51
|
Chen C, Liu W, Tian S, Hong T. Novel Surface-Enhanced Raman Spectroscopy Techniques for DNA, Protein and Drug Detection. SENSORS 2019; 19:s19071712. [PMID: 30974797 PMCID: PMC6480126 DOI: 10.3390/s19071712] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique in which the Raman scattering signal strength of molecules, absorbed by rough metals or the surface of nanoparticles, experiences an exponential growth (10³-10⁶ times and even 1014-1015 times) because of electromagnetic or chemical enhancements. Nowadays, SERS has attracted tremendous attention in the field of analytical chemistry due to its specific advantages, including high selectivity, rich informative spectral properties, nondestructive testing, and the prominent multiplexing capabilities of Raman spectroscopy. In this review, we present the applications of state-of-the-art SERS for the detection of DNA, proteins and drugs. Moreover, we focus on highlighting the merits and mechanisms of achieving enhanced SERS signals for food safety and clinical treatment. The machine learning techniques, combined with SERS detection, are also indicated herein. This review concludes with recommendations for future studies on the development of SERS.
Collapse
Affiliation(s)
- Chuanpin Chen
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Wenfang Liu
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Sanping Tian
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Tingting Hong
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
52
|
Bruzas I, Lum W, Gorunmez Z, Sagle L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst 2019; 143:3990-4008. [PMID: 30059080 DOI: 10.1039/c8an00606g] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become an essential ultrasensitive analytical tool for biomolecular analysis of small molecules, macromolecular proteins, and even cells. SERS enables label-free, direct detection of molecules through their intrinsic Raman fingerprint. In particular, protein and lipid bilayers are dynamic three-dimensional structures that necessitate label-free methods of characterization. Beyond direct detection and quantitation, the structural information contained in SERS spectra also enables deeper biophysical characterization of biomolecules near metallic surfaces. Therefore, SERS offers enormous potential for such systems, although making measurements in a nonperturbative manner that captures the full range of interactions and activity remains a challenge. Many of these challenges have been overcome through advances in SERS substrate development, which have expanded the applications and targets of SERS for direct biomolecular quantitation and biophysical characterization. In this review, we will first discuss different categories of SERS substrates including solution-phase, solid-supported, tip-enhanced Raman spectroscopy (TERS), and single-molecule substrates for biomolecular analysis. We then discuss detection of protein and biological lipid membranes. Lastly, biophysical insights into proteins, lipids and live cells gained through SERS measurements of these systems are reviewed.
Collapse
Affiliation(s)
- Ian Bruzas
- Department of Chemistry, University of Cincinnati, 301 Clifton Court, Cincinnati, OH 45221, USA.
| | | | | | | |
Collapse
|
53
|
Non-enzymatic glucose sensor based on molecularly imprinted polymer: a theoretical, strategy fabrication and application. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04237-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Muthurasu A, Kim HY. Fabrication of Hierarchically Structured MOF‐Co
3
O
4
on Well‐aligned CuO Nanowire with an Enhanced Electrocatalytic Property. ELECTROANAL 2019. [DOI: 10.1002/elan.201800823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alagan Muthurasu
- Department of BIN Convergence TechnologyChonbuk National University Republic Korea
| | - Hak Yong Kim
- Department of BIN Convergence TechnologyChonbuk National University Republic Korea
- Department of Organic Materials and Fiber EngineeringChonbuk National University Jeonju 561-756 Republic of Korea
| |
Collapse
|
55
|
Henry AI, Ueltschi TW, McAnally MO, Van Duyne RP. Spiers Memorial Lecture. Surface-enhanced Raman spectroscopy: from single particle/molecule spectroscopy to ångstrom-scale spatial resolution and femtosecond time resolution. Faraday Discuss 2019; 205:9-30. [PMID: 28906524 DOI: 10.1039/c7fd00181a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Four decades on, surface-enhanced Raman spectroscopy (SERS) continues to be a vibrant field of research that is growing (approximately) exponentially in scope and applicability while pushing at the ultimate limits of sensitivity, spatial resolution, and time resolution. This introductory paper discusses some aspects related to all four of the themes for this Faraday Discussion. First, the wavelength-scanned SERS excitation spectroscopy (WS-SERES) of single nanosphere oligomers (viz., dimers, trimers, etc.), the distance dependence of SERS, the magnitude of the chemical enhancement mechanism, and the progress toward developing surface-enhanced femtosecond stimulated Raman spectroscopy (SE-FSRS) are discussed. Second, our efforts to develop a continuous, minimally invasive, in vivo glucose sensor based on SERS are highlighted. Third, some aspects of our recent work in single molecule SERS and the translation of that effort to ångstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS) and single molecule electrochemistry using electrochemical (EC)-TERS will be presented. Finally, we provide an overview of analytical SERS with our viewpoints on SERS substrates, approaches to address the analyte generality problem (i.e. target molecules that do not spontaneously adsorb and/or have Raman cross sections <10-29 cm2 sr-1), SERS for catalysis, and deep UV-SERS.
Collapse
Affiliation(s)
- Anne-Isabelle Henry
- Departments of Chemistry, Biomedical Engineering, and Applied Physics, Northwestern University, Evanston, IL 60208-3113, USA.
| | | | | | | |
Collapse
|
56
|
Zhang M, Liu Y, Wang J, Tang J. Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose. Mikrochim Acta 2019; 186:83. [DOI: 10.1007/s00604-018-3172-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/12/2018] [Indexed: 01/16/2023]
|
57
|
Cheng Y, Liu GW, Jain R, Pippin JW, Shankland SJ, Pun SH. Boronic acid copolymers for direct loading and acid-triggered release of Bis-T-23 in cultured podocytes. ACS Biomater Sci Eng 2018; 4:3968-3973. [PMID: 31259236 PMCID: PMC6599616 DOI: 10.1021/acsbiomaterials.8b01163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report an acid-reversible linker for triggered release of Bis-T-23, an experimental small molecule drug for kidney disease treatment that restores podocyte morphology during disease. Bis-T-23 contains catechols, which form an acid-reversible, covalent boronate ester bond with boronic acids. We synthesized phenylboronic acid-containing polymers using reversible addition-fragmentation chain transfer polymerization that were able to directly load and solubilize Bis-T-23. Because of the reversibility of the boronic ester bond, drug was released in its native form in a pH-dependent manner. The polymers rapidly trafficked into acidic compartments and did not exhibit cytotoxicity, and polymer-drug conjugates successfully delivered Bis-T-23 into cultured podocytes.
Collapse
Affiliation(s)
- Yilong Cheng
- Present address, Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi 710049, China
- Department of Bioengineering and Molecular Engineering & Sciences Institute University of Washington, 3720 15th Ave NE Seattle, WA 98195, USA
| | - Gary W. Liu
- Department of Bioengineering and Molecular Engineering & Sciences Institute University of Washington, 3720 15th Ave NE Seattle, WA 98195, USA
| | - Ritika Jain
- Department of Bioengineering and Molecular Engineering & Sciences Institute University of Washington, 3720 15th Ave NE Seattle, WA 98195, USA
| | - Jeffrey W. Pippin
- Department of Medicine, Division of Nephrology, School of Medicine, University of Washington, 750 Republican Street, E-179, Seattle, WA 98109, USA
| | - Stuart J. Shankland
- Department of Medicine, Division of Nephrology, School of Medicine, University of Washington, 750 Republican Street, E-179, Seattle, WA 98109, USA
| | - Suzie H. Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute University of Washington, 3720 15th Ave NE Seattle, WA 98195, USA
| |
Collapse
|
58
|
Yang D, Afroosheh S, Lee JO, Cho H, Kumar S, Siddique RH, Narasimhan V, Yoon YZ, Zayak AT, Choo H. Glucose Sensing Using Surface-Enhanced Raman-Mode Constraining. Anal Chem 2018; 90:14269-14278. [PMID: 30369240 DOI: 10.1021/acs.analchem.8b03420] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is a chronic disease, and its management focuses on monitoring and lowering a patient's glucose level to prevent further complications. By tracking the glucose-induced shift in the surface-enhanced Raman-scattering (SERS) emission of mercaptophenylboronic acid (MPBA), we have demonstrated fast and continuous glucose sensing in the physiologically relevant range from 0.1 to 30 mM and verified the underlying mechanism using numerical simulations. Bonding of glucose to MPBA suppresses the "breathing" mode of MPBA at 1071 cm-1 and energizes the constrained-bending mode at 1084 cm-1, causing the dominant peak to shift from 1071 to 1084 cm-1. MPBA-glucose bonding is also reversible, allowing continuous tracking of ambient glucose concentrations, and the MPBA-coated substrates showed very stable performance over a 30 day period, making the approach promising for long-term continuous glucose monitoring. Using Raman-mode-constrained, miniaturized SERS implants, we also successfully demonstrated intraocular glucose measurements in six ex vivo rabbit eyes within ±0.5 mM of readings obtained using a commercial glucose sensor.
Collapse
Affiliation(s)
- Daejong Yang
- Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.,Department of Mechanical & Automotive Engineering , Kongju National University , Cheonan 31080 , Republic of Korea
| | - Sajjad Afroosheh
- Department of Physics & Astronomy, Center for Photochemical Sciences , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Jeong Oen Lee
- Department of Electrical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Hyunjun Cho
- Department of Electrical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Shailabh Kumar
- Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Radwanul H Siddique
- Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Vinayak Narasimhan
- Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Young-Zoon Yoon
- Device Lab, Device & System Research Center , Samsung Advanced Institute of Technology (SAIT) , Suwon 16678 , Republic of Korea
| | - Alexey T Zayak
- Department of Physics & Astronomy, Center for Photochemical Sciences , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Hyuck Choo
- Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.,Department of Electrical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.,Device Lab, Device & System Research Center , Samsung Advanced Institute of Technology (SAIT) , Suwon 16678 , Republic of Korea
| |
Collapse
|
59
|
Quantitative Determination of Urine Glucose: Combination of Laminar Flow in Microfluidic Chip with SERS Probe Technique. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8163-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
60
|
Bruen D, Delaney C, Diamond D, Florea L. Fluorescent Probes for Sugar Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38431-38437. [PMID: 30360068 DOI: 10.1021/acsami.8b13365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, a new class of polymerizable boronic acid (BA) monomers are presented, which are used to generate soft hydrogels capable of accurate determination of saccharide concentration. By exploiting the interaction of these cationic BAs with an anionic fluorophore, 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (pyranine), a two-component sugar-sensing system was realized. In the presence of such cationic BAs ( o-BA, m-BA, and p-BA), the fluorescence of pyranine becomes quenched because of the formation of a nonfluorescent BA-fluorophore complex. Upon addition of saccharides, formation of a cyclic boronate ester results in dissociation of the nonfluorescent complex and recovery of the pyranine fluorescence. The response of this system was examined in solution with common monosaccharides, such as glucose, fructose, and galactose. Subsequent polymerization of the BA monomers yielded cross-linked hydrogels which showed similar reversible recovery of fluorescence in the presence of glucose.
Collapse
Affiliation(s)
- Danielle Bruen
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland
| | - Colm Delaney
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland
| | - Dermot Diamond
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland
| | - Larisa Florea
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland
| |
Collapse
|
61
|
Nguyen AH, Deutsch JM, Xiao L, Schultz ZD. Online Liquid Chromatography-Sheath-Flow Surface Enhanced Raman Detection of Phosphorylated Carbohydrates. Anal Chem 2018; 90:11062-11069. [PMID: 30119606 DOI: 10.1021/acs.analchem.8b02907] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Online detection and quantification of three phosphorylated carbohydrate molecules: glucose 1-phosphate, glucose 6-phosphate, and fructose 6-phosphate was achieved by coupling sheath-flow surface enhanced Raman spectroscopy (SERS) to liquid chromatography. The presence of an alkanethiol (hexanethiol) self-assembled monolayer adsorbed to a silver SERS-active substrate helps retain and concentrate the analytes of interest at the SERS substrate to improve the detection sensitivity significantly. Mixtures of 2 μM of phosphorylated carbohydrates in pure water as well as in cell culture media were successfully separated by HPLC, with identification using the sheath-flow SERS detector. The quantification of each analyte was achieved using partial least-squares (PLS) regression analysis and acetonitrile in the mobile phases as an internal standard. These results illustrate the utility of sheath-flow SERS for molecular specific detection in complex biological samples appropriate for metabolomics and other applications.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Jessica M Deutsch
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Lifu Xiao
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States.,Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
62
|
Gu X, Trujillo MJ, Olson JE, Camden JP. SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:147-169. [PMID: 29547340 DOI: 10.1146/annurev-anchem-061417-125724] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Owing to its extreme sensitivity and easy execution, surface-enhanced Raman spectroscopy (SERS) now finds application for a wide variety of problems requiring sensitive and targeted analyte detection. This widespread application has prompted a proliferation of different SERS-based sensors, suggesting the need for a framework to classify existing methods and guide the development of new techniques. After a brief discussion of the general SERS modalities, we classify SERS-based sensors according the origin of the signal. Three major categories emerge from this analysis: surface-affinity strategy, SERS-tag strategy, and probe-mediated strategy. For each case, we describe the mechanism of action, give selected examples, and point out general misconceptions to aid the construction of new devices. We hope this review serves as a useful tutorial guide and helps readers to better classify and design practical and effective SERS-based sensors.
Collapse
Affiliation(s)
- Xin Gu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Michael J Trujillo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jacob E Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| |
Collapse
|
63
|
Moore TJ, Moody AS, Payne TD, Sarabia GM, Daniel AR, Sharma B. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis. BIOSENSORS 2018; 8:E46. [PMID: 29751641 PMCID: PMC6022968 DOI: 10.3390/bios8020046] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 01/24/2023]
Abstract
For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.
Collapse
Affiliation(s)
- T Joshua Moore
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Amber S Moody
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Taylor D Payne
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Grace M Sarabia
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Alyssa R Daniel
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Bhavya Sharma
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
64
|
Villa JEL, Pasquini C, Poppi RJ. Surface-enhanced Raman spectroscopy and MCR-ALS for the selective sensing of urinary adenosine on filter paper. Talanta 2018; 187:99-105. [PMID: 29853071 DOI: 10.1016/j.talanta.2018.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/02/2018] [Accepted: 05/05/2018] [Indexed: 11/27/2022]
Abstract
Adenosine is a purine nucleoside that is present in all human cells and is essential for regulating certain physiological activities in tissues and organs. Since adenosine is considered to be a potential cancer biomarker in urine, its determination may be crucial for the early diagnosis and non-invasive monitoring of cancer. Herein, we present a label-free method to quantify urinary adenosine using surface-enhanced Raman spectroscopy (SERS) and multivariate curve resolution-alternating least squares (MCR-ALS). Ring-oven preconcentration and direct deposition of monodisperse gold nanoparticles on filter paper were employed to improve the sampling efficiency. Further, MCR-ALS (assessed with and without a correlation constraint), the standard addition method and pH controls were combined to compensate for the matrix effect and to address overlapping bands in the analysis of human urine samples. As a result, the proposed method showed to be sensitive (LOD varying between 3.8 and 4.9 µmol L-1, S/R = 3), reproducible (RSD less than ± 15%), and selective over other nucleosides (guanosine, cytidine, thymidine and uridine) and unknown interferences (second-order advantage). This is the first report of a SERS-chemometric method applied to urinary adenosine sensing at physiologically relevant concentrations, with minimal sample preparation, and has strong potential to be a valuable tool in cancer research.
Collapse
Affiliation(s)
- Javier E L Villa
- Institute of Chemistry, University of Campinas, P. O. Box 6154, 13081-970 Campinas, SP, Brazil
| | - Celio Pasquini
- Institute of Chemistry, University of Campinas, P. O. Box 6154, 13081-970 Campinas, SP, Brazil
| | - Ronei J Poppi
- Institute of Chemistry, University of Campinas, P. O. Box 6154, 13081-970 Campinas, SP, Brazil.
| |
Collapse
|
65
|
Park M, Hwang CSH, Jeong KH. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:290-295. [PMID: 29220574 DOI: 10.1021/acsami.7b16182] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plasmonic alloy has attracted much interest in tailoring localized surface plasmon resonance (LSPR) for recent biosensing techniques. In particular, paper-based plasmonic substrates allow capillary-driven lateral flow as well as three-dimensional metal nanostructures, and therefore they become actively transferred to LSPR-based biosensing such as surface-enhanced Raman spectroscopy (SERS) or metal-enhanced fluorescence (MEF). However, employing plasmonic alloy nanoislands on heat-sensitive substrate is still challenging, which significantly inhibits broad-range tailoring of the plasmon resonance wavelength (PRW) for superior sensitivity. Here we report paper-based plasmonic substrate with plasmonic alloy of Au/Ag nanocomposites for highly sensitive MEF and SERS biosensing applications. The nanofabrication procedures include concurrent deposition of Au and Ag below 100 °C without any damage on cellulose fibers. The Au/Ag nanocomposites feature nanoplasmonic alloy with single plasmon peak as well as broad-range tunability of PRW by composition control. This paper-based plasmonic alloy substrate enables about twofold enhancement of fluorescence signals and selective MEF after paper chromatography. The experimental results clearly demonstrate extraordinary enhancement in SERS signals for picomolar detection of folic acid as a cancer biomarker. This new method provides huge opportunities for fabricating plasmonic alloy on heat-sensitive substrate and biosensing applications.
Collapse
Affiliation(s)
- Moonseong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291-Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Charles S H Hwang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291-Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291-Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
66
|
Xi W, Shrestha BK, Haes AJ. Promoting Intra- and Intermolecular Interactions in Surface-Enhanced Raman Scattering. Anal Chem 2017; 90:128-143. [DOI: 10.1021/acs.analchem.7b04225] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjing Xi
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Binaya K. Shrestha
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| |
Collapse
|
67
|
Boronic acid-based chemical sensors for saccharides. Carbohydr Res 2017; 452:129-148. [DOI: 10.1016/j.carres.2017.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
|
68
|
Gu X, Wang H, Camden JP. Utilizing light-triggered plasmon-driven catalysis reactions as a template for molecular delivery and release. Chem Sci 2017; 8:5902-5908. [PMID: 28989621 PMCID: PMC5620526 DOI: 10.1039/c7sc02089a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
Due to the facile manipulation and non-invasive nature of light-triggered release, it is one of the most potent ways to selectively and remotely deliver a molecular target. Among the various carrier platforms, plasmonic nanoparticles possess advantages such as enhanced cellular uptake and easy loading of "cargo" molecules. Two general strategies are currently utilized to achieve light-induced molecule release from plasmonic nanoparticles. The first uses femtosecond laser pulses to directly break the bond between the nanoparticle and the loaded target. The other requires significant photo-thermal effects to weaken the interaction between the cargo molecules and nanoparticle-attached host molecules. Different from above mechanisms, herein, we introduce a new light-controlled molecular-release method by taking advantage of a plasmon-driven catalytic reaction at the particle surface. In this strategy, we link the target to a plasmon responsive molecule, 4-aminobenzenethiol (4-ABT), through the robust and simple EDC coupling reaction and subsequently load the complex onto the particles via the strong Au-thiol interaction. Upon continuous-wave (CW) laser illumination, the excited surface plasmon catalyzes the formation of 4,4'-dimercaptoazobenzenethiol (DMAB) and simultaneously releases the loaded molecules with high efficiency. This method does not require the use of high-power pulsed lasers, nor does it rely on photo-thermal effects. We believe that plasmon-driven release strategies open a new direction for the designing of next-generation light-triggered release processes.
Collapse
Affiliation(s)
- Xin Gu
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , USA .
| | - Huan Wang
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , USA .
| | - Jon P Camden
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , USA .
| |
Collapse
|
69
|
|
70
|
Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:203002. [PMID: 28426435 DOI: 10.1088/1361-648x/aa60f3] [Citation(s) in RCA: 635] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last two decades, plasmon resonance in gold nanoparticles (Au NPs) has been the subject of intense research efforts. Plasmon physics is intriguing and its precise modelling proved to be challenging. In fact, plasmons are highly responsive to a multitude of factors, either intrinsic to the Au NPs or from the environment, and recently the need emerged for the correction of standard electromagnetic approaches with quantum effects. Applications related to plasmon absorption and scattering in Au NPs are impressively numerous, ranging from sensing to photothermal effects to cell imaging. Also, plasmon-enhanced phenomena are highly interesting for multiple purposes, including, for instance, Raman spectroscopy of nearby analytes, catalysis, or sunlight energy conversion. In addition, plasmon excitation is involved in a series of advanced physical processes such as non-linear optics, optical trapping, magneto-plasmonics, and optical activity. Here, we provide the general overview of the field and the background for appropriate modelling of the physical phenomena. Then, we report on the current state of the art and most recent applications of plasmon resonance in Au NPs.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy. Consorzio INSTM, UdR Padova, Italy
| | | | | | | | | |
Collapse
|
71
|
Moody AS, Baghernejad PC, Webb KR, Sharma B. Surface Enhanced Spatially Offset Raman Spectroscopy Detection of Neurochemicals Through the Skull. Anal Chem 2017; 89:5688-5692. [DOI: 10.1021/acs.analchem.7b00985] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Amber S. Moody
- Department
of Chemistry, University of Tennessee Knoxville, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Peymon C. Baghernejad
- Department
of Chemistry, University of Tennessee Knoxville, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Kelsey R. Webb
- Department
of Chemistry, University of Virginia−Wise, 1 College Avenue, Wise, Virginia 24293, United States
| | - Bhavya Sharma
- Department
of Chemistry, University of Tennessee Knoxville, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
72
|
Chen N, Ding P, Shi Y, Jin T, Su Y, Wang H, He Y. Portable and Reliable Surface-Enhanced Raman Scattering Silicon Chip for Signal-On Detection of Trace Trinitrotoluene Explosive in Real Systems. Anal Chem 2017; 89:5072-5078. [DOI: 10.1021/acs.analchem.7b00521] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Na Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pan Ding
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tengyu Jin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuanyuan Su
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
73
|
Pandey R, Paidi SK, Valdez TA, Zhang C, Spegazzini N, Dasari RR, Barman I. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy. Acc Chem Res 2017; 50:264-272. [PMID: 28071894 DOI: 10.1021/acs.accounts.6b00472] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The successful development of a noninvasive blood glucose sensor that can operate reliably over sustained periods of time has been a much sought after but elusive goal in diabetes management. Since diabetes has no well-established cure, control of elevated glucose levels is critical for avoiding severe secondary health complications in multiple organs including the retina, kidney and vasculature. While fingerstick testing continues to be the mainstay of blood glucose detection, advances in electrochemical sensing-based minimally invasive approaches have opened the door for alternate methods that would considerably improve the quality of life for people with diabetes. In the quest for better sensing approaches, optical technologies have surfaced as attractive candidates as researchers have sought to exploit the endogenous contrast of glucose, notably its absorption, scattering, and polarization properties. Vibrational spectroscopy, especially spontaneous Raman scattering, has exhibited substantial promise due to its exquisite molecular specificity and minimal interference of water in the spectral profiles acquired from the blood-tissue matrix. Yet, it has hitherto been challenging to leverage the Raman scattering signatures of glucose for prediction in all but the most basic studies and under the least demanding conditions. In this Account, we discuss the newly developed array of methodologies that address the key challenges in measuring blood glucose accurately using Raman spectroscopy and unlock new prospects for translation to sustained noninvasive measurements in people with diabetes. Owing to the weak intensity of spontaneous Raman scattering, recent research has focused on enhancement of signals from the blood constituents by designing novel excitation-collection geometries and tissue modulation methods while our attempts have led to the incorporation of nonimaging optical elements. Additionally, invoking mass transfer modeling into chemometric algorithms has not only addressed the physiological lag between the actual blood glucose and the measured interstitial fluid glucose values but also offered a powerful tool for predictive measurements of hypoglycemia. This framework has recently been extended to provide longitudinal tracking of glucose concentration without necessitating extensive a priori concentration information. These findings are advanced by the results of recent glucose tolerance studies in human subjects, which also hint at the need for designing nonlinear calibration models that can account for subject-to-subject variations in skin heterogeneity and hematocrit levels. Together, the emerging evidence underscores the promise of a blood withdrawal-free optical platform-featuring a combination of high-throughput Raman spectroscopic instrumentation and data analysis of subtle variations in spectral expression-for diabetes screening in the clinic and, ultimately, for personalized monitoring.
Collapse
Affiliation(s)
- Rishikesh Pandey
- Connecticut
Children’s Innovation Center, University of Connecticut Health, Farmington, Connecticut 06032, United States
| | - Santosh Kumar Paidi
- Department
of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tulio A. Valdez
- Connecticut
Children’s Innovation Center, University of Connecticut Health, Farmington, Connecticut 06032, United States
- Otolaryngology,
Head and Neck Surgery, Connecticut Children’s Medical Center, 282 Washington
St, Hartford, Connecticut 06106, United States
| | - Chi Zhang
- Department
of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nicolas Spegazzini
- Laser
Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ramachandra Rao Dasari
- Laser
Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ishan Barman
- Department
of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| |
Collapse
|
74
|
Cardinal MF, Vander Ende E, Hackler RA, McAnally MO, Stair PC, Schatz GC, Van Duyne RP. Expanding applications of SERS through versatile nanomaterials engineering. Chem Soc Rev 2017. [DOI: 10.1039/c7cs00207f] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanomaterials engineering and synthetic chemistry continues to expand the range of applications for surface-enhanced Raman scattering spectroscopy.
Collapse
Affiliation(s)
| | | | | | | | - Peter C. Stair
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | | | | |
Collapse
|
75
|
Wu X, Chen XX, Jiang YB. Recent advances in boronic acid-based optical chemosensors. Analyst 2017; 142:1403-1414. [DOI: 10.1039/c7an00439g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This minireview highlights the developments in optical chemosensors from 2014 to 2016 that utilise the boronic acid interaction with polyols or Lewis bases.
Collapse
Affiliation(s)
- Xin Wu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- and iChEM
- Xiamen University
| | - Xuan-Xuan Chen
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- and iChEM
- Xiamen University
| | - Yun-Bao Jiang
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- and iChEM
- Xiamen University
| |
Collapse
|