51
|
Bao QF, Xia Y, Li M, Wang YZ, Liang YM. Visible-Light-Mediated Trifluoromethylation/Benzylation of Styrenes Catalyzed by 4-CzIPN. Org Lett 2020; 22:7757-7761. [DOI: 10.1021/acs.orglett.0c03022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiao-Fei Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
52
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N‐Heterocyclic Carbene–Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C−C, C−B, C−H, and C−Si Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Yuebiao Zhou
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ying Shi
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - M. Kevin Brown
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Hao Wu
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Sebastian Torker
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
53
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N-Heterocyclic Carbene-Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C-C, C-B, C-H, and C-Si Bonds. Angew Chem Int Ed Engl 2020; 59:21304-21359. [PMID: 32364640 DOI: 10.1002/anie.202003755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 12/21/2022]
Abstract
A copper-based complex that contains a sulfonate N-heterocyclic carbene ligand was first reported 15 years ago. Since then, these organometallic entities have proven to be uniquely effective in catalyzing an assortment of enantioselective transformations, including allylic substitutions, conjugate additions, proto-boryl additions to alkenes, boryl and silyl substitutions, hydride-allyl additions to alkenyl boronates, and additions of boron-containing allyl moieties to N-H ketimines. In this review article, we detail the shortcomings in the state-of-the-art that fueled the development of this air stable ligand class, members of which can be prepared on multigram scale. For each reaction type, when relevant, the prior art at the time of the advance involving sulfonate NHC-Cu catalysts and/or subsequent key developments are briefly analyzed, and the relevance of the advance to efficient and enantioselective total or formal synthesis of biologically active molecules is underscored. Mechanistic analysis of the structural attributes of sulfonate NHC-Cu catalysts that are responsible for their ability to facilitate transformations with high efficiency as well as regio- and enantioselectivity are detailed. This review contains several formerly undisclosed methodological advances and mechanistic analyses, the latter of which constitute a revision of previously reported proposals.
Collapse
Affiliation(s)
- Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ying Shi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - M Kevin Brown
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Hao Wu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
54
|
Affiliation(s)
- Linlin Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| |
Collapse
|
55
|
Lee S, Lee S, Lee Y. Copper-Catalyzed Hydroalumination of Allenes with Diisobutylaluminum Hydride: Synthesis of Allylic Ketones with α-Quaternary Centers via Tandem Allylation/Oppenauer Oxidation. Org Lett 2020; 22:5806-5810. [PMID: 32654493 DOI: 10.1021/acs.orglett.0c01876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and straightforward approach to allylaluminum reagent synthesis through Cu-catalyzed hydroalumination of readily accessible allenes with diisobutylaluminum hydride is described. The N-heterocyclic carbene-based copper complex promotes hydride addition to various functionalized allenes under mild reaction conditions. The catalytic reaction is applied to a highly selective one-pot synthesis of allylic ketones with α-tertiary and α-quaternary centers through tandem nucleophilic addition of in situ-generated allylaluminums to aldehydes/Oppenauer oxidation.
Collapse
Affiliation(s)
- Sangback Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sanghyun Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
56
|
Yuan Y, Zhang X, Qian H, Ma S. Catalytic enantioselective allene-anhydride approach to β,γ-unsaturated enones bearing an α-all-carbon-quarternary center. Chem Sci 2020; 11:9115-9121. [PMID: 34094192 PMCID: PMC8161143 DOI: 10.1039/d0sc03227a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A protocol of highly regio- and enantioselective copper-catalyzed hydroacylation of the non-terminal C[double bond, length as m-dash]C bond in 1,1-disubstituted terminal allenes with anhydrides has been developed. Both aromatic and aliphatic carboxylic anhydrides are applicable to the efficient construction of all carbon quarternary centers connected with a versatile C[double bond, length as m-dash]C bond and a useful ketone functionality. The synthetic potentials of the enantioenriched products have also been demonstrated. Density functional theory (DFT) calculations were performed to explain the steric outcome of the products: the hydroacylation proceeds through a six-membered transition state and the ligand-substrate steric interactions account for the observed enantioselectivity although the chiral ligand is far away from the to-be-genetated chiral center.
Collapse
Affiliation(s)
- Yuan Yuan
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 P. R. China
| |
Collapse
|
57
|
Tanabe S, Mitsunuma H, Kanai M. Catalytic Allylation of Aldehydes Using Unactivated Alkenes. J Am Chem Soc 2020; 142:12374-12381. [PMID: 32605370 DOI: 10.1021/jacs.0c04735] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simple feedstock organic molecules, especially alkenes, are attractive starting materials in organic synthesis because of their wide availability. Direct utilization of such bulk, inert organic molecules for practical and selective chemical reactions, however, remains limited. Herein, we developed a ternary hybrid catalyst system comprising a photoredox catalyst, a hydrogen-atom-transfer catalyst, and a chromium complex catalyst, enabling catalytic allylation of aldehydes with simple alkenes, including feedstock lower alkenes. The reaction proceeded under visible-light irradiation at room temperature and with high functional group tolerance. The reaction was extended to an asymmetric variant by employing a chiral chromium complex catalyst.
Collapse
Affiliation(s)
- Shun Tanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
58
|
Liu RY, Buchwald SL. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition. Acc Chem Res 2020; 53:1229-1243. [PMID: 32401530 DOI: 10.1021/acs.accounts.0c00164] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In organic synthesis, ligand-modified copper(I) hydride (CuH) complexes have become well-known reagents and catalysts for selective reduction, particularly toward Michael acceptors and carbonyl compounds. Recently, our group and others have found that these hydride complexes undergo migratory insertion (hydrocupration) with relatively unactivated and electronically unpolarized olefins, producing alkylcopper intermediates that can be leveraged to forge a variety of useful bonds. The resulting formal hydrofunctionalization reactions have formed the basis for a resurgence of research in CuH catalysis. This Account chronicles the development of this concept in our research group, highlighting its origin in the context of asymmetric hydroamination, evolution to more general C-X bond-forming reactions, and applications in the addition of olefin-derived nucleophiles to carbonyl derivatives.Hydroamination, the formal insertion of an olefin into the N-H bond of an amine, is a process of significant academic and industrial interest, due to its potential to transform widely available alkenes and alkynes into valuable complex amines. We developed a polarity-reversed strategy for catalytic enantioselective hydroamination relying on the reaction of olefins with CuH to generate chiral organocopper intermediates, which are intercepted by electrophilic amine reagents. By engineering the auxiliary ligand, amine electrophile, and reaction conditions, the scope of this method has since been extended to include many types of olefins, including challenging internal olefins. Further, the scope of amine reagents has been expanded to enable the synthesis of primary, secondary, and tertiary amines as well as amides, N-alkylated heterocycles, and anilines. All of these reactions exhibit high regio- and stereoselectivity and, due to the mild conditions required, excellent tolerance for heterocycles and polar functional groups.Though the generation of alkylcopper species from olefins was originally devised as a means to solve the hydroamination problem, we soon found that these intermediates could react efficiently with an unexpectedly broad range of electrophiles, including alkyl halides, silicon reagents, arylpalladium species, heterocycles, and carbonyl derivatives. The general ability of olefins to function as precursors for nucleophilic intermediates has proved particularly advantageous in carbonyl addition reactions because it overcomes many of the disadvantages associated with traditional organometallic reagents. By removing the need for pregeneration of the nucleophile in a separate operation, CuH-catalyzed addition reactions of olefin-derived nucleophiles feature improved step economy, enhanced functional group tolerance, and the potential for catalyst control over regio- and stereoselectivity. Following this paradigm, feedstock olefins such as allene, butadiene, and styrene have been employed as reagents for asymmetric alkylation of ketones, imines, and aldehydes.
Collapse
Affiliation(s)
- Richard Y. Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
59
|
Ye Y, Kevlishvili I, Feng S, Liu P, Buchwald SL. Highly Enantioselective Synthesis of Indazoles with a C3-Quaternary Chiral Center Using CuH Catalysis. J Am Chem Soc 2020; 142:10550-10556. [PMID: 32408745 DOI: 10.1021/jacs.0c04286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
C3-substituted 1H-indazoles are useful and important substructures in many pharmaceuticals. Methods for direct C3-functionalization of indazoles are relatively rare, compared to reactions developed for the more nucleophilic N1 and N2 positions. Herein, we report a highly C3-selective allylation reaction of 1H-N-(benzoyloxy)indazoles using CuH catalysis. A variety of C3-allyl 1H-indazoles with quaternary stereocenters were efficiently prepared with high levels of enantioselectivity. Density functional theory (DFT) calculations were performed to explain the reactivity differences between indazole and indole electrophiles, the latter of which was used in our previously reported method. The calculations suggest that the indazole allylation reaction proceeds through an enantioselectivity-determining six-membered Zimmerman-Traxler-type transition state, rather than an oxidative addition/reductive elimination sequence, as we proposed in the case of indole alkylation. The enantioselectivity of the reaction is governed by both ligand-substrate steric interactions and steric repulsions involving the pseudoaxial substituent in the six-membered allylation transition state.
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
60
|
Zanghi JM, Meek SJ. Cu‐Catalyzed Diastereo‐ and Enantioselective Reactions of γ,γ‐Disubstituted Allyldiboron Compounds with Ketones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joseph M. Zanghi
- Department of Chemistry The University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Simon J. Meek
- Department of Chemistry The University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
61
|
Zanghi JM, Meek SJ. Cu-Catalyzed Diastereo- and Enantioselective Reactions of γ,γ-Disubstituted Allyldiboron Compounds with Ketones. Angew Chem Int Ed Engl 2020; 59:8451-8455. [PMID: 32101637 DOI: 10.1002/anie.202000675] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/14/2022]
Abstract
A catalytic diastereo- and enantioselective method for the preparation of complex tertiary homoallylic alcohols containing a vicinal quaternary carbon stereogenic center and a versatile alkenylboronic ester is disclosed. Transformations are promoted by 5 mol % of a readily available copper catalyst bearing a bulky monodentate phosphoramidite ligand, which is essential for attaining both high dr and er. Reactions proceed with a wide variety of ketones and allylic 1,1-diboronate reagents, which enables the efficient preparation of diverse array of molecular scaffolds.
Collapse
Affiliation(s)
- Joseph M Zanghi
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Simon J Meek
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
62
|
Ni C, Gao J, Fang X. Cu(i)-Catalyzed asymmetric intramolecular addition of aryl pinacolboronic esters to unactivated ketones: enantioselective synthesis of 2,3-dihydrobenzofuran-3-ol derivatives. Chem Commun (Camb) 2020; 56:2654-2657. [DOI: 10.1039/c9cc09653a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An (S,S)-QuinoxP*-supported Cu(i) catalyst has been disclosed for highly enantioselective intramolecular addition of aryl pinacolboronic esters to unactivated ketones under mild reaction conditions.
Collapse
Affiliation(s)
- Chunjie Ni
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jihui Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
63
|
Zhong F, Xue Q, Yin L. Construction of Chiral 2,3‐Allenols through a Copper(I)‐Catalyzed Asymmetric Direct Alkynylogous Aldol Reaction. Angew Chem Int Ed Engl 2019; 59:1562-1566. [DOI: 10.1002/anie.201912140] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Feng Zhong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qi‐Yan Xue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
64
|
Chen J, Gao S, Chen M. Cu-catalyzed C-C bond formation of vinylidene cyclopropanes with carbon nucleophiles. Chem Sci 2019; 10:10601-10606. [PMID: 32110346 PMCID: PMC7020789 DOI: 10.1039/c9sc04122b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Cu-catalyzed addition of carbon nucleophiles to vinylidene cyclopropanes was reported. The reactions with 1,1-bisborylmethane provided homopropargylic boronate products by forming a C-C bond at the terminal carbon atom of the allene moiety of vinylidene cyclopropanes. Alkynyl boronates are also suitable nucleophile precursors in reactions with vinylidene cyclopropanes, and skipped diynes were obtained in high yields. In addition, the Cu-enolate generated from the initial addition of nucleophilic copper species to vinylidene cyclopropanes can be intercepted by an external electrophile. As such, vinylidene cyclopropane serves as a linchpin to connect a nucleophile and an electrophile by forming two carbon-carbon bonds sequentially.
Collapse
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| | - Shang Gao
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| | - Ming Chen
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| |
Collapse
|
65
|
Gargaro SL, Klake RK, Burns KL, Elele SO, Gentry SL, Sieber JD. Access to a Catalytically Generated Umpolung Reagent through the Use of Cu-Catalyzed Reductive Coupling of Ketones and Allenes for the Synthesis of Chiral Vicinal Aminoalcohol Synthons. Org Lett 2019; 21:9753-9758. [PMID: 31769994 PMCID: PMC6902281 DOI: 10.1021/acs.orglett.9b03937] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the development of a stereoselective method for the allylation of ketones utilizing N-substituted allyl equivalents generated from a chiral allenamide. By employing N-heterocyclic carbenes as ligands for the Cu catalyst, good branched selectivity can be obtained with high diastereocontrol. This methodology allows access to a catalytically generated, polarity-reversed (umpolung) allyl nucleophile to enable the preparation of chiral 1,2-aminoalcohol synthons containing a dissonant functional group relationship.
Collapse
Affiliation(s)
- Samantha L Gargaro
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Raphael K Klake
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Kevin L Burns
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Sharon O Elele
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Skyler L Gentry
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Joshua D Sieber
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| |
Collapse
|
66
|
Zhong F, Xue Q, Yin L. Construction of Chiral 2,3‐Allenols through a Copper(I)‐Catalyzed Asymmetric Direct Alkynylogous Aldol Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Feng Zhong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qi‐Yan Xue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
67
|
Li C, Shin K, Liu RY, Buchwald SL. Engaging Aldehydes in CuH‐Catalyzed Reductive Coupling Reactions: Stereoselective Allylation with Unactivated 1,3‐Diene Pronucleophiles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chengxi Li
- Department of ChemistryMassachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Kwangmin Shin
- Department of ChemistryMassachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Richard Y. Liu
- Department of ChemistryMassachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Stephen L. Buchwald
- Department of ChemistryMassachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| |
Collapse
|
68
|
Li C, Shin K, Liu RY, Buchwald SL. Engaging Aldehydes in CuH-Catalyzed Reductive Coupling Reactions: Stereoselective Allylation with Unactivated 1,3-Diene Pronucleophiles. Angew Chem Int Ed Engl 2019; 58:17074-17080. [PMID: 31552701 PMCID: PMC6848771 DOI: 10.1002/anie.201911008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Recently, CuH-catalyzed reductive coupling processes involving carbonyl compounds and imines have become attractive alternatives to traditional methods for stereoselective addition because of their ability to use readily accessible and stable olefins as surrogates for organometallic nucleophiles. However, the inability to use aldehydes, which usually reduce too rapidly in the presence of copper hydride complexes to be viable substrates, has been a major limitation. Shown here is that by exploiting relative concentration effects through kinetic control, this intrinsic reactivity can be inverted and the reductive coupling of 1,3-dienes with aldehydes achieved. Using this method, both aromatic and aliphatic aldehydes can be transformed into synthetically valuable homoallylic alcohols with high levels of diastereo- and enantioselectivities, and in the presence of many useful functional groups. Furthermore, using a combination of theoretical (DFT) and experimental methods, important mechanistic features of this reaction related to stereo- and chemoselectivities were uncovered.
Collapse
Affiliation(s)
| | | | - Richard Y. Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
69
|
Qiu J, Gao S, Li C, Zhang L, Wang Z, Wang X, Ding K. Construction of All-Carbon Chiral Quaternary Centers through Cu I -Catalyzed Enantioselective Reductive Hydroxymethylation of 1,1-Disubstituted Allenes with CO 2. Chemistry 2019; 25:13874-13878. [PMID: 31461578 DOI: 10.1002/chem.201903906] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/18/2022]
Abstract
A catalytic enantioselective construction of all-carbon chiral quaternary centers through reductive hydroxymethylation of 1,1-disubstituted allenes with CO2 has been developed. In the presence of a copper/Mandyphos catalyst, CO2 is transformed into an alcohol oxidation level by an asymmetric reductive C-C bond formation with allenes by using hydrosilane (HSi(OMe)2 Me) as a reductant. The resulting chiral homoallylic alcohols are versatile synthetic intermediates and can be conveniently converted into a variety of useful chiral chemicals.
Collapse
Affiliation(s)
- Jia Qiu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shen Gao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaopeng Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
70
|
Kim SW, Meyer CC, Mai BK, Liu P, Krische MJ. Inversion of Enantioselectivity in Allene Gas versus Allyl Acetate Reductive Aldehyde Allylation Guided by Metal-Centered Stereogenicity: An Experimental and Computational Study. ACS Catal 2019; 9:9158-9163. [PMID: 31857913 DOI: 10.1021/acscatal.9b03695] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of gaseous allene as an allyl pronucleophile in enantioselective aldehyde reductive coupling is described. Notably, using the same antipode of chiral ligand, (S)-tol-BINAP, an inversion of enantioselectivity is observed for allene vs allyl acetate pronucleophiles. Experimental and computational studies corroborate intervention of diastereomeric π-allyliridium-C,O-benzoate complexes, which arise via allene hydrometalation (from a pentacoordinate iridium hydride) vs allyl acetate ionization (from a square planar iridium species).
Collapse
Affiliation(s)
- Seung Wook Kim
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Cole C. Meyer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
71
|
Klake RK, Gargaro SL, Gentry SL, Elele SO, Sieber JD. Development of a Strategy for Linear-Selective Cu-Catalyzed Reductive Coupling of Ketones and Allenes for the Synthesis of Chiral γ-Hydroxyaldehyde Equivalents. Org Lett 2019; 21:7992-7998. [PMID: 31532684 PMCID: PMC6781103 DOI: 10.1021/acs.orglett.9b02973] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We report the development of a stereoselective
method for the allylation
of ketones utilizing N-substituted allyl equivalents
generated from a chiral allenamide. By choice of the appropriate ligand
for the Cu-catalyst, high linear selectivity can be obtained with
good diastereocontrol. This methodology allows access to chiral γ-hydroxyaldehyde
equivalents that were applied in the synthesis of chiral γ-lactones
and 2,5-disubstitued tetrahydrofurans.
Collapse
Affiliation(s)
- Raphael K Klake
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Samantha L Gargaro
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Skyler L Gentry
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Sharon O Elele
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Joshua D Sieber
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| |
Collapse
|
72
|
Jang S, Kim H. A Gallium-based Chiral Solvating Agent Enables the Use of 1H NMR Spectroscopy to Differentiate Chiral Alcohols. iScience 2019; 19:425-435. [PMID: 31421597 PMCID: PMC6704394 DOI: 10.1016/j.isci.2019.07.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
In situ, direct 1H NMR chiral analysis by using chiral solvating agents is a convenient and efficient analytical technique. Here we developed a Ga-based chiral anionic metal complex for 1H NMR chiral analysis of alcohols. Utilizing the optimal pKa value, the Ga complex was able to differentiate 1H NMR signals of each (R)- and (S)-enantiomer of alcohols, measured at room temperature. This direct 1H NMR chiral analysis of alcohols was used to rapidly determine enantiomeric excess and conversion in a kinetic resolution and an asymmetric synthesis.
Collapse
Affiliation(s)
- Sumin Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
73
|
Spielmann K, Xiang M, Schwartz LA, Krische MJ. Direct Conversion of Primary Alcohols to 1,2-Amino Alcohols: Enantioselective Iridium-Catalyzed Carbonyl Reductive Coupling of Phthalimido-Allene via Hydrogen Auto-Transfer. J Am Chem Soc 2019; 141:14136-14141. [PMID: 31465211 DOI: 10.1021/jacs.9b08715] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first catalytic enantioselective carbonyl (α-amino)allylations are described. Phthalimido-allene 1 and primary alcohols 2a-2z, 2a'-2c' engage in hydrogen auto-transfer-mediated carbonyl reductive coupling by way of (α-amino)allyliridium-aldehyde pairs to form vicinal amino alcohols 3a-3z, 3a'-3c' with high levels of regio-, anti-diastereo-, and enantioselectivity. Reaction progress kinetic analysis and isotopic labeling studies corroborate a catalytic cycle involving turnover-limiting alcohol dehydrogenation followed by rapid allene hydrometalation.
Collapse
Affiliation(s)
- Kim Spielmann
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Ming Xiang
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Leyah A Schwartz
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
74
|
Sun Y, Zhou Y, Shi Y, Del Pozo J, Torker S, Hoveyda AH. Copper-Hydride-Catalyzed Enantioselective Processes with Allenyl Boronates. Mechanistic Nuances, Scope, and Utility in Target-Oriented Synthesis. J Am Chem Soc 2019; 141:12087-12099. [PMID: 31314510 DOI: 10.1021/jacs.9b05465] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Synthesis of complex bioactive molecules is substantially facilitated by transformations that efficiently and stereoselectively generate polyfunctional compounds. Designing such processes is hardly straightforward, however, especially when the desired route runs counter to the inherently favored reactivity profiles. Furthermore, in addition to being efficient and stereoselective, it is crucial that the products generated can be easily and stereodivergently modified. Here, we introduce a catalytic process that delivers versatile and otherwise difficult-to-access organoboron entities by combining an allenylboronate, a hydride, and an allylic phosphate. Two unique selectivity problems had to be solved: avoiding rapid side reaction of a Cu-H complex with an allylic phosphate, while promoting its addition to an allenylboronate as opposed to the commonly utilized boron-copper exchange. The utility of the approach is demonstrated by applications to concise preparation of the linear fragment of pumiliotoxin B (myotonic, cardiotonic) and enantioselective synthesis and structure confirmation of netamine C, a member of a family of anti-tumor and anti-malarial natural products. Completion of the latter routes required the following noteworthy developments: (1) a two-step all-catalytic sequence for conversion of a terminal alkene to a monosubstituted alkyne; (2) a catalytic SN2'- and enantioselective allylic substitution method involving a mild alkylzinc halide reagent; and (3) a diastereoselective [3+2]-cycloaddition to assemble the polycyclic structure of a guanidyl polycyclic natural product.
Collapse
Affiliation(s)
- Yu Sun
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Ying Shi
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Sebastian Torker
- Supramolecular Science and Engineering Institute , University of Strasbourg , CNRS, 67000 Strasbourg , France
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States.,Supramolecular Science and Engineering Institute , University of Strasbourg , CNRS, 67000 Strasbourg , France
| |
Collapse
|
75
|
Malcolmson SJ, Li K, Shao X. 2-Azadienes as Enamine Umpolung Synthons for the Preparation of Chiral Amines. Synlett 2019; 30:1253-1268. [PMID: 33731976 PMCID: PMC7963344 DOI: 10.1055/s-0037-1611770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of new strategies for the preparation of chiral amines is an important objective in organic synthesis. In this Synpacts, we summarize our approach for catalytically accessing nucleophilic aminoalkyl metal species from 2-azadienes, and its application in generating a number of important but elusive chiral amine scaffolds. Reductive couplings with ketones and imines afford 1,2-amino tertiary alcohols and 1,2-diamines, respectively, whereas fluoroarylations of gem-difluoro-2-azadienes deliver α-trifluoromethylated benzylic amines.
Collapse
Affiliation(s)
| | - Kangnan Li
- Department of Chemistry, Duke University, NC 27708, USA
| | - Xinxin Shao
- Department of Chemistry, Duke University, NC 27708, USA
| |
Collapse
|
76
|
Sun C, Mammen N, Kaappa S, Yuan P, Deng G, Zhao C, Yan J, Malola S, Honkala K, Häkkinen H, Teo BK, Zheng N. Atomically Precise, Thiolated Copper-Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions. ACS NANO 2019; 13:5975-5986. [PMID: 31067029 PMCID: PMC6750866 DOI: 10.1021/acsnano.9b02052] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Copper-hydrides are known catalysts for several technologically important reactions such as hydrogenation of CO, hydroamination of alkenes and alkynes, and chemoselective hydrogenation of unsaturated ketones to unsaturated alcohols. Stabilizing copper-based particles by ligand chemistry to nanometer scale is an appealing route to make active catalysts with optimized material economy; however, it has been long believed that the ligand-metal interface, particularly if sulfur-containing thiols are used as stabilizing agent, may poison the catalyst. We report here a discovery of an ambient-stable thiolate-protected copper-hydride nanocluster [Cu25H10(SPhCl2)18]3- that readily catalyzes hydrogenation of ketones to alcohols in mild conditions. A full experimental and theoretical characterization of its atomic and electronic structure shows that the 10 hydrides are instrumental for the stability of the nanocluster and are in an active role being continuously consumed and replenished in the hydrogenation reaction. Density functional theory computations suggest, backed up by the experimental evidence, that the hydrogenation takes place only around a single site of the 10 hydride locations, rendering the [Cu25H10(SPhCl2)18]3- one of the first nanocatalysts whose structure and catalytic functions are characterized fully to atomic precision. Understanding of a working catalyst at the atomistic level helps to optimize its properties and provides fundamental insights into the controversial issue of how a stable, ligand-passivated, metal-containing nanocluster can be at the same time an active catalyst.
Collapse
Affiliation(s)
- Cunfa Sun
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, National & Local Joint
Engineering Research Center of Preparation Technology of Nanomaterials,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nisha Mammen
- Department of Physics and Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Sami Kaappa
- Department of Physics and Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Peng Yuan
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, National & Local Joint
Engineering Research Center of Preparation Technology of Nanomaterials,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guocheng Deng
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, National & Local Joint
Engineering Research Center of Preparation Technology of Nanomaterials,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaowei Zhao
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, National & Local Joint
Engineering Research Center of Preparation Technology of Nanomaterials,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Juanzhu Yan
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, National & Local Joint
Engineering Research Center of Preparation Technology of Nanomaterials,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sami Malola
- Department of Physics and Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Karoliina Honkala
- Department of Physics and Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Hannu Häkkinen
- Department of Physics and Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- E-mail:
| | - Boon K. Teo
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, National & Local Joint
Engineering Research Center of Preparation Technology of Nanomaterials,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory
for Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, National & Local Joint
Engineering Research Center of Preparation Technology of Nanomaterials,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- E-mail:
| |
Collapse
|
77
|
Fu B, Yuan X, Li Y, Wang Y, Zhang Q, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Reductive Allylation of Ketones with 1,3-Dienes. Org Lett 2019; 21:3576-3580. [DOI: 10.1021/acs.orglett.9b00979] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
78
|
Li C, Liu RY, Jesikiewicz LT, Yang Y, Liu P, Buchwald SL. CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and Applications. J Am Chem Soc 2019; 141:5062-5070. [PMID: 30817137 DOI: 10.1021/jacs.9b01784] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chiral tertiary alcohols are important building blocks for the synthesis of pharmaceutical agents and biologically active natural products. The addition of carbon nucleophiles to ketones is the most common approach to tertiary alcohol synthesis but traditionally relies on stoichiometric organometallic reagents that are difficult to prepare, sensitive, and uneconomical. We describe a mild and efficient method for the copper-catalyzed allylation of ketones using widely available 1,3-dienes as allylmetal surrogates. Homoallylic alcohols bearing a wide range of functional groups are obtained in high yield and with good regio-, diastereo-, and enantioselectivity. Mechanistic investigations using density functional theory (DFT) implicate the in situ formation of a rapidly equilibrating mixture of isomeric copper(I) allyl complexes, from which Curtin-Hammett kinetics determine the major isomer of the product. A stereochemical model is provided to explain the high diastereo- and enantioselectivity of this process. Finally, this method was applied to the preparation of an important drug, ( R)-procyclidine, and a key intermediate in the synthesis of several pharmaceuticals.
Collapse
Affiliation(s)
- Chengxi Li
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Richard Y Liu
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Luke T Jesikiewicz
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Yang Yang
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Peng Liu
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Stephen L Buchwald
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
79
|
Huang Y, Torker S, Li X, del Pozo J, Hoveyda AH. Racemic Vinylallenes in Catalytic Enantioselective Multicomponent Processes: Rapid Generation of Complexity through 1,6‐Conjugate Additions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Youming Huang
- Department of ChemistryMerkert Chemistry CenterBoston College Chestnut Hill MA 02467 USA
| | - Sebastian Torker
- Department of ChemistryMerkert Chemistry CenterBoston College Chestnut Hill MA 02467 USA
| | - Xinghan Li
- Department of ChemistryMerkert Chemistry CenterBoston College Chestnut Hill MA 02467 USA
| | - Juan del Pozo
- Department of ChemistryMerkert Chemistry CenterBoston College Chestnut Hill MA 02467 USA
| | - Amir H. Hoveyda
- Department of ChemistryMerkert Chemistry CenterBoston College Chestnut Hill MA 02467 USA
| |
Collapse
|
80
|
Xu G, Fu B, Zhao H, Li Y, Zhang G, Wang Y, Xiong T, Zhang Q. Enantioselective and site-specific copper-catalyzed reductive allyl-allyl cross-coupling of allenes. Chem Sci 2019; 10:1802-1806. [PMID: 30842848 PMCID: PMC6369434 DOI: 10.1039/c8sc04505d] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
A copper-catalyzed asymmetric reductive allyl-allyl cross-coupling reaction of allenes with allylic phosphates wherein allenes were used as allylmetal surrogates has been achieved for the first time. This protocol provides an efficient and straightforward route to optically active 1,5-dienes in a highly enantioselective and site-specific fashion. Furthermore, all-carbon quaternary stereogenic centers could also be constructed with this protocol. The versatility of the products is demonstrated through a diverse array of further transformations of the enantioenriched 1,5-dienes.
Collapse
Affiliation(s)
- Guoxing Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Haiyan Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis , Department of Chemistry , Northeast Normal University , Changchun , 130024 , Jilin , China .
| |
Collapse
|
81
|
Huang Y, Torker S, Li X, Del Pozo J, Hoveyda AH. Racemic Vinylallenes in Catalytic Enantioselective Multicomponent Processes: Rapid Generation of Complexity through 1,6-Conjugate Additions. Angew Chem Int Ed Engl 2019; 58:2685-2691. [PMID: 30653802 DOI: 10.1002/anie.201812535] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/31/2018] [Indexed: 01/22/2023]
Abstract
Racemic vinylallenes are shown to be effective substrates for catalytic multicomponent diastereo- and enantioselective 1,6-conjugate addition of multifunctional allyl moieties to easily accessible α,β,γ,δ-unsaturated diesters. Reactions may be catalyzed by 5.0 mol % of a readily accessible NHC-Cu complex at ambient temperature, and other than a vinylallene, involve B2 (pin)2 and an α,β,γ,δ-unsaturated diester. A variety of vinylallenes were converted to products bearing a Z-trisubstituted alkenyl-B(pin) moiety, a vinyl group, a β,γ-unsaturated diester unit, and vicinal stereogenic centers in up to 67 % yield, 87:13 Z/E ratio, >98:2 d.r., and 98:2 e.r. Chemoselective modifications involving the alkenyl-B(pin), the vinyl, or the 1,2-disubstituted olefin moieties were carried out to demonstrate versatility and utility. Stereochemical models, based on mechanistic and DFT studies, demonstrate the dynamic behavior of intermediated Cu-allyl species and account for various selectivity profiles.
Collapse
Affiliation(s)
- Youming Huang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Xinghan Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
82
|
Schwartz LA, Holmes M, Brito GA, Gonçalves TP, Richardson J, Ruble JC, Huang KW, Krische MJ. Cyclometalated Iridium-PhanePhos Complexes Are Active Catalysts in Enantioselective Allene-Fluoral Reductive Coupling and Related Alcohol-Mediated Carbonyl Additions That Form Acyclic Quaternary Carbon Stereocenters. J Am Chem Soc 2019; 141:2087-2096. [PMID: 30681850 PMCID: PMC6423978 DOI: 10.1021/jacs.8b11868] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iridium complexes modified by the chiral phosphine ligand PhanePhos catalyze the 2-propanol-mediated reductive coupling of diverse 1,1-disubstituted allenes 1a-1u with fluoral hydrate 2a to form CF3-substituted secondary alcohols 3a-3u that incorporate acyclic quaternary carbon-containing stereodiads. By exploiting concentration-dependent stereoselectivity effects related to the interconversion of kinetic ( Z)- and thermodynamic ( E)-σ-allyliridium isomers, adducts 3a-3u are formed with complete levels of branched regioselectivity and high levels of anti-diastereo- and enantioselectivity. The utility of this method for construction of CF3-oxetanes and CF3-azetidines is illustrated by the formation of 4a and 6a, respectively. Studies of the reaction mechanism aimed at illuminating the singular effectiveness of PhanePhos as a supporting ligand in this and related transformations have led to the identification of a chromatographically stable cyclometalated iridium-( R)-PhanePhos complex, Ir-PP-I, that is catalytically competent for allene-fluoral reductive coupling and previously reported transfer hydrogenative C-C couplings of dienes or CF3-allenes with methanol. Deuterium labeling studies, reaction progress kinetic analysis (RPKA) and computational studies corroborate a catalytic mechanism involving rapid allene hydrometalation followed by turnover-limiting carbonyl addition. A computationally determined stereochemical model shows that the ortho-CH2 group of the cyclometalated iridium-PhanePhos complex plays a key role in directing diastereo- and enantioselectivity. The collective data provide key insights into the structural-interactional features of allyliridium complexes required to enforce nucleophilic character, which should inform the design of related cyclometalated catalysts for umpoled allylation.
Collapse
Affiliation(s)
- Leyah A Schwartz
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Michael Holmes
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Gilmar A Brito
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Théo P Gonçalves
- KAUST Catalysis Center and Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jeffery Richardson
- Discovery Chemistry Research and Technologies , Eli Lilly and Company Limited , Erl Wood Manor , Windlesham , Surrey GU20 6PH , United Kingdom
| | - J Craig Ruble
- Discovery Chemistry Research and Technologies , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
83
|
Liu RY, Zhou Y, Yang Y, Buchwald SL. Enantioselective Allylation Using Allene, a Petroleum Cracking Byproduct. J Am Chem Soc 2019; 141:2251-2256. [PMID: 30685967 DOI: 10.1021/jacs.8b13907] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allene (C3H4) gas is produced and separated on million-metric-ton scale per year during petroleum refining but is rarely employed in organic synthesis. Meanwhile, the addition of an allyl group (C3H5) to ketones is among the most common and prototypical reactions in synthetic chemistry. Herein, we report that the combination of allene gas with inexpensive and environmentally benign hydrosilanes, such as PMHS, can serve as a replacement for stoichiometric quantities of allylmetal reagents, which are required in most enantioselective ketone allylation reactions. This process is catalyzed by copper salts and commercially available ligands, operates without specialized equipment or pressurization, and tolerates a broad range of functional groups. Furthermore, the exceptional chemoselectivity of this catalyst system enables industrially relevant C3 hydrocarbon mixtures of allene with methylacetylene and propylene to be applied directly.
Collapse
Affiliation(s)
- Richard Y Liu
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Yujing Zhou
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Yang Yang
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Stephen L Buchwald
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
84
|
Gan XC, Yin L. Asymmetric Borylative Propargylation of Ketones Catalyzed by a Copper(I) Complex. Org Lett 2019; 21:931-936. [DOI: 10.1021/acs.orglett.8b03912] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xu-Cheng Gan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
85
|
Liu YL, Lin XT. Recent Advances in Catalytic Asymmetric Synthesis of Tertiary Alcohols via
Nucleophilic Addition to Ketones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801023] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yun-Lin Liu
- School of Chemistry and Chemical Engineering; Guangzhou University; Guangzhou 510006 People's Republic of China
| | - Xiao-Tong Lin
- School of Chemistry and Chemical Engineering; Guangzhou University; Guangzhou 510006 People's Republic of China
| |
Collapse
|
86
|
Jang WJ, Yun J. Copper-Catalyzed Tandem Hydrocupration and Diastereo- and Enantioselective Borylalkyl Addition to Aldehydes. Angew Chem Int Ed Engl 2018; 57:12116-12120. [DOI: 10.1002/anie.201806937] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/10/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Won Jun Jang
- Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| |
Collapse
|
87
|
Jang WJ, Yun J. Copper-Catalyzed Tandem Hydrocupration and Diastereo- and Enantioselective Borylalkyl Addition to Aldehydes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Won Jun Jang
- Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| |
Collapse
|
88
|
Jia T, He Q, Ruscoe RE, Pulis AP, Procter DJ. Regiodivergent Copper Catalyzed Borocyanation of 1,3-Dienes. Angew Chem Int Ed Engl 2018; 57:11305-11309. [DOI: 10.1002/anie.201806169] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Tao Jia
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
- College of Chemistry and Materials Science; Sichuan Normal University; Chengdu 610068 P. R. China
| | - Qiong He
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Rebecca E. Ruscoe
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
89
|
Jia T, He Q, Ruscoe RE, Pulis AP, Procter DJ. Regiodivergent Copper Catalyzed Borocyanation of 1,3-Dienes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806169] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tao Jia
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
- College of Chemistry and Materials Science; Sichuan Normal University; Chengdu 610068 P. R. China
| | - Qiong He
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Rebecca E. Ruscoe
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
90
|
Shao X, Li K, Malcolmson SJ. Enantioselective Synthesis of anti-1,2-Diamines by Cu-Catalyzed Reductive Couplings of Azadienes with Aldimines and Ketimines. J Am Chem Soc 2018; 140:7083-7087. [PMID: 29775301 PMCID: PMC5999589 DOI: 10.1021/jacs.8b04750] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here we report highly efficient and chemoselective azadiene-imine reductive couplings catalyzed by (Ph-BPE)Cu-H that afford anti-1,2-diamines. In all cases, reactions take place with either aldimine or ketimine electrophiles to deliver a single diastereomer of product in >95:5 er. The products' diamines are easily differentiable, facilitating downstream synthesis.
Collapse
Affiliation(s)
- Xinxin Shao
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kangnan Li
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J. Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
91
|
Holmes M, Schwartz LA, Krische MJ. Intermolecular Metal-Catalyzed Reductive Coupling of Dienes, Allenes, and Enynes with Carbonyl Compounds and Imines. Chem Rev 2018; 118:6026-6052. [PMID: 29897740 DOI: 10.1021/acs.chemrev.8b00213] [Citation(s) in RCA: 442] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal-catalyzed reductive coupling has emerged as an alternative to the use of stoichiometric organometallic reagents in an increasingly diverse range of carbonyl and imine additions. In this review, the use of diene, allene, and enyne pronucleophiles in intermolecular carbonyl and imine reductive couplings are surveyed, along with related hydrogen autotransfer processes.
Collapse
Affiliation(s)
- Michael Holmes
- Department of Chemistry , University of Texas at Austin , Welch Hall A5300, 105 East 24th Street , Austin , Texas 78712 , United States
| | - Leyah A Schwartz
- Department of Chemistry , University of Texas at Austin , Welch Hall A5300, 105 East 24th Street , Austin , Texas 78712 , United States
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Welch Hall A5300, 105 East 24th Street , Austin , Texas 78712 , United States
| |
Collapse
|
92
|
Liu RY, Buchwald SL. Copper-Catalyzed Enantioselective Hydroamination of Alkenes. ACTA ACUST UNITED AC 2018; 95:80-96. [PMID: 30287975 DOI: 10.15227/orgsyn.095.0080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Richard Y Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| |
Collapse
|
93
|
Gao RD, Zhai Y, You SL, Ma S. Palladium-catalyzed intermolecular dearomatic allenylation of hydrocycloalk[b]indoles with 2,3-allenyl carbonates. Org Chem Front 2018. [DOI: 10.1039/c8qo00163d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed allenylation of hydrocycloalk[b]indoles with 2,3-allenyl carbonates provides functionalized allenes containing an indoline.
Collapse
Affiliation(s)
- Run-Duo Gao
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| |
Collapse
|