51
|
Yewdall NA, Allison TM, Pearce FG, Robinson CV, Gerrard JA. Self-assembly of toroidal proteins explored using native mass spectrometry. Chem Sci 2018; 9:6099-6106. [PMID: 30090298 PMCID: PMC6053953 DOI: 10.1039/c8sc01379a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
The peroxiredoxins are a well characterised family of toroidal proteins which can self-assemble into a striking array of quaternary structures, including protein nanotubes, making them attractive as building blocks for nanotechnology.
The peroxiredoxins are a well characterised family of toroidal proteins which can self-assemble into a striking array of quaternary structures, including protein nanotubes, making them attractive as building blocks for nanotechnology. Tools to characterise these assemblies are currently scarce. Here, assemblies of peroxiredoxin proteins were examined using native mass spectrometry and complementary solution techniques. We demonstrated unequivocally that tube formation is fully reversible, a useful feature in a molecular switch. Simple assembly of individual toroids was shown to be tunable by pH and the presence of a histidine tag. Collision induced dissociation experiments on peroxiredoxin rings revealed a highly unusual symmetrical disassembly pathway, consistent with the structure disassembling as a hexamer of dimers. This study provides the foundation for the rational design and precise characterisation of peroxiredoxin protein structures where self-assembly can be harnessed as a key feature for applications in nanotechnology.
Collapse
Affiliation(s)
- N Amy Yewdall
- School of Biological Sciences , School of Chemical Sciences , University of Auckland , Auckland 1010 , New Zealand.,Biomolecular Interaction Centre , School of Biological Sciences , University of Canterbury , Christchurch 8140 , New Zealand
| | - Timothy M Allison
- Department of Chemistry , University of Oxford , Oxford OX1 5QY , UK
| | - F Grant Pearce
- School of Biological Sciences , School of Chemical Sciences , University of Auckland , Auckland 1010 , New Zealand
| | - Carol V Robinson
- Department of Chemistry , University of Oxford , Oxford OX1 5QY , UK
| | - Juliet A Gerrard
- Biomolecular Interaction Centre , School of Biological Sciences , University of Canterbury , Christchurch 8140 , New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology , Victoria University , Wellington 6140 , New Zealand
| |
Collapse
|
52
|
Rosenberg J, Parker WR, Cammarata MB, Brodbelt JS. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1323-1326. [PMID: 29626295 PMCID: PMC6004247 DOI: 10.1007/s13361-018-1918-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 02/11/2018] [Accepted: 02/11/2018] [Indexed: 05/23/2023]
Abstract
UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu . UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT . Graphical Abstract.
Collapse
Affiliation(s)
- Jake Rosenberg
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - W Ryan Parker
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael B Cammarata
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
53
|
Sanders JD, Grinfeld D, Aizikov K, Makarov A, Holden DD, Brodbelt JS. Determination of Collision Cross-Sections of Protein Ions in an Orbitrap Mass Analyzer. Anal Chem 2018; 90:5896-5902. [DOI: 10.1021/acs.analchem.8b00724] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- James D. Sanders
- Department of Chemistry University of Texas at Austin Austin, Texas 78712, United States
| | | | | | | | - Dustin D. Holden
- Department of Chemistry University of Texas at Austin Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry University of Texas at Austin Austin, Texas 78712, United States
| |
Collapse
|
54
|
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
55
|
Chandler SA, Benesch JL. Mass spectrometry beyond the native state. Curr Opin Chem Biol 2017; 42:130-137. [PMID: 29288996 DOI: 10.1016/j.cbpa.2017.11.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
Native mass spectrometry allows the study of proteins by probing in vacuum the interactions they form in solution. It is a uniquely useful approach for structural biology and biophysics due to the high resolution of separation it affords, allowing the concomitant interrogation of multiple protein components with high mass accuracy. At its most basic, native mass spectrometry reports the mass of intact proteins and the assemblies they form in solution. However, the opportunities for more detailed characterisation are extensive, enabled by the exquisite control of ion motion that is possible in vacuum. Here we describe recent developments in mass spectrometry approaches to the structural interrogation of proteins both in, and beyond, their native state.
Collapse
Affiliation(s)
- Shane A Chandler
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Justin Lp Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
56
|
R Julian R. The Mechanism Behind Top-Down UVPD Experiments: Making Sense of Apparent Contradictions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1823-1826. [PMID: 28702929 PMCID: PMC5711567 DOI: 10.1007/s13361-017-1721-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 05/21/2023]
Abstract
Top-down ultraviolet photodissociation (UVPD) allows greater sequence coverage than any other currently available method, often fracturing the vast majority of peptide bonds in whole proteins. At the same time, UVPD can be used to dissociate noncovalent complexes assembled from multiple proteins without breaking any covalent bonds. Although the utility of these experiments is unquestioned, the mechanism underlying these seemingly contradictory results has been the subject of many discussions. Herein, some fundamental considerations of photochemistry are briefly summarized within the context of a proposed mechanism that rationalizes the experimental results obtained by UVPD. Considerations for future instrument design, in terms of wavelength choice and power, are briefly discussed. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ryan R Julian
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| |
Collapse
|
57
|
Konermann L. Molecular Dynamics Simulations on Gas-Phase Proteins with Mobile Protons: Inclusion of All-Atom Charge Solvation. J Phys Chem B 2017; 121:8102-8112. [DOI: 10.1021/acs.jpcb.7b05703] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
58
|
Cristobal A, Marino F, Post H, van den Toorn HWP, Mohammed S, Heck AJR. Toward an Optimized Workflow for Middle-Down Proteomics. Anal Chem 2017; 89:3318-3325. [PMID: 28233997 PMCID: PMC5362747 DOI: 10.1021/acs.analchem.6b03756] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Mass
spectrometry (MS)-based proteomics workflows can crudely be
classified into two distinct regimes, targeting either relatively
small peptides (i.e., 0.7 kDa < Mw <
3.0 kDa) or small to medium sized intact proteins (i.e., 10 kDa < Mw < 30 kDa), respectively, termed bottom-up
and top-down proteomics. Recently, a niche has started to be explored
covering the analysis of middle-range peptides (i.e., 3.0 kDa < Mw < 10 kDa), aptly termed middle-down proteomics.
Although middle-down proteomics can follow, in principle, a modular
workflow similar to that of bottom-up proteomics, we hypothesized
that each of these modules would benefit from targeted optimization
to improve its overall performance in the analysis of middle-range
sized peptides. Hence, to generate middle-range sized peptides from
cellular lysates, we explored the use of the proteases Asp-N and Glu-C
and a nonenzymatic acid induced cleavage. To increase the depth of
the proteome, a strong cation exchange (SCX) separation, carefully
tuned to improve the separation of longer peptides, combined with
reversed phase-liquid chromatography (RP-LC) using columns packed
with material possessing a larger pore size, was used. Finally, after
evaluating the combination of potentially beneficial MS settings,
we also assessed the peptide fragmentation techniques, including higher-energy
collision dissociation (HCD), electron-transfer dissociation (ETD),
and electron-transfer combined with higher-energy collision dissociation
(EThcD), for characterization of middle-range sized peptides. These
combined
improvements clearly improve the detection and sequence coverage of
middle-range peptides and should guide researchers to explore further
how middle-down proteomics may lead to an improved proteome coverage,
beneficial for, among other things, the enhanced analysis of (co-occurring)
post-translational modifications.
Collapse
Affiliation(s)
- Alba Cristobal
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Henk W P van den Toorn
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Departments of Chemistry and Biochemistry, University of Oxford , New Biochemistry Building, South Parks Road, Oxford, OX1 3QU Oxfordshire, United Kingdom
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
59
|
Li H, Sheng Y, McGee W, Cammarata M, Holden D, Loo JA. Structural Characterization of Native Proteins and Protein Complexes by Electron Ionization Dissociation-Mass Spectrometry. Anal Chem 2017; 89:2731-2738. [PMID: 28192979 DOI: 10.1021/acs.analchem.6b02377] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has played an increasingly important role in the identification and structural and functional characterization of proteins. In particular, the use of tandem mass spectrometry has afforded one of the most versatile methods to acquire structural information for proteins and protein complexes. The unique nature of electron capture dissociation (ECD) for cleaving protein backbone bonds while preserving noncovalent interactions has made it especially suitable for the study of native protein structures. However, the intra- and intermolecular interactions stabilized by hydrogen bonds and salt bridges can hinder the separation of fragments even with preactivation, which has become particularly problematic for the study of large macromolecular proteins and protein complexes. Here, we describe the capabilities of another activation method, 30 eV electron ionization dissociation (EID), for the top-down MS characterization of native protein-ligand and protein-protein complexes. Rich structural information that cannot be delivered by ECD can be generated by EID. EID allowed for the comparison of the gas-phase and the solution-phase structural stability and unfolding process of human carbonic anhydrase I (HCA-I). In addition, the EID fragmentation patterns reflect the structural similarities and differences among apo-, Zn-, and Cu,Zn-superoxide dismutase (SOD1) dimers. In particular, the structural changes due to Cu-binding and a point mutation (G41D) were revealed by EID-MS. The performance of EID was also compared to that of 193 nm ultraviolet photodissociation (UVPD), which allowed us to explore their qualitative similarities and differences as potential valuable tools for the MS study of native proteins and protein complexes.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States
| | - Yuewei Sheng
- Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - William McGee
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Michael Cammarata
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Dustin Holden
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
60
|
Holden DD, Brodbelt JS. Improving Performance Metrics of Ultraviolet Photodissociation Mass Spectrometry by Selective Precursor Ejection. Anal Chem 2016; 89:837-846. [PMID: 28105830 DOI: 10.1021/acs.analchem.6b03777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Confident protein identifications derived from high-throughput bottom-up and top-down proteomics workflows depend on acquisition of thousands of tandem mass spectrometry (MS/MS) spectra with adequate signal-to-noise and accurate mass assignments of the fragment ions. Ultraviolet photodissociation (UVPD) using 193 nm photons has proven to be well-suited for activation and fragmentation of peptides and proteins in ion trap mass spectrometers, but the spectral signal-to-noise ratio (S/N) is typically lower than that obtained from collisional activation methods. The lower S/N is attributed to the dispersion of ion current among numerous fragment ion channels (a,b,c,x,y,z ions). In addition, frequently UVPD is performed such that a relatively large population of precursor ions remains undissociated after the UV photoactivation period in order to prevent overdissociation into small uninformative or internal fragment ions. Here we report a method to improve spectral S/N and increase the accuracy of mass assignments of UVPD mass spectra via resonance ejection of undissociated precursor ions after photoactivation. This strategy, termed precursor ejection UVPD or PE-UVPD, allows the ion trap to be filled with more ions prior to UVPD while at the same time alleviating the space charge problems that would otherwise contribute to the skewing of mass assignments and reduction of S/N. Here we report the performance gains by implementation of PE-UVPD for peptide analysis in an ion trap mass spectrometer.
Collapse
Affiliation(s)
- Dustin D Holden
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
61
|
Yan J, Zhou M, Gilbert JD, Wolff JJ, Somogyi Á, Pedder RE, Quintyn RS, Morrison LJ, Easterling ML, Paša-Tolić L, Wysocki VH. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Anal Chem 2016; 89:895-901. [DOI: 10.1021/acs.analchem.6b03986] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Yan
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mowei Zhou
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Joshua D. Gilbert
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Árpád Somogyi
- OSU
Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Royston S. Quintyn
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lindsay J. Morrison
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Ljiljana Paša-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vicki H. Wysocki
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|