51
|
Mali SM, Singh SK, Eid E, Brik A. Ubiquitin Signaling: Chemistry Comes to the Rescue. J Am Chem Soc 2017; 139:4971-4986. [PMID: 28328208 DOI: 10.1021/jacs.7b00089] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Posttranslational modification of proteins by ubiquitin (Ub), i.e., ubiquitination, mediates a variety of cellular processes, including protein homeostasis, cell cycle, DNA repair, and viral infections. Understanding the molecular mechanism of ubiquitination in these events is the basis for unraveling its precise role in health and disease. However, the inherent complexity of Ub signaling due to the high atomic complexity of Ub conjugates, where Ub is attached to other Ub molecules and to protein substrates in various forms, imposes a major challenge for these studies. In this regard, the enzymatic approaches employed for the preparation of important Ub conjugates have severe limitations to deliver them in high homogeneity and in adequate amounts for the desired study. Recent developments in the area of chemical synthesis and semisynthesis of proteins offer great solutions to the enzymatic limitations and enabling the preparation of various Ub conjugates with precise control over the atomic structure. These conjugates significantly contribute to deciphering Ub signaling at the molecular level, and with the synthetic tools in hand, chemical biologists have become key players in efforts toward understanding the complexity of the Ub code. In this Perspective, we highlight the key contributions of these synthetic approaches and how the development of novel Ub-based reagents is greatly assisting in uncovering unknown aspects of Ub signaling. We also discuss future aspirations to address unresolved questions in this exciting area of research.
Collapse
Affiliation(s)
- Sachitanand M Mali
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Sumeet K Singh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Emad Eid
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| |
Collapse
|
52
|
Chojnacki M, Mansour W, Hameed DS, Singh RK, El Oualid F, Rosenzweig R, Nakasone MA, Yu Z, Glaser F, Kay LE, Fushman D, Ovaa H, Glickman MH. Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit. Cell Chem Biol 2017; 24:443-457.e6. [PMID: 28330605 DOI: 10.1016/j.chembiol.2017.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/29/2016] [Accepted: 02/23/2017] [Indexed: 01/05/2023]
Abstract
Ubiquitin (Ub) signaling is a diverse group of processes controlled by covalent attachment of small protein Ub and polyUb chains to a range of cellular protein targets. The best documented Ub signaling pathway is the one that delivers polyUb proteins to the 26S proteasome for degradation. However, studies of molecular interactions involved in this process have been hampered by the transient and hydrophobic nature of these interactions and the lack of tools to study them. Here, we develop Ub-phototrap (UbPT), a synthetic Ub variant containing a photoactivatable crosslinking side chain. Enzymatic polymerization into chains of defined lengths and linkage types provided a set of reagents that led to identification of Rpn1 as a third proteasome ubiquitin-associating subunit that coordinates docking of substrate shuttles, unloading of substrates, and anchoring of polyUb conjugates. Our work demonstrates the value of UbPT, and we expect that its future uses will help define and investigate the ubiquitin interactome.
Collapse
Affiliation(s)
- Michal Chojnacki
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel; Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | - Wissam Mansour
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Dharjath S Hameed
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Rajesh K Singh
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Farid El Oualid
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rina Rosenzweig
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mark A Nakasone
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Zanlin Yu
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Fabian Glaser
- The Technion Bioinformatics Knowledge Unit (BKU) of the Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA.
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
53
|
Tan XD, Pan M, Gao S, Zheng Y, Shi J, Li YM. A diubiquitin-based photoaffinity probe for profiling K27-linkage targeting deubiquitinases. Chem Commun (Camb) 2017; 53:10208-10211. [DOI: 10.1039/c7cc05504h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a novel aryl-azide-based photoaffinity diubiquitin probe for profiling K27-linkage targeting DUBs in high selectivity and sensitivity.
Collapse
Affiliation(s)
- Xiao-Dan Tan
- Tsinghua-Peking Center for Life Sciences
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Man Pan
- Tsinghua-Peking Center for Life Sciences
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Shuai Gao
- Tsinghua-Peking Center for Life Sciences
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Yong Zheng
- School of Biological and Medical Engineering
- Hefei University of Technology
- Hefei
- China
- Department of Chemistry
| | - Jing Shi
- Department of Chemistry
- University of Science and Technology of China; and High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230026
- China
| | - Yi-Ming Li
- School of Biological and Medical Engineering
- Hefei University of Technology
- Hefei
- China
| |
Collapse
|