51
|
Zhu Z, Duan J, Chen S. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309119. [PMID: 38126651 DOI: 10.1002/smll.202309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Carbon neutrality is an important goal for humanity . As an eco-friendly technology, electrocatalytic clean energy conversion technology has emerged in the 21st century. Currently, metal-organic framework (MOF)-based electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), are the mainstream energy catalytic reactions, which are driven by electrocatalysis. In this paper, the current advanced characterizations for the analyses of MOF-based electrocatalytic energy reactions have been described in details, such as density function theory (DFT), machine learning, operando/in situ characterization, which provide in-depth analyses of the reaction mechanisms related to the above reactions reported in the past years. The practical applications that have been developed for some of the responses that are of application values, such as fuel cells, metal-air batteries, and water splitting have also been demonstrated. This paper aims to maximize the potential of MOF-based electrocatalysts in the field of energy catalysis, and to shed light on the development of current intense energy situations.
Collapse
Affiliation(s)
- Zheng Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| |
Collapse
|
52
|
He Y, Ma Z, Yan F, Zhu C, Shen T, Chou S, Zhang X, Chen Y. Regulation of the d-band center of metal-organic frameworks for energy-saving hydrogen generation coupled with selective glycerol oxidation. Proc Natl Acad Sci U S A 2024; 121:e2320777121. [PMID: 38630719 PMCID: PMC11046701 DOI: 10.1073/pnas.2320777121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
The hybrid electrolyzer coupled glycerol oxidation (GOR) with hydrogen evolution reaction (HER) is fascinating to simultaneously generate H2 and high value-added chemicals with low energy input, yet facing a challenge. Herein, Cu-based metal-organic frameworks (Cu-MOFs) are reported as model catalysts for both HER and GOR through doping of atomically dispersed precious and nonprecious metals. Remarkably, the HER activity of Ru-doped Cu-MOF outperformed a Pt/C catalyst, with its Faradaic efficiency for formate formation at 90% at a low potential of 1.40 V. Furthermore, the hybrid electrolyzer only needed 1.36 V to achieve 10 mA cm-2, 340 mV lower than that for splitting pure water. Theoretical calculations demonstrated that electronic interactions between the host and guest (doped) metals shifted downward the d-band centers (εd) of MOFs. This consequently lowered water adsorption and dissociation energy barriers and optimized hydrogen adsorption energy, leading to significantly enhanced HER activities. Meanwhile, the downshift of εd centers reduced energy barriers for rate-limiting step and the formation energy of OH*, synergistically enhancing the activity of MOFs for GOR. These findings offered an effective means for simultaneous productions of hydrogen fuel and high value-added chemicals using one hybrid electrolyzer with low energy input.
Collapse
Affiliation(s)
- Yuqian He
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin150001, China
| | - Zheng Ma
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin150001, China
| | - Feng Yan
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin150001, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin150001, China
| | - Tongyang Shen
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin150001, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang325035, China
| | - Xiao Zhang
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin150001, China
| | - Yujin Chen
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin150001, China
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin150001, China
| |
Collapse
|
53
|
Zhang Y, Wang D, Wei G, Li B, Mao Z, Xu SM, Tang S, Jiang J, Li Z, Wang X, Xu X. Engineering Spin Polarization of the Surface-Adsorbed Fe Atom by Intercalating a Transition Metal Atom into the MoS 2 Bilayer for Enhanced Nitrogen Reduction. JACS AU 2024; 4:1509-1520. [PMID: 38665658 PMCID: PMC11040660 DOI: 10.1021/jacsau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The precise control of spin states in transition metal (TM)-based single-atom catalysts (SACs) is crucial for advancing the functionality of electrocatalysts, yet it presents significant scientific challenges. Using density functional theory (DFT) calculations, we propose a novel mechanism to precisely modulate the spin state of the surface-adsorbed Fe atom on the MoS2 bilayer. This is achieved by strategically intercalating a TM atom into the interlayer space of the MoS2 bilayer. Our results show that these strategically intercalated TM atoms can induce a substantial interfacial charge polarization, thereby effectively controlling the charge transfer and spin polarization on the surface Fe site. In particular, by varying the identity of the intercalated TM atoms and their vacancy filling site, a continuous modulation of the spin states of the surface Fe site from low to medium to high can be achieved, which can be accurately described using descriptors composed of readily accessible intrinsic properties of materials. Using the electrochemical dinitrogen reduction reaction (eNRR) as a prototypical reaction, we discovered a universal volcano-like relation between the tuned spin and the catalytic activity of Fe-based SACs. This finding contrasts with the linear scaling relationships commonly seen in traditional studies and offers a robust new approach to modulating the activity of SACs through interfacial engineering.
Collapse
Affiliation(s)
- Yuqin Zhang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Da Wang
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Guanping Wei
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Baolei Li
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Zongchang Mao
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Si-Min Xu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shaobin Tang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Jun Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Xijun Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xin Xu
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
54
|
Sun L, Dai C, Wang T, Jin X, Xu ZJ, Wang X. Modulating the Electronic Structure of Cobalt in Molecular Catalysts via Coordination Environment Regulation for Highly Efficient Heterogeneous Nitrate Reduction. Angew Chem Int Ed Engl 2024; 63:e202320027. [PMID: 38317616 DOI: 10.1002/anie.202320027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Ammonia (NH3) is pivotal in modern industry and represents a promising next-generation carbon-free energy carrier. Electrocatalytic nitrate reduction reaction (eNO3RR) presents viable solutions for NH3 production and removal of ambient nitrate pollutants. However, the development of eNO3RR is hindered by lacking the efficient electrocatalysts. To address this challenge, we synthesized a series of macrocyclic molecular catalysts for the heterogeneous eNO3RR. These materials possess different coordination environments around metal centers by surrounding subunits. Consequently, electronic structures of the active centers can be altered, enabling tunable activity towards eNO3RR. Our investigation reveals that metal center with an N2(pyrrole)-N2(pyridine) configuration demonstrates superior activity over the others and achieves a high NH3 Faradaic efficiency (FE) of over 90 % within the tested range, where the highest FE of approximately 94 % is obtained. Furthermore, it achieves a production rate of 11.28 mg mgcat -1 h-1, and a turnover frequency of up to 3.28 s-1. Further tests disclose that these molecular catalysts with diverse coordination environments showed different magnetic moments. Theoretical calculation results indicate that variated coordination environments can result in a d-band center variation which eventually affects rate-determining step energy and calculated magnetic moments, thus establishing a correlation between electronic structure, experimental activity, and computational parameters.
Collapse
Affiliation(s)
- Libo Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
| | - Chencheng Dai
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Tianjiao Wang
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
| | - Xindie Jin
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
| | - Zhichuan J Xu
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
| |
Collapse
|
55
|
Lin L, Xu Y, Han Y, Xu R, Wang T, Sun Z, Yan Z. Spin-Magnetic Effect of d-π Conjugation Polymer Enhanced O-H Cleavage in Water Oxidation. J Am Chem Soc 2024; 146:7363-7372. [PMID: 38452363 DOI: 10.1021/jacs.3c11907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A deep understanding of the mechanism for the spin-magnetic effect on O-H cleavage is crucial for the development of new catalysts for water oxidation. Herein, we designed and synthesized the crystalline Fe-DABDT and Co-DABDT (DABDT = 2,5-diaminobenzene-1,4-dithiol) and optimized an effective magnetic moment to explore the role of the spin-magnetic effect in the regulation of water oxidation activity. It can be found that the OER activity of the catalyst is positively correlated with its effective magnetic moment. Under the external magnetic field, Fe-DABDT with more spin single electrons has a stronger spin-magnetic response to water oxidation than Fe/Co-DABDT and Co-DABDT. The increase in OER current of Fe-DABDT is nearly 2 times higher than that of Co-DABDT. Experimental and density functional theory studies show that magnetized Fe sites could realize nucleophilic reaction, accelerate the polarization of electron spin states, and promote the polar decomposition of O-H and the formation of the O-O bond. This study provides mechanistic insight into the spin-magnetic effect of oxygen evolution reaction and further understanding of the spin origin of catalytic activity, which is expected to improve the energy efficiency of hydrogen production.
Collapse
Affiliation(s)
- Liu Lin
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yunming Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yiting Han
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Ruikun Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Tongyue Wang
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zemin Sun
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
56
|
Wang X, Zhou W, Zhai S, Chen X, Peng Z, Liu Z, Deng WQ, Wu H. Metal-Organic Frameworks: Direct Synthesis by Organic Acid-Etching and Reconstruction Disclosure as Oxygen Evolution Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202400323. [PMID: 38247990 DOI: 10.1002/anie.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 01/23/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising oxygen evolution reaction (OER) electrocatalysts. Chemically bonded MOFs on supports are desirable yet lacking in routine synthesis, as they may allow variable structural evolution and the underlying structure-activity relationship to be disclosed. Herein, direct MOF synthesis is achieved by an organic acid-etching strategy (AES). Using π-conjugated ferrocene (Fc) dicarboxylic acid as the etching agent and organic ligand, a series of MFc-MOF (M=Ni, Co, Fe, Zn) nanosheets are synthesized on the metal supports. The crystal structure is studied using X-ray diffraction and low-dose transmission electron microscopy, which is quasi-lattice-matched with that of the metal, enabling in situ MOF growth. Operando Raman and attenuated total reflectance Fourier transform infrared spectroscopy disclose that the NiFc-MOF features dynamic structural rebuilding during OER. The reconstructed one showing optimized electronic structures with an upshifted total d-band center, high M-O bonding state occupancy, and localized electrons on adsorbates indicated by density functional theory calculations, exhibits outstanding OER performance with a fairly low overpotential (130 mV at 10 mA cm-2 ) and good stability (144 h). The newly established approach for direct MOF synthesis and structural reconstruction disclosure stimulate the development of more prudent catalysts for advancing OER.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Wei Zhou
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Shengliang Zhai
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Xiaokang Chen
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Zheng Peng
- Center for Transformative Science, Shanghai High Repetition Rate XFEL and Extreme Light Facility (SHINE), ShanghaiTech University, Shanghai, 201210, China
| | - Zhi Liu
- Center for Transformative Science, Shanghai High Repetition Rate XFEL and Extreme Light Facility (SHINE), ShanghaiTech University, Shanghai, 201210, China
| | - Wei-Qiao Deng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Hao Wu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
57
|
Bo S, An Q, Zhang X, Wang HJ, Han J, Cheng W, Liu Q. Engineering High-Spin State Cobalt Cations in Sulfide Spinel for Enhancing Water Oxidation. SMALL METHODS 2024; 8:e2300816. [PMID: 37926773 DOI: 10.1002/smtd.202300816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Indexed: 11/07/2023]
Abstract
The spin states of active sites have a significant impact on the adsorption/desorption ability of the reaction intermediates during the oxygen evolution reaction (OER). Sulfide spinel is not generally considered a highly efficient OER catalyst owing to the low spin state of Co3+ and the lack of unpaired electrons available for adsorption of reaction intermediates. Herein, it is proposed a novel Nd-evoked valence electronic adjustment strategy to engineer the spin state of Co ions. The unique f-p-d orbital electronic coupling effect stimulates the rearrangement of Co d orbital electrons and increases the eg electron filling to achieve high-spin state Co ions, which promotes charge transport by propagating a spin channel and generates a high number of active sites for intermediate adsorption. The optimized CuCo1.75 Nd0.25 S4 catalyst exhibits outstanding electrocatalytic properties with a low overpotential of 320 mV at 500 mA cm-2 and a 48 h stability at 300 mA cm-2 . In situ synchrotron radiation infrared spectra confirm the quick accumulation of key *OOH and *O intermediates. This work deepens the comprehensive understanding of the relationship between OER activity and spin configurations of Co ions and offers a new design strategy for spinel compound catalysts.
Collapse
Affiliation(s)
- Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiuxiu Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hui-Juan Wang
- Material Test and Analysis Lab, Energy and Materials Science Experiment Center, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Juguang Han
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Weiren Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
- Institute for Catalysis, Hokkaido University, Sapporo, 001-0021, Japan
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
58
|
Shi K, Sun Z, Yuan M, Zhao Y, Sun G. "Polyoxometalate electron sponge" induces the accurate regulation of electron states at Ni sites to enhance oxidation of water. J Colloid Interface Sci 2024; 657:37-45. [PMID: 38029527 DOI: 10.1016/j.jcis.2023.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Because of their special features, NiFe-LDHs (nickel iron layered double hydroxides) are prospective OER (oxygen evolution reaction) catalysts that might be utilized to catalyse the electrolysis of water and produce hydrogen to address the energy crisis. In this work, the electronic structure and electrocatalytic performance of the NiFe-LDH were accurately regulated by optimizing the Ni sites, which was enabled by adjacent metal sites coordinated with the "polyoxometalate electron sponge". With extension of the modification time, the Ni 2p binding energy, the Ni3+/Ni2+ ratio and the OER properties were gradually tuned, which indicated accurate regulation of active Ni sites by the "polyoxometalate electron sponge" on a temporal scale. Additionally, NiFe-LDH-PW12-12 h (NiFe-LDH modified by polyoxometalate anions for 12 h) showed the highest OER performance along with fast electron transfer, superior reaction kinetics and electrochemical durability, with an overpotential ∼68 mV lower than that of NiFe-LDH. This work provides an accurate strategy for regulating the electronic structures of active metal sites for the OER.
Collapse
Affiliation(s)
- Kefan Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zemin Sun
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Mengwei Yuan
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yuelin Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China; Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
59
|
Tan HJ, Si R, Li XB, Tang ZK, Wei XL, Seriani N, Yin WJ, Gebauer R. How spin state and oxidation number of transition metal atoms determine molecular adsorption: a first-principles case study for NH 3. Phys Chem Chem Phys 2024; 26:7688-7694. [PMID: 38372067 DOI: 10.1039/d3cp05042d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Understanding how the electronic state of transition metal atoms can influence molecular adsorption on a substrate is of great importance for many applications. Choosing NH3 as a model molecule, its adsorption behavior on defected SnS2 monolayers is investigated. The number of valence electrons n is controlled by decorating the monolayer with different transition metal atoms, ranging from Sc to Zn. Density-Functional Theory based calculations show that the adsorption energy of NH3 molecules oscillates with n and shows a clear odd-even pattern. There is also a mirror symmetry of the adsorption energies for large and low electron numbers. This unique behavior is mainly governed by the oxidation state of the TM ions. We trace back the observed trends of the adsorption energy to the orbital symmetries and ligand effects which affect the interaction between the 3σ orbitals (NH3) and the 3d orbitals of the transition metals. This result unravels the role which the spin state of TM ions plays in different crystal fields for the adsorption behavior of molecules. This new understanding of the role of the electronic structure on molecular adsorption can be useful for the design of high efficiency nanodevices in areas such as sensing and photocatalysis.
Collapse
Affiliation(s)
- Hua-Jian Tan
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Rutong Si
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste I-34151, Italy.
| | - Xi-Bo Li
- Department of Physics, Jinan University, Guangzhou 510632, P. R. China
| | - Zhen-Kun Tang
- College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421008, China
| | - Xiao-Lin Wei
- Department of Physics and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Nicola Seriani
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste I-34151, Italy.
| | - Wen-Jin Yin
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste I-34151, Italy.
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ralph Gebauer
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste I-34151, Italy.
| |
Collapse
|
60
|
Shen W, Zheng Y, Hu Y, Jin J, Hou Y, Zhang N, An L, Xi P, Yan CH. Rare-Earth-Modified NiS 2 Improves OH Coverage for an Industrial Alkaline Water Electrolyzer. J Am Chem Soc 2024; 146:5324-5332. [PMID: 38355103 DOI: 10.1021/jacs.3c11861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The low coverage rate of anode OH adsorption under high current density conditions has become an important factor restricting the development of an industrial alkaline water electrolyzer (AWE). Here, we present our rare earth modification promotion strategy on using the rare earth oxygen-friendly interface to increase the OH coverage of the NiS2 surface for efficient AWE anode catalysis. Density functional theory calculations predict that rare earths can enhance the coverage of surface OH, and the synthesis reaction mechanism is discussed in the synthesis process spectrum. Experimentally, by preparing a series of rare-earth-modified NiS2, the relationship between OH coverage, active site density, and catalytic activity was established by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, time-resolved absorption spectra, and so on. The unique oxygenophilic properties of rare earths enhance OH coverage, thereby increasing the density of active sites for efficient catalysis. Furthermore, Eu2O3/NiS2 was assembled into the AWE equipment and operated stably for over 240 h at a current density of 300 mA cm-2 under industrial conditions of 80 °C and 30% KOH. Rare-earth-modified NiS2 exhibits better catalytic activity than traditional non-noble metal anode catalysts Ni(OH)2 and NiS2, providing a new approach for rare earth promotion to solve the problem of low OH coverage in the AWE anode.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yichao Hou
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Nan Zhang
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Baryunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
61
|
Li Z, Yang J, Gao R, Xu SM, Kong X, Hua X, Zhao P, Hao H, O'Hare D, Zhao Y. Interplay between Defects and Short-Range Disorder Manipulating the Oxygen Evolution Reaction on a Layered Double Hydroxide Electrocatalyst. J Phys Chem Lett 2024; 15:2006-2014. [PMID: 38349852 DOI: 10.1021/acs.jpclett.3c02885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Improving the efficiency of the oxygen evolution reaction (OER) is crucial for advancing sustainable and environmentally friendly hydrogen energy. Layered double hydroxides (LDHs) have emerged as promising electrocatalysts for the OER. However, a thorough understanding of the impact of structural disorder and defects on the catalytic activity of LDHs remains limited. In this work, a series of NiAl-LDH models are systematically constructed, and their OER performance is rigorously screened through theoretical density functional theory. The acquired results unequivocally reveal that the energy increase induced by structural disorder is effectively counteracted at the defect surface, indicating the coexistence of defects and disorder. Notably, it is ascertained that the simultaneous presence of defects and disorder synergistically augments the catalytic activity of LDHs in the context of the OER. These theoretical findings offer valuable insights into the design of highly efficient OER catalysts while also shedding light on the efficacy of LDH electrocatalysts.
Collapse
Affiliation(s)
- Zixian Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Jiangrong Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Rui Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021 Hohhot, Inner Mongolia, P. R. China
| | - Si-Min Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry Jiangxi Province, Gannan Normal University, 341000 Ganzhou, Jiangxi, P. R. China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Xiao Hua
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Pu Zhao
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
| | - Haigang Hao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021 Hohhot, Inner Mongolia, P. R. China
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
- Qingyuan Innovation Laboratory, 362000 Quanzhou, Fujian, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000 Quzhou, Zhejiang, P. R. China
| |
Collapse
|
62
|
Zhao Z, Zhang T, Yue S, Wang P, Bao Y, Zhan S. Spin Polarization: A New Frontier in Efficient Photocatalysis for Environmental Purification and Energy Conversion. Chemphyschem 2024; 25:e202300726. [PMID: 38059760 DOI: 10.1002/cphc.202300726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
As a promising strategy to improve photocatalytic efficiency, spin polarization has attracted enormous attention in recent years, which could be involved in various steps of photoreaction. The Pauli repulsion principle and the spin selection rule dictate that the behavior of two electrons in a spatial eigenstate is based on their spin states, and this fact opens up a new avenue for manipulating photocatalytic efficiency. In this review, recent advances in modulating the photocatalytic activity with spin polarization are systematically summarized. Fundamental insights into the influence of spin-polarization effects on photon absorption, carrier separation, and migration, and the behaviors of reaction-related substances from the photon uptake to reactant desorption are highlighted and discussed in detail, and various photocatalytic applications for environmental purification and energy conversion are presented. This review is expected to deliver a timely overview of the recent developments in spin-polarization-modulated photocatalysis for environmental purification and energy conversion in terms of their practical applications.
Collapse
Affiliation(s)
- Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Shuai Yue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yueping Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
63
|
Zhang T, Jiang J, Sun W, Gong S, Liu X, Tian Y, Wang D. Spatial configuration of Fe-Co dual-sites boosting catalytic intermediates coupling toward oxygen evolution reaction. Proc Natl Acad Sci U S A 2024; 121:e2317247121. [PMID: 38294936 PMCID: PMC10861885 DOI: 10.1073/pnas.2317247121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
Oxygen evolution reaction (OER) is the pivotal obstacle of water splitting for hydrogen production. Dual-sites catalysts (DSCs) are considered exceeding single-site catalysts due to the preternatural synergetic effects of two metals in OER. However, appointing the specific spatial configuration of dual-sites toward more efficient catalysis still remains a challenge. Herein, we constructed two configurations of Fe-Co dual-sites: stereo Fe-Co sites (stereo-Fe-Co DSC) and planar Fe-Co sites (planar-Fe-Co DSC). Remarkably, the planar-Fe-Co DSC has excellent OER performance superior to stereo-Fe-Co DSC. DFT calculations and experiments including isotope differential electrochemical mass spectrometry, in situ infrared spectroscopy, and in situ Raman reveal the *O intermediates can be directly coupled to form *O-O* rather than *OOH by both the DSCs, which could overcome the limitation of four electron transfer steps in OER. Especially, the proper Fe-Co distance and steric direction of the planar-Fe-Co benefit the cooperation of dual sites to dehydrogenate intermediates into *O-O* than stereo-Fe-Co in the rate-determining step. This work provides valuable insights and support for further research and development of OER dual-site catalysts.
Collapse
Affiliation(s)
- Taiyan Zhang
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Jingjing Jiang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis),Beijing100094, People’s Republic of China
| | - Wenming Sun
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Shuyan Gong
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis),Beijing100094, People’s Republic of China
| | - Yang Tian
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing100084, People’s Republic of China
| |
Collapse
|
64
|
Baldinelli L, Rodriguez GM, D'Ambrosio I, Grigoras AM, Vivani R, Latterini L, Macchioni A, De Angelis F, Bistoni G. Harnessing the electronic structure of active metals to lower the overpotential of the electrocatalytic oxygen evolution reaction. Chem Sci 2024; 15:1348-1363. [PMID: 38274069 PMCID: PMC10806668 DOI: 10.1039/d3sc05891c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Despite substantial advancements in the field of the electrocatalytic oxygen evolution reaction (OER), the efficiency of earth-abundant electrocatalysts remains far from ideal. The difficulty stems from the complex nature of the catalytic system, which limits our fundamental understanding of the process and thus the possibility of a rational improvement of performance. Herein, we shed light on the role played by the tunable 3d configuration of the metal centers in determining the OER catalytic activity by combining electrochemical and spectroscopic measurements with an experimentally validated computational protocol. One-dimensional coordination polymers based on Fe, Co and Ni held together by an oxonato linker were selected as a case study because of their well-defined electronic and geometric structure in the active site, which can be straightforwardly correlated with their catalytic activity. Novel heterobimetallic coordination polymers were also considered, in order to shed light on the cooperativity effects of different metals. Our results demonstrate the fundamental importance of electronic structure effects such as metal spin and oxidation state evolutions along the reaction profile to modulate ligand binding energies and increase catalyst efficiency. We demonstrated that these effects could in principle be exploited to reduce the overpotential of the electrocatalytic OER below its theoretical limit, and we provide basic principles for the development of coordination polymers with a tailored electronic structure and activity.
Collapse
Affiliation(s)
- Lorenzo Baldinelli
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Gabriel Menendez Rodriguez
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Iolanda D'Ambrosio
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Amalia Malina Grigoras
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Riccardo Vivani
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi Di Perugia Via del Liceo 06123 Perugia Italy
| | - Loredana Latterini
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Alceo Macchioni
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Filippo De Angelis
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC) 06123 Perugia Italy
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University Al Khobar 31952 Saudi Arabia
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University Suwon 440-746 Korea
| | - Giovanni Bistoni
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| |
Collapse
|
65
|
Luo L, Xu J, Wan Q, Han Y, Li M, Cui D, Chen R, Tang Z, Cui X, Xin X, Li X, Xiang Y, Dong H, Lin L, Sun Z, Sun G. Highly Ordered Hierarchical Macro-Mesoporous Carbon-Supported Cobalt Electrocatalyst for Efficient Oxygen Evolution Reaction. Chem Asian J 2023:e202300946. [PMID: 38143244 DOI: 10.1002/asia.202300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023]
Abstract
Metal-organic frameworks (MOFs) and their derivatives have been extensively employed in Oxygen Evolution Reaction (OER) catalysts due to their significantly larger specific surface areas, distinct metal centers, and well-organized porous structures. However, the microporous structure of MOFs and their derivatives presents mass transfer resistance, limiting their further development. Drawing inspiration from hierarchical structures allowing for the transport and exchange of substances in the biological world, we designed and fabricated biomimetic layered porous structures within ZIF-67 and its derivatives. Based on this, we achieved a three-dimensional ordered layered porous nitrogen-doped carbon-coated magnetic cobalt catalyst (3DOLP Co@NDC) with a biomimetic pore structure. It is found that the 3DOLP Co@NDC (352 mV @10 mA cm-1 ) was better than Co@NDC (391 mV @10 mA cm-1 ). The introduction of a three-dimensional ordered layered porous structure is conducive to increasing the specific surface area of the material, increasing the electrochemical active area, and improving the catalytic performance of the material. The introduction of a three-dimensional ordered layered porous structure would help to build a bionic grade pore structure. The existence of biomimetic grade pore structure can effectively reduce the mass transfer resistance, improve the material exchange efficiency, and accelerate the reaction kinetics.
Collapse
Affiliation(s)
- Lanke Luo
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Jingshen Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Qiuhong Wan
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Yiting Han
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Mingxuan Li
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Dingwei Cui
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Runxuan Chen
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Zhangrong Tang
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xinjun Cui
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xin Xin
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xinchang Li
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Yulu Xiang
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Haohai Dong
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
66
|
Yao S, Wang S, Liu Y, Hou Z, Wang J, Gao X, Sun Y, Fu W, Nie K, Xie J, Yang Z, Yan YM. High Flux and Stability of Cationic Intercalation in Transition-Metal Oxides: Unleashing the Potential of Mn t 2g Orbital via Enhanced π-Donation. J Am Chem Soc 2023. [PMID: 38039528 DOI: 10.1021/jacs.3c08264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Transition-metal oxides (TMOs) often struggle with challenges related to low electronic conductivity and unsatisfactory cyclic stability toward cationic intercalation. In this work, we tackle these issues by exploring an innovative strategy: leveraging heightened π-donation to activate the t2g orbital, thereby enhancing both electron/ion conductivity and structural stability of TMOs. We engineered Ni-doped layered manganese dioxide (Ni-MnO2), which is characterized by a distinctive Ni-O-Mn bridging configuration. Remarkably, Ni-MnO2 presents an impressive capacitance of 317 F g-1 and exhibits a robust cyclic stability, maintaining 81.58% of its original capacity even after 20,000 cycles. Mechanism investigations reveal that the incorporation of Ni-O-Mn configurations stimulates a heightened π-donation effect, which is beneficial to the π-type orbital hybridization involving the O 2p and the t2g orbital of Mn, thereby accelerating charge-transfer kinetics and activating the redox capacity of the t2g orbital. Additionally, the charge redistribution from Ni to the t2g orbital of Mn effectively elevates the low-energy orbital level of Mn, thus mitigating the undesirable Jahn-Teller distortion. This results in a subsequent decrease in the electron occupancy of the π*-antibonding orbital, which promotes an overall enhancement in structural stability. Our findings pave the way for an innovative paradigm in the development of fast and stable electrode materials for intercalation energy storage by activating the low orbitals of the TM center from a molecular orbital perspective.
Collapse
Affiliation(s)
- Shuyun Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yuanming Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zishan Hou
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinrui Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xueying Gao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanfei Sun
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Weijie Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
67
|
Chen H, Xie H, Li B, Pang J, Shi R, Yang C, Zhao N, He C, Chen B, Liu E. A multisite dynamic synergistic oxygen evolution reaction mechanism of Fe-doped NiOOH: a first-principles study. Phys Chem Chem Phys 2023. [PMID: 38032048 DOI: 10.1039/d3cp04661c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Changing the composition is an important way to regulate the electrocatalytic performance of the oxygen evolution reaction (OER) for metallic compounds. Clarifying the synergistic mechanism among different compositions is a key scientific problem to be solved urgently. Here, based on first-principles calculations, a Ni-O-Fe multisite dynamic synergistic reaction mechanism (MDSM) for the OER of Fe-doped NiOOH (NiFeOOH) has been discovered. Based on the MDSM, Fe/O/Ni are triggered as the active sites in turn, resulting in an overpotential of 0.33 V. The factors affecting the deprotonation, O-O coupling, and O2 desorption during the OER process are analyzed. The electron channels related to the magnetic states among Fe-O-Ni is revealed, which results in the decoupling between OER sites and the oxidation reaction sites. O-O coupling and O2 desorption are affected by ferromagnetic coupling and the instability of the lattice O during the OER process, respectively. The results give a comprehensive understanding of the active sites in NiFeOOH and provide a new perspective on the synergistic effects among different compositions in metal compounds during the OER process.
Collapse
Affiliation(s)
- Hongpeng Chen
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Haonan Xie
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Bing Li
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Jinshuo Pang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Rongrong Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Chen Yang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Naiqin Zhao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Chunnian He
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Biao Chen
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Enzuo Liu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
68
|
Li J, Zheng C, Zhao E, Mao J, Cheng Y, Liu H, Hu Z, Ling T. Ferromagnetic ordering correlated strong metal-oxygen hybridization for superior oxygen reduction reaction activity. Proc Natl Acad Sci U S A 2023; 120:e2307901120. [PMID: 37844253 PMCID: PMC10614601 DOI: 10.1073/pnas.2307901120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/06/2023] [Indexed: 10/18/2023] Open
Abstract
The efficiency of transition-metal oxide materials toward oxygen-related electrochemical reactions is classically controlled by metal-oxygen hybridization. Recently, the unique magnetic exchange interactions in transition-metal oxides are proposed to facilitate charge transfer and reduce activation barrier in electrochemical reactions. Such spin/magnetism-related effects offer a new and rich playground to engineer oxide electrocatalysts, but their connection with the classical metal-oxygen hybridization theory remains an open question. Here, using the MnxVyOz family as a platform, we show that ferromagnetic (FM) ordering is intrinsically correlated with the strong manganese (Mn)-oxygen (O) hybridization of Mn oxides, thus significantly increasing the oxygen reduction reaction (ORR) activity. We demonstrate that this enhanced Mn-O hybridization in FM Mn oxides is closely associated with the generation of active Mn sites on the oxide surface and obtaining favorable reaction thermodynamics under operating conditions. As a result, FM-Mn2V2O7 with a high degree of Mn-O hybridization achieves a record high ORR activity. Our work highlights the potential applications of magnetic oxide materials with strong metal-oxygen hybridization in energy devices.
Collapse
Affiliation(s)
- Jisi Li
- School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Caiyan Zheng
- School of Physics, Nankai University, Tianjin300071, China
| | - Erling Zhao
- School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jing Mao
- School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Yahui Cheng
- Department of Electronics, Nankai University, Tianjin300350, China
| | - Hui Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin300071, China
| | - Tao Ling
- School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| |
Collapse
|
69
|
Guo W, Yang T, Zhang H, Zhou H, He M, Wei W, Liang W, Zhou Y, Yu T, Zhao H. Fe and Mo Co-Modulated Coral-like Nickel Pyrophosphate in situ Derived from Nickel-Foam for Oxygen Evolution. CHEMSUSCHEM 2023; 16:e202300633. [PMID: 37255481 DOI: 10.1002/cssc.202300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
A highly active catalyst for the oxygen evolution reaction (OER) is critical to achieve high efficiency in hydrogen generation from water splitting. Direct conversion of nickel foam (NF) into nickel-based catalysts has attracted intensive interest due to the tight interaction of the catalysts to the substrate surface. However, the catalytic performances are still far below expectation because of the problems of low catalyst amount, thin catalyst layer, and small active area caused by the limitations of the synthesis method. Herein, we develop a Fe3+ -induced synthesis strategy to transform the NF surface into a thicker catalyst layer. In addition to the excellent conductivity and high stability, the as-prepared FeMo-Ni2 P2 O7 /NF catalysts expose more active sites and facilitate mass transfer due to their thicker catalyst layer and highly dense coral-like micro-nano structure. Furthermore, the Mo, Fe co-modulation optimizes the adsorption free energies of the OER intermediates, boosting catalytic activities. Its catalytic activity is among the highest, and it exhibits a small Tafel slope of 34.71 mV dec-1 and a low overpotential of 161 mV for delivering a current density of 100 mA cm-2 compared to reported Ni-based catalysts. The present strategy can be further used in the design of other catalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Wen Guo
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Tao Yang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Hongyan Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Hao Zhou
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Maoshuai He
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Wenxian Wei
- Testing Center, Yangzhou University, 225009, Yangzhou, P. R. China
| | - Wenjie Liang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Yilin Zhou
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Tingting Yu
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Hong Zhao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| |
Collapse
|
70
|
Chen M, Zhou W, Ye K, Yuan C, Zhu M, Yu H, Yang H, Huang H, Wu Y, Zhang J, Zheng X, Shen J, Wang X, Wang S. External Fields Assisted Highly Efficient Oxygen Evolution Reaction of Confined 1T-VSe 2 Ferromagnetic Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300122. [PMID: 37144423 DOI: 10.1002/smll.202300122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/26/2023] [Indexed: 05/06/2023]
Abstract
As a clean and effective approach, the introduction of external magnetic fields to improve the performance of catalysts has attracted extensive attention. Owing to its room-temperature ferromagnetism, chemical stability, and earth abundance, VSe2 is expected to be a promising and cost-effective ferromagnetic electrocatalyst for the accomplishment of high-efficient spin-related OER kinetics. In this work, a facile pulsed laser deposition (PLD) method combined with rapid thermal annealing (RTA) treatment is used to successfully confine monodispersed 1T-VSe2 nanoparticles in amorphous carbon matrix. As expected, with external magnetic fields of 800 mT stimulation, the confined 1T-VSe2 nanoparticles exhibit highly efficient oxygen evolution reaction (OER) catalytic activity with an overpotential of 228 mV for 10 mA cm-2 and remarkable durability without deactivation after >100 h OER operation. The experimental results together with theoretical calculations illustrate that magnetic fields can facilitate the surface charge transfer dynamics of 1T-VSe2 , and modify the adsorption-free energy of *OOH, thus finally improving the intrinsic activity of the catalysts. This work realizes the application of ferromagnetic VSe2 electrocatalyst in highly efficient spin-dependent OER kinetics, which is expected to promote the application of transition metal chalcogenides (TMCs) in external magnetic field-assisted electrocatalysis.
Collapse
Affiliation(s)
- Mingyue Chen
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenda Zhou
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Kun Ye
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Mengyuan Zhu
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Yu
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongzhou Yang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Huang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanfei Wu
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingyan Zhang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinqi Zheng
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianxin Shen
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiao Wang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shouguo Wang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
71
|
Huang H, Huang A, Liu D, Han W, Kuo CH, Chen HY, Li L, Pan H, Peng S. Tailoring Oxygen Reduction Reaction Kinetics on Perovskite Oxides via Oxygen Vacancies for Low-Temperature and Knittable Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303109. [PMID: 37247611 DOI: 10.1002/adma.202303109] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Indexed: 05/31/2023]
Abstract
High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature-tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy-rich porous perovskite oxide (CaMnO3 ) nanofibers coated with reduced graphene oxide coating (V-CMO/rGO) are developed as the air electrode catalyst for low-temperature and knittable Zn-air batteries. V-CMO/rGO exhibits top-level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V-CMO/rGO drives knittable and flexible Zn-air batteries under a low temperature of -40 °C with high peak power density of 56 mW cm-2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment.
Collapse
Affiliation(s)
- Hongjiao Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Aoming Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Wentao Han
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
72
|
Wang Y, Meng C, Zhao L, Zhang J, Chen X, Zhou Y. Surface and near-surface engineering design of transition metal catalysts for promoting water splitting. Chem Commun (Camb) 2023. [PMID: 37334928 DOI: 10.1039/d3cc01593a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transition metal catalysts are widely used in the field of hydrogen production via water electrolysis. The surface state and near-surface environment of the catalysts greatly affect the efficiency of hydrogen production. Therefore, the rational design of surface engineering and near-surface engineering of transition metal catalysts can significantly improve the performance of water electrolysis. This review systematically introduces surface engineering strategies, including heteroatom doping, vacancy engineering, strain regulation, heterojunction effect, and surface reconstruction. These strategies optimize the surface electronic structure of the catalysts, expose more active sites, and promote the formation of highly active species, ultimately enhancing water electrolysis performance. Furthermore, near-surface engineering strategies, such as surface wettability, three-dimensional structure, high-curvature structure, external field assistance, and extra ion addition, are thoroughly discussed. These strategies expedite the mass transfer of reactants and gas products, improve the local chemical environment near the catalyst surface, and contribute toward achieving an industrial-level current density for overall water splitting. Finally, the key challenges faced by surface engineering and near-surface engineering of transition metal catalysts are highlighted and potential solutions are proposed. This review offers essential guidelines for the design and development of efficient transition metal catalysts for water electrolysis.
Collapse
Affiliation(s)
- Yanmin Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chao Meng
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Lei Zhao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jialin Zhang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xuemin Chen
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhou
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
73
|
Sun T, Tang Z, Zang W, Li Z, Li J, Li Z, Cao L, Dominic Rodriguez JS, Mariano COM, Xu H, Lyu P, Hai X, Lin H, Sheng X, Shi J, Zheng Y, Lu YR, He Q, Chen J, Novoselov KS, Chuang CH, Xi S, Luo X, Lu J. Ferromagnetic single-atom spin catalyst for boosting water splitting. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01407-1. [PMID: 37231143 DOI: 10.1038/s41565-023-01407-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Heterogeneous single-atom spin catalysts combined with magnetic fields provide a powerful means for accelerating chemical reactions with enhanced metal utilization and reaction efficiency. However, designing these catalysts remains challenging due to the need for a high density of atomically dispersed active sites with a short-range quantum spin exchange interaction and long-range ferromagnetic ordering. Here, we devised a scalable hydrothermal approach involving an operando acidic environment for synthesizing various single-atom spin catalysts with widely tunable substitutional magnetic atoms (M1) in a MoS2 host. Among all the M1/MoS2 species, Ni1/MoS2 adopts a distorted tetragonal structure that prompts both ferromagnetic coupling to nearby S atoms as well as adjacent Ni1 sites, resulting in global room-temperature ferromagnetism. Such coupling benefits spin-selective charge transfer in oxygen evolution reactions to produce triplet O2. Furthermore, a mild magnetic field of ~0.5 T enhances the oxygen evolution reaction magnetocurrent by ~2,880% over Ni1/MoS2, leading to excellent activity and stability in both seawater and pure water splitting cells. As supported by operando characterizations and theoretical calculations, a great magnetic-field-enhanced oxygen evolution reaction performance over Ni1/MoS2 is attributed to a field-induced spin alignment and spin density optimization over S active sites arising from field-regulated S(p)-Ni(d) hybridization, which in turn optimizes the adsorption energies for radical intermediates to reduce overall reaction barriers.
Collapse
Affiliation(s)
- Tao Sun
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, China
| | - Zhiyuan Tang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Zang
- Department of Materials Science and Engineering, Faculty of Engineering to College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zejun Li
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, China
| | - Jing Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zhihao Li
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Liang Cao
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Jan Sebastian Dominic Rodriguez
- Department of Physics, Tamkang University, New Taipei City, Taiwan
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Haomin Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xiao Hai
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Huihui Lin
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xiaoyu Sheng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jiwei Shi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yi Zheng
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Qian He
- Department of Materials Science and Engineering, Faculty of Engineering to College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Jingsheng Chen
- Department of Materials Science and Engineering, Faculty of Engineering to College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Kostya S Novoselov
- Department of Materials Science and Engineering, Faculty of Engineering to College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
| | - Cheng-Hao Chuang
- Department of Physics, Tamkang University, New Taipei City, Taiwan.
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, Singapore.
| | - Xin Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, China.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
74
|
Huang P, Meng M, Zhou G, Wang P, Wei W, Li H, Huang R, Liu F, Liu L. Dynamic orbital hybridization triggered spin-disorder renormalization via super-exchange interaction for oxygen evolution reaction. Proc Natl Acad Sci U S A 2023; 120:e2219661120. [PMID: 37186826 PMCID: PMC10214196 DOI: 10.1073/pnas.2219661120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
The oxygen evolution reaction (OER) underpins many aspects of energy storage and conversion in modern industry and technology, but which still be suffering from the dilemma of sluggish reaction kinetics and poor electrochemical performance. Different from the viewpoint of nanostructuring, this work focuses on an intriguing dynamic orbital hybridization approach to renormalize the disordering spin configuration in porous noble-metal-free metal-organic frameworks (MOFs) to accelerate the spin-dependent reaction kinetics in OER. Herein, we propose an extraordinary super-exchange interaction to reconfigure the domain direction of spin nets at porous MOFs through temporarily bonding with dynamic magnetic ions in electrolytes under alternating electromagnetic field stimulation, in which the spin renormalization from disordering low-spin state to high-spin state facilitates rapid water dissociation and optimal carrier migration, leading to a spin-dependent reaction pathway. Therefore, the spin-renormalized MOFs demonstrate a mass activity of 2,095.1 A gmetal-1 at an overpotential of 0.33 V, which is about 5.9 time of pristine ones. Our findings provide a insight into reconfiguring spin-related catalysts with ordering domain directions to accelerate the oxygen reaction kinetics.
Collapse
Affiliation(s)
- Peilin Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Ming Meng
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou466001, People’s Republic of China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Wenxian Wei
- Testing Center, Yangzhou University, Yangzhou225009, People’s Republic of China
| | - Hao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Rong Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Fuchi Liu
- Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guangxi Normal University, Guangxi541004, People’s Republic of China
| | - Lizhe Liu
- Jiangsu Key Laboratory for Nanotechnology and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing210093, People’s Republic of China
| |
Collapse
|
75
|
Zhang S, Cen M, Wang Q, Luo X, Peng W, Li Y, Zhang F, Fan X. Complete reconstruction of NiMoO 4/NiFe LDH for enhanced oxygen evolution reaction. Chem Commun (Camb) 2023; 59:3427-3430. [PMID: 36857619 DOI: 10.1039/d2cc06879f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The oxygen evolution reaction (OER) is a vital half-reaction in several electrochemical energy conversion devices. Herein, we report a hierarchical NiMoO4/NiFe LDH pre-catalyst that enables complete reconstruction and fine structural inheritance, while exhibiting a low overpotential of 188 mV at 10 mA cm-2 in 1.0 M KOH.
Collapse
Affiliation(s)
- Shuya Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Mingjun Cen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Qianqiao Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Xinyu Luo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Wenchao Peng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Yang Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Fengbao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Xiaobin Fan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| |
Collapse
|
76
|
Tian W, Li L, Zhu G. Interface Engineering of Oxygen-Vacancy-Rich VO-NiFe2O4@Ni2P Heterostructure for Highly Efficient Oxygen Evolution Reaction. Catal Letters 2023. [DOI: 10.1007/s10562-023-04301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
77
|
Cao A, Nørskov JK. Spin Effects in Chemisorption and Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Ang Cao
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Jens K. Nørskov
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
78
|
Wang C, Zhai P, Xia M, Liu W, Gao J, Sun L, Hou J. Identification of the Origin for Reconstructed Active Sites on Oxyhydroxide for Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209307. [PMID: 36408935 DOI: 10.1002/adma.202209307] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The regulation of atomic and electronic structures of active sites plays an important role in the rational design of oxygen evolution reaction (OER) catalysts toward electrocatalytic hydrogen generation. However, the precise identification of the active sites for surface reconstruction behavior during OER remains elusive for water-alkali electrolysis. Herein, irreversible reconstruction behavior accompanied by copper dynamic evolution for cobalt iron layered double hydroxide (CoFe LDH) precatalyst to form CoFeCuOOH active species with high-valent Co species is reported, identifying the origin of reconstructed active sites through operando UV-Visible (UV-vis), in situ Raman, and X-ray absorption fine-structure (XAFS) spectroscopies. Density functional theory analysis rationalizes this typical electronic structure evolution causing the transfer of intramolecular electrons to form ligand holes, promoting the reconstruction of active sites. Specifically, unambiguous identification of active sites for CoFeCuOOH is explored by in situ 18 O isotope-labeling differential electrochemical mass spectrometry (DEMS) and supported by theoretical calculation, confirming mechanism switch to oxygen-vacancy-site mechanism (OVSM) pathway on lattice oxygen. This work enables to elucidate the vital role of dynamic active-site generation and the representative contribution of OVSM pathway for efficient OER performance.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Mingyue Xia
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, P. R. China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
79
|
Bu F, Chen C, Yu Y, Hao W, Zhao S, Hu Y, Qin Y. Boosting Benzene Oxidation with a Spin-State-Controlled Nuclearity Effect on Iron Sub-Nanocatalysts. Angew Chem Int Ed Engl 2023; 62:e202216062. [PMID: 36412226 DOI: 10.1002/anie.202216062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
A fundamental understanding of the nature of nuclearity effects is important for the rational design of superior sub-nanocatalysts with low nuclearity, but remains a long-standing challenge. Using atomic layer deposition, we precisely synthesized Fe sub-nanocatalysts with tunable nuclearity (Fe1 -Fe4 ) anchored on N,O-co-doped carbon nanorods (NOC). The electronic properties and spin configuration of the Fe sub-nanocatalysts were nuclearity dependent and dominated the H2 O2 activation modes and adsorption strength of active O species on Fe sites toward C-H oxidation. The Fe1 -NOC single atom catalyst exhibits state-of-the-art activity for benzene oxidation to phenol, which is ascribed to its unique coordination environment (Fe1 N2 O3 ) and medium spin state (t2g 4 eg 1 ); turnover frequencies of 407 h-1 at 25 °C and 1869 h-1 at 60 °C were obtained, which is 3.4, 5.7, and 13.6 times higher than those of Fe dimer, trimer, and tetramer catalysts, respectively.
Collapse
Affiliation(s)
- Fanle Bu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoqiu Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, China.,State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Yu
- Department of Materials Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Wentao Hao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Yongfeng Hu
- University of Saskatchewan, Saskatoon, Canada
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
80
|
Lin L, Xin R, Yuan M, Wang T, Li J, Xu Y, Xu X, Li M, Du Y, Wang J, Wang S, Jiang F, Wu W, Lu C, Huang B, Sun Z, Liu J, He J, Sun G. Revealing Spin Magnetic Effect of Iron-Group Layered Double Hydroxides with Enhanced Oxygen Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Ruiyun Xin
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Mengwei Yuan
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Tongyue Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jie Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yunming Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Xuhui Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Mingxuan Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yu Du
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jianing Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Shuyi Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Fubin Jiang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Wenxin Wu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Caicai Lu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Binbin Huang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jian Liu
- Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Jinlu He
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Genban Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing100875, China
| |
Collapse
|
81
|
Gao M, Fan J, Li X, Wang Q, Li D, Feng J, Duan X. A Carbon-Negative Hydrogen Production Strategy: CO 2 Selective Capture with H 2 Production. Angew Chem Int Ed Engl 2023; 62:e202216527. [PMID: 36599818 DOI: 10.1002/anie.202216527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
We reported a strategy of carbon-negative H2 production in which CO2 capture was coupled with H2 evolution at ambient temperature and pressure. For this purpose, carbonate-type Cux Mgy Fez layered double hydroxide (LDH) was preciously constructed, and then a photocatalysis reaction of interlayer CO3 2- reduction with glycerol oxidation was performed as driving force to induce the electron storage on LDH layers. With the participation of pre-stored electrons, CO2 was captured to recover interlayer CO3 2- in presence of H2 O, accompanied with equivalent H2 production. During photocatalysis reaction, Cu0.6 Mg1.4 Fe1 exhibited a decent CO evolution amount of 1.63 mmol g-1 and dihydroxyacetone yield of 3.81 mmol g-1 . In carbon-negative H2 production process, it showed an exciting CO2 capture quantity of 1.61 mmol g-1 and H2 yield of 1.44 mmol g-1 . Besides, this system possessed stable operation capability under simulated flu gas condition with negligible performance loss, exhibiting application prospect.
Collapse
Affiliation(s)
- Mingyu Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiaxuan Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xintao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qian Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing, 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing, 100029, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
82
|
Gong X, Jiang Z, Zeng W, Hu C, Luo X, Lei W, Yuan C. Alternating Magnetic Field Induced Magnetic Heating in Ferromagnetic Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution Reaction. NANO LETTERS 2022; 22:9411-9417. [PMID: 36410739 DOI: 10.1021/acs.nanolett.2c03359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alternating magnetic field (AMF) is a promising methodology for further improving magnetic single-atom catalyst (SAC) activity toward oxygen evolution reaction (OER). Herein, the anchoring of Co single atoms on MoS2 support (Co@MoS2), leading to the appearance of in-plane room-temperature ferromagnetic properties, is favorable for the parallel spin arrangement of oxygen atoms when a magnetic field is applied. Moreover, field-assisted electrocatalytic experiments confirmed that the spin direction of Co@MoS2 is changing with the applied magnetic field. On this basis, under AMF, the active sites in ferromagnetic Co@MoS2 were heated by exploiting the magnetic heating generated from spin polarization flip of these SACs to further expedite OER efficiency, with overpotential at 10 mA cm-2 reduced from 317 mV to 250 mV. This work introduces a feasible and efficient approach to enhance the OER performance of Co@MoS2 by AMF, shedding some light on the further development of magnetic SACs for energy conversion.
Collapse
Affiliation(s)
- Xunguo Gong
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Zhenzhen Jiang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Wei Zeng
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Ce Hu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Xingfang Luo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Wen Lei
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| |
Collapse
|
83
|
Do VH, Lee JM. Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications. ACS NANO 2022; 16:17847-17890. [PMID: 36314471 DOI: 10.1021/acsnano.2c08919] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Over the past few decades, development of electrocatalysts for energy applications has extensively transitioned from trial-and-error methodologies to more rational and directed designs at the atomic levels via either nanogeometric optimization or modulating electronic properties of active sites. Regarding the modulation of electronic properties, nonprecious transition metal-based materials have been attracting large interest due to the capability of versatile tuning d-electron configurations expressed through the flexible orbital occupancy and various possible degrees of spin polarization. Herein, recent advances in tailoring electronic properties of the transition-metal atoms for intrinsically enhanced electrocatalytic performances are reviewed. We start with discussions on how orbital occupancy and spin polarization can govern the essential atomic level processes, including the transport of electron charge and spin in bulk, reactive species adsorption on the catalytic surface, and the electron transfer between catalytic centers and adsorbed species as well as reaction mechanisms. Subsequently, different techniques currently adopted in tuning electronic structures are discussed with particular emphasis on theoretical rationale and recent practical achievements. We also highlight the promises of the recently established computational design approaches in developing electrocatalysts for energy applications. Lastly, the discussion is concluded with perspectives on current challenges and future opportunities. We hope this review will present the beauty of the structure-activity relationships in catalysis sciences and contribute to advance the rational development of electrocatalysts for energy conversion applications.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| |
Collapse
|
84
|
Zhang CY, Zhang C, Sun GW, Pan JL, Gong L, Sun GZ, Biendicho JJ, Balcells L, Fan XL, Morante JR, Zhou JY, Cabot A. Spin Effect to Promote Reaction Kinetics and Overall Performance of Lithium‐Sulfur Batteries under External Magnetic Field. Angew Chem Int Ed Engl 2022; 61:e202211570. [DOI: 10.1002/anie.202211570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yue Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Chaoqi Zhang
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Guo Wen Sun
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
| | - Jiang Long Pan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
| | - Li Gong
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Geng Zhi Sun
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Jordi Jacas Biendicho
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Lluís Balcells
- Institut de Ciència de Materials de Barcelona Campus de la UAB 08193 Bellaterra Catalonia Spain
| | - Xiao Long Fan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
| | - Joan Ramon Morante
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
| | - Jin Yuan Zhou
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China
- School of Physics and Electronic Information Engineering Qinghai Normal University Xining 810008 China
| | - Andreu Cabot
- Catalonia Institute for Energy Research, IREC Sant Adrià de Besòs 08930 Barcelona Spain
- Catalan Institution for Research and Advanced Studies, ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
85
|
Zhang G, Liu X, Wang L, Xing G, Tian C, Fu H. Copper Collector Generated Cu +/Cu 2+ Redox Pair for Enhanced Efficiency and Lifetime of Zn-Ni/Air Hybrid Battery. ACS NANO 2022; 16:17139-17148. [PMID: 36130105 DOI: 10.1021/acsnano.2c07542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although Zn-Ni/air hybrid batteries exhibit improved energy efficiency, power density, and stability compared with Zn-air batteries, they still cannot satisfy the high requirements of commercialization. Herein, the Cu+/Cu2+ redox pair generated from a copper collector has been introduced to construct the hybrid battery system by combining Zn-air and Zn-Cu/Zn-Ni, in which CuXO@NiFe-LDH and Co-N-C dodecahedrons are respectively adopted as oxygen evolution (OER) and oxygen reduction (ORR) electrodes. For fabricating CuXO@NiFe-LDH, the Cu foam collector is oxidized to in situ form 1D CuXO nanoneedle arrays, which could generate the Cu+/Cu2+ redox pair to enhance battery efficiency by providing an extra charging-discharging voltage plateau to reduce the charging voltage and increase the discharge voltage. Then, the 2D NiFe hydrotalcite nanosheets grow on the nanoneedle arrays to obtain 3D interdigital structures, facilitating the intimate contact of the ORR/OER electrode and electrolyte by providing a multichannel structure. Thus, the battery system could endow a high energy efficiency (79.6% at 10 mA cm-2), an outstanding energy density (940 Wh kg-1), and an ultralong lifetime (500 h). Significantly, it could stably operate under harsh environments, such as oxygen-free and any humidity. In situ X-ray diffraction (XRD) combined with ex situ X-ray photoelectron spectroscopy (XPS) analyses demonstrate the reversible process of Cu-O-Cu ↔ Cu-O and Ni-O ↔ Ni-O-O-H during the charging/discharging, which are responsible for the enhanced efficiency and lifetime of battery.
Collapse
Affiliation(s)
- Guangying Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Xu Liu
- Department of Chemistry, College of Arts and Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Gengyu Xing
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
86
|
Chakraborty S, Marappa S, Agarwal S, Bagchi D, Rao A, Vinod CP, Peter SC, Singh A, Eswaramoorthy M. Improvement in Oxygen Evolution Performance of NiFe Layered Double Hydroxide Grown in the Presence of 1T-Rich MoS 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31951-31961. [PMID: 35796762 DOI: 10.1021/acsami.2c06210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
NiFe layered double hydroxide (NiFe LDH) grown in the presence of MoS2 (rich in 1T phase) shows exceptional performance metrics for alkaline oxygen evolution reaction (OER) in this class of composites. The as-prepared NiFe LDH/MoS2 composite (abbreviated as MNF) exhibits a low overpotential (η10) of 190 mV; a low Tafel slope of 31 mV dec-1; and more importantly, a high stability in its performance manifested by the delivery of current output for 45 h. It is important to note that this could be achieved with an exceedingly low loading of 0.14 mg cm-2. The mass activity of this composite (97 A g-1) is about 14 times greater than that of the conventional RuO2 (7 A g-1) at η = 200 mV. When normalized with respect to the total metal content, a mass activity of 1000 A g-1 (η = 300 mV) was achieved. Impedance analysis further reveals that the significant reduction in charge-transfer resistance and hence high current density (5 times greater as compared to NiFe LDH at η = 300 mV) observed for MNF is associated with interfacial adsorption kinetics of intermediates (R1). Significant enhancement in the intrinsic activity of MNF over LDH has been observed through normalization of current with the electrochemically active surface area. Computational studies suggest that the Ni centers in the composite act as the active sites for OER, which is well-corroborated with the observed postreaction appearance of Ni3+ species.
Collapse
Affiliation(s)
- Soumita Chakraborty
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru 560064, India
| | - Shivanna Marappa
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru 560064, India
| | - Sakshi Agarwal
- Materials Research Centre, IISc, Bengaluru, Karnataka 560012, India
| | - Debabrata Bagchi
- New Chemistry Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru 560064, India
| | - Ankit Rao
- Centre for Nano Science and Engineering, IISc, Bengaluru, Karnataka 560012, India
| | | | - Sebastian C Peter
- New Chemistry Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru 560064, India
| | - Abhishek Singh
- Materials Research Centre, IISc, Bengaluru, Karnataka 560012, India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), JNCASR, Bengaluru 560064, India
| |
Collapse
|