramicroporous MOFs. Angew Chem Int Ed Engl 2023; 62:e202216710. [PMID: 36597172 DOI: 10.1002/anie.202216710] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
High-purity ethanol is a promising renewable energy resource, however separating ethanol from trace amount of water is extremely challenging. Herein, two ultramicroporous MOFs (UTSA-280 and Co-squarate) were used as adsorbents. A prominent water adsorption and a negligible ethanol adsorption identify perfect sieving effect on both MOFs. Co-squarate exhibits a surprising water adsorption capacity at low pressure that surpassing the reported MOFs. Single crystal X-ray diffraction and theoretical calculations reveal that such prominent performance of Co-squarate derives from the optimized sieving effect through pore structure adjustment. Co-squarate with larger rhombohedral channel is suitable for zigzag water location, resulting in reinforced guest-guest and guest-framework interactions. Ultrapure ethanol (99.9 %) can be obtained directly by ethanol/water mixed vapor breaking through the columns packed with Co-squarate, contributing to a potential for fuel-grade ethanol purification.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.,College of Engineering, Fujian Jiangxia University, Fuzhou, 350108, China
| | - Liangji Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Hao Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zizhu Yao
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yisi Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Fahui Xiang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yunbin Li
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shengchang Xiang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhangjing Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| |
Collapse
|
73
|
Effect of the substituted location on luminescent behaviors with Ambroxol moieties: synthesis, crystal structure and Hirshfeld surface. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
74
|
Liu S, Chen H, Fan L, Zhang X. Highly Robust {In 2}-Organic Framework for Efficiently Catalyzing CO 2 Cycloaddition and Knoevenagel Condensation. Inorg Chem 2023; 62:3562-3572. [PMID: 36791403 DOI: 10.1021/acs.inorgchem.2c04130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
To improve the catalytic performance of metal-organic frameworks (MOFs), creating higher defects is now considered as the most effective strategy, which can not only optimize the Lewis acidity of metal ions but also create more pore space to enhance diffusion and mass transfer in the channels. Herein, the exquisite combination of scarcely reported [In2(CO2)5(H2O)2(DMF)2] clusters and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) under solvothermal conditions generated a highly robust nanoporous framework of {[In2(BDCP)(DMF)2(H2O)2](NO3)}n (NUC-65) with nanocaged voids (14.1 Å) and rectangular nanochannels (15.94 Å × 11.77 Å) along the a axis. It is worth mentioning that an In(1) ion displays extremely low tetra-coordination modes after the thermal removal of its associated four solvent molecules of H2O and DMF. Activated {[In2(BDCP)](Br)}n (NUC-65Br), as a defective material because of its extremely unsaturated metal centers, could be generated by bromine ion exchange, solvent exchange, and vacuum drying. Catalytic experiments proved that the conversion of epichlorohydrin with 1 atm CO2 into 4-(chloromethyl)-1,3-dioxolan-2-one catalyzed by 0.11 mol % NUC-65Br could reach 99% at 65 °C within 24 h. Moreover, with the aid of 5 mol % cocatalyst n-Bu4NBr, heterogeneous NUC-65Br owns excellent universal catalytic performance in most epoxides under mild conditions. In addition, NUC-65Br, as a heterogeneous catalyst, exhibits higher activity and better selectivity for Knoevenagel condensation of aldehydes and malononitrile. Hence, this work offers a fresh insight into the design of structure defect cationic metal-organic frameworks, which can be better applied to various fields because of their promoted performance.
Collapse
Affiliation(s)
- Shurong Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
75
|
Qiu J, Xu C, Xu X, Zhao Y, Zhao Y, Zhao Y, Wang J. Porous Covalent Organic Framework Based Hydrogen-Bond Nanotrap for the Precise Recognition and Separation of Gold. Angew Chem Int Ed Engl 2023; 62:e202300459. [PMID: 36849710 DOI: 10.1002/anie.202300459] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Utilizing weak interactions to effectively recover and separate precious metals in solution is of great importance but the practice remains a challenge. Herein, we report a novel strategy to achieve precise recognition and separation of gold by regulating the hydrogen-bond (H-bond) nanotrap within the pore of covalent organic frameworks (COFs). It is found that both COF-HNU25 and COF-HNU26 can efficiently capture AuIII with fast kinetics, high selectivity, and uptake capacity. In particular, the COF-HNU25 with the high density of H-bond nanotraps exhibits an excellent gold uptake capacity of 1725 mg g-1 , which is significantly higher than that (219 mg g-1 ) of its isostructural COF (COF-42) without H-bond nanostrap in the pores. Importantly, the uptake capacity is strongly correlated to the number of H-bonds between phenolic OH in the COF and [AuCl4 ]- in water, and multiple H-bond interactions are the key driving force for the excellent gold recovery and reusability of the adsorbent.
Collapse
Affiliation(s)
- Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Chang Xu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Xianhui Xu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yingjie Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yang Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
76
|
Fu Q. Dynamic Construction and Maintenance of Confined Nanoregions via Hydrogen-Bond Networks between Acetylene Reactants and a Polyoxometalate-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8275-8285. [PMID: 36745005 DOI: 10.1021/acsami.2c23072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The nanoconfinement effect in catalysis has attracted much attention because it provides a novel means of regulating the molecular properties and related reactions. Confined nanoregions composed of both reactants and catalysts through weak interactions are expected to improve the catalytic performance and promote the mass transport of relevant molecules simultaneously. However, at reaction temperatures, the structural variation of such confined spaces constructed via weak interactions remains unclear. Herein, through density functional theory calculations combined with ab initio molecular dynamics simulations, we have systematically investigated the dynamic structural evolution of the confined space constructed by acetylene reactants and a polyoxometalate-based metal-organic framework (POMOF) via hydrogen-bond networks. It is found that, at the reaction temperature of acetylene semihydrogenation, the hydrogen-bond networks and generated confined nanoregions are not rigid but are constantly changing and dynamically maintained. The steering role played by the O atoms at the surfaces of the polyoxometalate clusters is essential for generation of the hydrogen-bond networks and maintenance of the nanoregions. Upon confinement, the acetylene reactants can be better activated than those in an unconstrained atmosphere, which is reflected by the different dynamic distributions of the ∠CHC bending magnitude. Moreover, from a comparison of the distinct interaction characteristics between acetylene/ethylene and POMOF, the different manifestations in the adsorption energy variations of the confined molecules can be interpreted. This work helps to elucidate the underlying mechanisms of confined catalysis and may promote its application in practical catalytic processes.
Collapse
Affiliation(s)
- Qiang Fu
- School of Future Technology, University of Science and Technology of China (USTC), Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, China
| |
Collapse
|
77
|
Tian J, Chen Q, Jiang F, Yuan D, Hong M. Optimizing Acetylene Sorption through Induced-fit Transformations in a Chemically Stable Microporous Framework. Angew Chem Int Ed Engl 2023; 62:e202215253. [PMID: 36524616 DOI: 10.1002/anie.202215253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Developing practical storage technologies for acetylene (C2 H2 ) is important but challenging because C2 H2 is useful but explosive. Here, a novel metal-organic framework (MOF) (FJI-H36) with adaptive channels was prepared. It can effectively capture C2 H2 (159.9 cm3 cm-3 ) at 1 atm and 298 K, possessing a record-high storage density (561 g L-1 ) but a very low adsorption enthalpy (28 kJ mol-1 ) among all the reported MOFs. Structural analyses show that such excellent adsorption performance comes from the synergism of active sites, flexible framework, and matched pores; where the adsorbed-C2 H2 can drive FJI-H36 to undergo induced-fit transformations step by step, including deformation/reconstruction of channels, contraction of pores, and transformation of active sites, finally leading to dense packing of C2 H2 . Moreover, FJI-H36 has excellent chemical stability and recyclability, and can be prepared on a large scale, enabling it as a practical adsorbent for C2 H2 . This will provide a useful strategy for developing practical and efficient adsorbents for C2 H2 storage.
Collapse
Affiliation(s)
- Jindou Tian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
78
|
Gong W, Xie Y, Wang X, Kirlikovali KO, Idrees KB, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha OK. Programmed Polarizability Engineering in a Cyclen-Based Cubic Zr(IV) Metal-Organic Framework to Boost Xe/Kr Separation. J Am Chem Soc 2023; 145:2679-2689. [PMID: 36652593 DOI: 10.1021/jacs.2c13171] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Efficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs. NU-1107-Ag(I), which features the strongest framework polarizability among this series, achieves the best performance for a 20:80 v/v Xe/Kr mixture at 298 K and 1.0 bar with an ideal adsorbed solution theory (IAST) predicted selectivity of 13.4, placing it among the highest performing MOF materials reported to date. Notably, the Xe/Kr separation performance for NU-1107-Ag(I) is significantly better than that of the isoreticular, porphyrin-based MOF-525-Ag(II), highlighting how the cyclen core can generate relatively stronger framework polarizability through the formation of low-valent Ag(I) species and polarizable counteranions. Density functional theory (DFT) calculations corroborate these experimental results and suggest strong interactions between Xe and exposed Ag(I) sites in NU-1107-Ag(I). Finally, we validated this framework polarizability regulation approach by demonstrating the effectiveness of NU-1107-Ag(I) toward C3H6/C3H8 separation, indicating that this generalizable strategy can facilitate the bespoke synthesis of polarized porous materials for targeted separations.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
79
|
Zhang YZ, Kong XJ, Zhou WF, Li CH, Hu H, Hou H, Liu Z, Geng L, Huang H, Zhang X, Zhang DS, Li JR. Pore Environment Optimization of Microporous Metal-Organic Frameworks with Huddled Pyrazine Pillars for C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4208-4215. [PMID: 36625524 DOI: 10.1021/acsami.2c19779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) have been proven promising in addressing many critical issues related to gas separation and purification. However, it remains a great challenge to optimize the pore environment of MOFs for purification of specific gas mixtures. Herein, we report the rational construction of three isostructural microporous MOFs with the 4,4',4"-tricarboxyltriphenylamine (H3TCA) ligand, unusual hexaprismane Ni6O6 cluster, and functionalized pyrazine pillars [PYZ-x, x = -H (DZU-10), -NH2 (DZU-11), and -OH (DZU-12)], where the building blocks of Ni6O6 clusters and huddled pyrazine pillars are reported in porous MOFs for the first time. These building blocks have enabled the resulting materials to exhibit good chemical stability and variable pore chemistry, which thus contribute to distinct performances toward C2H2/CO2 separation. Both single-component isotherms and dynamic column breakthrough experiments demonstrate that DZU-11 with the PYZ-NH2 pillar outperforms its hydrogen and hydroxy analogues. Density functional theory calculations reveal that the higher C2H2 affinity of DZU-11 over CO2 is attributed to multiple electrostatic interactions between C2H2 and the framework, including strong C≡C···H-N (2.80 Å) interactions. This work highlights the potential of pore environment optimization to construct smart MOF adsorbents for some challenging gas separations.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Xiang-Jing Kong
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wen-Feng Zhou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Chun-Hui Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hui Hu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hengnuo Hou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Zhongmin Liu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Xiuling Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Da-Shuai Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
80
|
Thermodynamic and kinetic synergetic separation of CO2/C2H2 in an ultramicroporous metal-organic framework. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
81
|
Jiang K, Gao Y, Zhang P, Lin S, Zhang L. A new perchlorate-based hybrid ultramicroporous material with rich bare oxygen atoms for high C2H2/CO2 separation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
82
|
Zeng H, Xie XJ, Wang Y, Luo D, Wei RJ, Lu W, Li D. Spatial disposition of square-planar mononuclear nodes in metal-organic frameworks for C 2H 2/CO 2 separation. Chem Sci 2022; 13:12876-12882. [PMID: 36519039 PMCID: PMC9645388 DOI: 10.1039/d2sc04324f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 01/25/2024] Open
Abstract
The efficient separation of acetylene (C2H2) from its mixture with carbon dioxide (CO2) remains a challenging industrial process due to their close molecular sizes/shapes and similar physical properties. Herein, we report a microporous metal-organic framework (JNU-4) with square-planar mononuclear copper(ii) centers as nodes and tetrahedral organic linkers as spacers, allowing for two accessible binding sites per metal center for C2H2 molecules. Consequently, JNU-4 exhibits excellent C2H2 adsorption capacity, particularly at 298 K and 0.5 bar (200 cm3 g-1). Detailed computational studies confirm that C2H2 molecules are indeed predominantly located in close proximity to the square-planar copper centers on both sides. Breakthrough experiments demonstrate that JNU-4 is capable of efficiently separating C2H2 from a 50 : 50 C2H2/CO2 mixture over a broad range of flow rates, affording by far the largest C2H2 capture capacity (160 cm3 g-1) and fuel-grade C2H2 production (105 cm3 g-1, ≥98% purity) upon desorption. Simply by maximizing accessible open metal sites on mononuclear metal centers, this work presents a promising strategy to improve the C2H2 adsorption capacity and address the challenging C2H2/CO2 separation.
Collapse
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Xiao-Jing Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Ying Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
83
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
84
|
Li X, Bian H, Huang W, Yan B, Wang X, Zhu B. A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
85
|
Li YZ, Krishna R, Xu F, Zhang WF, Sui Y, Hou L, Wang YY, Zhu Z. A novel C2H2-selective microporous Cd-MOF for C2H2/C2H4 and C2H2/CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
86
|
Pal SC, Ahmed R, Manna AK, Das MC. Potential of a pH-Stable Microporous MOF for C 2H 2/C 2H 4 and C 2H 2/CO 2 Gas Separations under Ambient Conditions. Inorg Chem 2022; 61:18293-18302. [DOI: 10.1021/acs.inorgchem.2c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, West Bengal, India
| | - Raka Ahmed
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati517619, Andhra Pradesh, India
| | - Arun K. Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati517619, Andhra Pradesh, India
| | - Madhab C. Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, West Bengal, India
| |
Collapse
|
87
|
Yang H, Chen Y, Dang C, Hong AN, Feng P, Bu X. Optimization of Pore-Space-Partitioned Metal–Organic Frameworks Using the Bioisosteric Concept. J Am Chem Soc 2022; 144:20221-20226. [PMID: 36305830 PMCID: PMC9650692 DOI: 10.1021/jacs.2c09349] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Pore space partitioning (PSP) is
methodically suited
for dramatically
increasing the density of guest binding sites, leading to the partitioned
acs (pacs) platform capable of record-high uptake for CO2 and small hydrocarbons such as C2Hx. For gas separation, achieving high selectivity amid PSP-enabled
high uptake offers an enticing prospect. Here we aim for high selectivity
by introducing the bioisosteric (BIS) concept, a widely used drug
design strategy, into the realm of pore-space-partitioned MOFs. New
pacs materials have high C2H2/CO2 selectivity of up to 29, high C2H2 uptake
of up to 144 cm3/g (298 K, 1 atm), and high separation
potential of up to 5.3 mmol/g, leading to excellent experimental breakthrough
performance. These metrics, coupled with exceptional tunability, high
stability, and low regeneration energy, demonstrate the broad potential
of the BIS-PSP strategy.
Collapse
Affiliation(s)
- Huajun Yang
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Candy Dang
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Anh N. Hong
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| |
Collapse
|
88
|
Xu ZC, Yu J, Zhang PD, Zhao YL, Wu XQ, Zhao M, Zhang X, Li JR. Efficient C 2H 2 Separation from CO 2 and CH 4 within a Microporous Metal–Organic Framework of Multiple Functionalities. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zi-Chao Xu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Jiamei Yu
- Institute of Circular Economy, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Peng-Dan Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Xue-Qian Wu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Minjian Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People’s Republic of China
| |
Collapse
|
89
|
Shao K, Wen H, Liang C, Xiao X, Gu X, Chen B, Qian G, Li B. Engineering Supramolecular Binding Sites in a Chemically Stable Metal‐Organic Framework for Simultaneous High C
2
H
2
Storage and Separation. Angew Chem Int Ed Engl 2022; 61:e202211523. [DOI: 10.1002/anie.202211523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Shao
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Hui‐Min Wen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Cong‐Cong Liang
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xiaoyan Xiao
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xiao‐Wen Gu
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio TX 78249-0698 USA
| | - Guodong Qian
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Bin Li
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
90
|
Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
91
|
Liu Y, Liu J, Xiong H, Chen J, Chen S, Zeng Z, Deng S, Wang J. Negative electrostatic potentials in a Hofmann-type metal-organic framework for efficient acetylene separation. Nat Commun 2022; 13:5515. [PMID: 36127365 PMCID: PMC9489771 DOI: 10.1038/s41467-022-33271-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Efficient adsorptive separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) is industrially important but challenging due to the identical dynamic diameter or the trace amount. Here we show an electrostatic potential compatible strategy in a nitroprusside-based Hofmann-type metal-organic framework, Cu(bpy)NP (NP = nitroprusside, bpy = 4,4'-bipyridine), for efficient C2H2 separation. The intruding cyanide and nitrosyl groups in undulating one-dimensional channels induce negative electrostatic potentials for preferential C2H2 recognition instead of open metal sites in traditional Hofmann-type MOFs. As a result, Cu(bpy)NP exhibits a 50/50 C2H2/CO2 selectivity of 47.2, outperforming most rigid MOFs. The dynamic breakthrough experiment demonstrates a 99.9% purity C2H4 productivity of 20.57 mmol g-1 from C2H2/C2H4 (1/99, v/v) gas-mixture. Meanwhile, C2H2 can also be captured and recognized from ternary C2H2/CO2/C2H4 (25/25/50, v/v/v) gas-mixture. Furthermore, computational studies and in-situ infrared spectroscopy reveal that the selective C2H2 binding arises from the compatible pore electro-environment generated by the electron-rich N and O atoms from nitroprusside anions.
Collapse
Affiliation(s)
- Yuan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Junhui Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hanting Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jingwen Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shixia Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zheling Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, 85287, USA
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
92
|
Lv H, Chen H, Fan L, Zhang X. Nanocage-Based Tb 3+-Organic Framework for Efficiently Catalyzing the Cycloaddition Reaction of CO 2 with Epoxides and Knoevenagel Condensation. Inorg Chem 2022; 61:15558-15568. [DOI: 10.1021/acs.inorgchem.2c02302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
93
|
Li J, Goncharov VG, Strzelecki AC, Xu H, Guo X, Zhang Q. Energetic Systematics of Metal-Organic Frameworks: A Case Study of Al(III)-Trimesate MOF Isomers. Inorg Chem 2022; 61:15152-15165. [PMID: 36099470 DOI: 10.1021/acs.inorgchem.2c02345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermal stability and thermodynamic properties of aluminum(III)-1,3,5-benzenetricarboxylate (Al-BTC) metal-organic frameworks (MOFs), including MIL-96, MIL-100, and MIL-110, have been investigated through a suite of calorimetric and X-ray techniques. In situ high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC) revealed that these MOFs undergo thermal amorphization prior to ligand combustion. Thermal stabilities of Al-BTC MOFs follow the increasing order MIL-110 < MIL-96 < MIL-100, based on estimated amorphization temperatures. Their thermodynamic stabilities were directly measured by high-temperature drop combustion calorimetry. Normalized (per mole of Al) enthalpies of formation (ΔH*f) of MIL-96, MIL-100, and MIL-110 from Al2O3, H3BTC, and H2O (only Al2O3 and H3BTC for MIL-100) were determined to be -56.9 ± 13.7, -36.2 ± 17.9, and 62.8 ± 11.6 kJ/mol·Al, respectively. Our results demonstrate that MIL-96 and MIL-100 are thermodynamically favorable, while MIL-110 is metastable, in agreement with thermal and hydrothermal stability trends. The enthalpic preferences of MIL-96 and MIL-100 may be attributed to their shared trinuclear μ3-oxo-bridged (Al3(μ3-O)) secondary building units (SBUs) promoting stabilization of Al polyhedra by the ligands within these frameworks, in comparison to the sterically strained Al8 octamer cluster cores formed in MIL-110. Furthermore, similar ΔH*f of MIL-96 and MIL-100 explain their concurrent formation as physical mixtures often encountered during synthesis, implying the importance of kinetic factors that may facilitate the formation of Al-BTC framework isomers. More importantly, the normalized formation enthalpies of Al-BTC MOF isomers follow a negative correlation with the ratio of charged coordinated substituents to linkers (normalized per mole of Al within the MOF formula unit), with enthalpic preference given to systems with smaller (O2- + OH-)/ligand ratios. This trend has been successfully extended to the previously measured ΔH*f of several Zn4O-based frameworks (e.g., MOF-5, MOF-5(DEF), MOF-177, UMCM-1), all of which have been found to be metastable with respect to their dense phases (ZnO, H2O, and ligands). The result suggests that carboxylate MOFs with higher metal coordination environments attain more enthalpic stabilization from the coordinated ligands. Thus, the formation of some lanthanide/actinide, transition metal, and main group carboxylate frameworks may be energetically more favored, which, however, requires further studies.
Collapse
Affiliation(s)
- Jiahong Li
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Vitaliy G Goncharov
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States.,Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
| | - Andrew C Strzelecki
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States.,Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States.,Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hongwu Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaofeng Guo
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States.,Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
94
|
Zhang Q, Han GN, Lian X, Yang SQ, Hu TL. Customizing Pore System in a Microporous Metal–Organic Framework for Efficient C2H2 Separation from CO2 and C2H4. Molecules 2022; 27:molecules27185929. [PMID: 36144665 PMCID: PMC9502222 DOI: 10.3390/molecules27185929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Selective-adsorption separation is an energy-efficient technology for the capture of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4). However, it remains a critical challenge to effectively recognize C2H2 among CO2 and C2H4, owing to their analogous molecule sizes and physical properties. Herein, we report a new microporous metal–organic framework (NUM-14) possessing a carefully tailored pore system containing moderate pore size and nitro-functionalized channel surface for efficient separation of C2H2 from CO2 and C2H4. The activated NUM-14 (namely NUM-14a) exhibits sufficient pore space to acquire excellent C2H2 loading capacity (4.44 mmol g−1) under ambient conditions. In addition, it possesses dense nitro groups, acting as hydrogen bond acceptors, to selectively identify C2H2 molecules rather than CO2 and C2H4. The breakthrough experiments demonstrate the good actual separation ability of NUM-14a for C2H2/CO2 and C2H2/C2H4 mixtures. Furthermore, Grand Canonical Monte Carlo simulations indicate that the pore surface of the NUM-14a has a stronger affinity to preferentially bind C2H2 over CO2 and C2H4 via stronger C-H···O hydrogen bond interactions. This article provides some insights into customizing pore systems with desirable pore sizes and modifying groups in terms of MOF materials toward the capture of C2H2 from CO2 and C2H4 to promote the development of more MOF materials with excellent properties for gas adsorption and separation.
Collapse
|
95
|
Zhang Q, Zhou L, Liu P, Li L, Yang SQ, Li ZF, Hu TL. Integrating tri-mural nanotraps into a microporous metal-organic framework for C2H2/CO2 and C2H2/C2H4 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
96
|
Di Z, Liu C, Pang J, Zou S, Ji Z, Hu F, Chen C, Yuan D, Hong M, Wu M. A Metal‐Organic Framework with Nonpolar Pore Surfaces for the One‐Step Acquisition of C
2
H
4
from a C
2
H
4
and C
2
H
6
Mixture. Angew Chem Int Ed Engl 2022; 61:e202210343. [DOI: 10.1002/anie.202210343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengyi Di
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 China
| | - Caiping Liu
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jiandong Pang
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Shuixiang Zou
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zhenyu Ji
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Falu Hu
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Cheng Chen
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Mingyan Wu
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
97
|
Di Z, Liu C, Pang J, Zou S, Ji Z, Hu F, Chen C, Yuan D, Hong M, Wu M. A Metal‐Organic Framework with Nonpolar Pore Surfaces for the One‐step Acquisition of C2H4 from a C2H4 and C2H6 Mixture. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhengyi Di
- FIRSM: Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Caiping Liu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Jiandong Pang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Shuixiang Zou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Zhenyu Ji
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Falu Hu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Cheng Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Daqiang Yuan
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Maochun Hong
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Lab of Structure Chemistry CHINA
| | - Mingyan Wu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CHINA
| |
Collapse
|
98
|
Shao K, Wen HM, Liang CC, Xiao X, Gu XW, Chen B, Qian G, Li B. Engineering Supramolecular Binding Sites in a Chemically Stable Metal−Organic Framework for Simultaneous High C2H2 Storage and Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Shao
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Hui-Min Wen
- Zhejiang University of Technology College of Chemical Engineering CHINA
| | - Cong-Cong Liang
- ZHEJIANG UNIVERSITY School of Materials Science and Engineering CHINA
| | - Xiaoyan Xiao
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Xiao-Wen Gu
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Banglin Chen
- University of Texas at San Antonio Department of Chemistry One UTSA Circle 78249 San Antonio UNITED STATES
| | - Guodong Qian
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Bin Li
- Zhejiang University School of Materials Science and Engineering CHINA
| |
Collapse
|
99
|
Liu L, Wu S, Li D, Li Y, Zhang H, Li L, Jin S, Yao Z. Partial Linker Substitution Strategy to Construct a Quaternary HKUST-like MOF for Efficient Acetylene Storage and Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36882-36889. [PMID: 35920596 DOI: 10.1021/acsami.2c10346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multicomponent metal-organic frameworks (MOFs) have received much attention as emerging materials capable of precisely programing exquisite structures and specific functions. Here, we applied a partial linker substitution strategy to compile an HKUST-1-like quaternary MOF by introducing a bifunctional ligand into the well-known HKUST-1 structure. FUT-1, a new HKUST-like tbo topology MOF, was assembled with paddlewheel [Cu2(COO)4], triangular metallocycle pyrazole cluster Cu3(μ3-OH) (NN)3 building blocks, and two distinct linkers. FUT-1 exhibited good mechanical stability, water stability, and chemical stability (pH = 3-12) in aqueous solutions. Moreover, the porous environments created by this multicomponent primitive endow FUT-1 with high C2H2 storage and significantly selective separation performance of C2H2/CO2. Dynamic breakthrough experiments and ideal adsorbed solution theory calculations further demonstrate that FUT-1 can selectively capture C2H2 from C2H2/CO2 mixtures under ambient conditions. Based on grand canonical Monte Carlo simulations, the high C2H2 separation performance of FUT-1 is attributed to the π-complex formed between the C2H2 molecule and the trinuclear metallocycle clusters on the wall, which provides stronger affinity for C2H2 recognition than the CO2 molecule.
Collapse
Affiliation(s)
- Lizhen Liu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Susu Wu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Dandan Li
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Shaowei Jin
- National Supercomputing Center in Shenzhen, Shenzhen 518000, P. R. China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
100
|
Liu S, Chen H, Zhang X. Bifunctional {Pb 10K 2}–Organic Framework for High Catalytic Activity in Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|