51
|
Tong Z, Peng X, Peng L, Deng W, Wang Z, Lu H, Yang W, Yin SF, Kambe N, Qiu R. Cu(I)-Catalyzed C-H Alkenylation of Tertiary C(sp 3)-H Bonds of 3-Aryl Benzofuran-2( 3H)-ones to Give Z- and E-Styrene Containing Quaternary Carbon Centers with 99/1 Regioselectivity. J Org Chem 2022; 87:6064-6074. [PMID: 35412840 DOI: 10.1021/acs.joc.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of isomerically pure olefins containing all-carbon quaternary centers is a challenging issue. Herein, we developed an efficient protocol for the synthesis of (Z)-olefins (27 examples, yield up to 97%, Z/E up to 99/1) and (E)-olefins (16 examples, yield up to 94%, E/Z up to 99/1) containing all-carbon quaternary centers. This protocol is adopted for the copper-catalyzed regioselective C-H alkenylation of the tertiary C(sp3)-H bond of 3-aryl benzofuran-2(3H)-ones with alkyne and alkenes. A diverse range of functional groups in the substrates is well-tolerated, such as F, Cl, Br, Me, OMe, ester, CF3, etc. A gram scale experiment was performed in good yield, and the radical mechanisms are also proposed based on the control experiments.
Collapse
Affiliation(s)
- Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xinju Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | | | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | | | | | - Weijun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
52
|
Hintz HA, Sevov CS. Catalyst-controlled functionalization of carboxylic acids by electrooxidation of self-assembled carboxyl monolayers. Nat Commun 2022; 13:1319. [PMID: 35288543 PMCID: PMC8921278 DOI: 10.1038/s41467-022-28992-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
While the electrooxidative activation of carboxylic acids is an attractive synthetic methodology, the resulting transformations are generally limited to either homocoupling or further oxidation followed by solvent capture. These reactions require extensive electrolysis at high potentials, which ultimately renders the methodology incompatible with metal catalysts that could possibly provide new and complementary product distributions. This work establishes a proof-of-concept for a rare and synthetically-underutilized strategy for selective electrooxidation of carboxylic acids in the presence of oxidatively-sensitive catalysts that control reaction selectivity. We leverage the formation of self-adsorbed monolayers of carboxylate substrates at the anode to promote selective oxidation of the adsorbed carboxylate over a more easily-oxidized catalyst. Consequently, reactions operate at lower potentials, greater faradaic efficiencies, and improved catalyst compatibility over conventional approaches, which enables reactions to be performed with inexpensive Fe complexes that catalyze selective radical additions to olefins.
Collapse
Affiliation(s)
- Heather A Hintz
- Department of Chemistry and Biochemistry, The Ohio State University, 151W Woodruff Avenue, Columbus, OH, 43210, United States
| | - Christo S Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, 151W Woodruff Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
53
|
Wang X, Li Y, Wu X. Photoredox/Cobalt Dual Catalysis Enabled Regiospecific Synthesis of Distally Unsaturated Ketones with Hydrogen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaochuang Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yi Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
54
|
Fang X, Zhang N, Chen SC, Luo T. Scalable Total Synthesis of (-)-Triptonide: Serendipitous Discovery of a Visible-Light-Promoted Olefin Coupling Initiated by Metal-Catalyzed Hydrogen Atom Transfer (MHAT). J Am Chem Soc 2022; 144:2292-2300. [PMID: 35089705 DOI: 10.1021/jacs.1c12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An efficient and scalable total synthesis of (-)-triptonide is accomplished based on a metal-catalyzed hydrogen atom transfer (MHAT)-initiated radical cyclization. During the optimization of the key step, we discovered that blue LEDs significantly promoted the efficiency of reaction initiated by Co(TPP)-catalyzed MHAT. Further exploration and optimization of this catalytic system led to development of a dehydrogenative MHAT-initiated Giese reaction.
Collapse
Affiliation(s)
- Xianhe Fang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Nan Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
55
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
56
|
Xie H, Wang S, Wang Y, Guo P, Shu XZ. Ti-Catalyzed Reductive Dehydroxylative Vinylation of Tertiary Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Sheng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Yuquan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
57
|
Gao PP, Xiao WJ, Chen JR. Recent Progresses in Visible-Light-Driven Alkene Synthesis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
58
|
Zhang X, Du J, Liao F, Su H, Zhang X, Miao H, Zhang G. Phosphorescence Enables Identification of Electronic State for Acridinium Salt in Solutions. J Phys Chem Lett 2021; 12:12242-12248. [PMID: 34928614 DOI: 10.1021/acs.jpclett.1c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acridinium derivatives are an important class of photocatalysts, where the interaction between the catalyst and the environment is under-reported. Here we show that the Lewis acidic acridinium salt exhibits various degrees of interactions with different Lewis bases, including water (HOH), methanol (CH3OH), tetrahydrofuran (THF, ROR), amines (R3N), and tert-butoxide (RO-) due to distinct physical properties stemming from different resonance forms. Interactions with water and methanol produce almost identical 1H NMR spectra but lead to drastically different UV absorption and luminescence emission, particularly phosphorescence; interactions with CH3OH/methanol and THF, which are differentiated by heat calorimetry titration, share the same luminescence spectra but show two different sets of 1H NMR peaks. These distinct physical properties could only be revealed by a combination of NMR and molecular fluorescence/phosphorescence spectroscopic methods. The current report serves as an example of using phosphorescence spectroscopy as a complementary tool for identifying interactions between organic molecules.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Bio-X Interdisciplinary Division, University of Science and Technology of China, Hefei 230026, China
| | - Jiajun Du
- Hefei National Laboratory for Physical Sciences at the Microscale, Bio-X Interdisciplinary Division, University of Science and Technology of China, Hefei 230026, China
| | - Fan Liao
- Hefei National Laboratory for Physical Sciences at the Microscale, Bio-X Interdisciplinary Division, University of Science and Technology of China, Hefei 230026, China
| | - Hao Su
- Hefei National Laboratory for Physical Sciences at the Microscale, Bio-X Interdisciplinary Division, University of Science and Technology of China, Hefei 230026, China
| | - Xuepeng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Bio-X Interdisciplinary Division, University of Science and Technology of China, Hefei 230026, China
| | - Hui Miao
- Hefei National Laboratory for Physical Sciences at the Microscale, Bio-X Interdisciplinary Division, University of Science and Technology of China, Hefei 230026, China
| | - Guoqing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Bio-X Interdisciplinary Division, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
59
|
Dyker G. Silica‐Mediated Monohydrolysis of Dicarboxylic Esters. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerald Dyker
- Faculty for Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44780 Bochum Germany
| |
Collapse
|
60
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 665] [Impact Index Per Article: 166.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
61
|
Zhou MJ, Zhang L, Liu G, Xu C, Huang Z. Site-Selective Acceptorless Dehydrogenation of Aliphatics Enabled by Organophotoredox/Cobalt Dual Catalysis. J Am Chem Soc 2021; 143:16470-16485. [PMID: 34592106 DOI: 10.1021/jacs.1c05479] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The value of catalytic dehydrogenation of aliphatics (CDA) in organic synthesis has remained largely underexplored. Known homogeneous CDA systems often require the use of sacrificial hydrogen acceptors (or oxidants), precious metal catalysts, and harsh reaction conditions, thus limiting most existing methods to dehydrogenation of non- or low-functionalized alkanes. Here we describe a visible-light-driven, dual-catalyst system consisting of inexpensive organophotoredox and base-metal catalysts for room-temperature, acceptorless-CDA (Al-CDA). Initiated by photoexited 2-chloroanthraquinone, the process involves H atom transfer (HAT) of aliphatics to form alkyl radicals, which then react with cobaloxime to produce olefins and H2. This operationally simple method enables direct dehydrogenation of readily available chemical feedstocks to diversely functionalized olefins. For example, we demonstrate, for the first time, the oxidant-free desaturation of thioethers and amides to alkenyl sulfides and enamides, respectively. Moreover, the system's exceptional site selectivity and functional group tolerance are illustrated by late-stage dehydrogenation and synthesis of 14 biologically relevant molecules and pharmaceutical ingredients. Mechanistic studies have revealed a dual HAT process and provided insights into the origin of reactivity and site selectivity.
Collapse
Affiliation(s)
- Min-Jie Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lei Zhang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zheng Huang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
62
|
Xu H, Zhang H, Tong QX, Zhong JJ. Photoredox/cobaloxime co-catalyzed allylation of amines and sulfonyl hydrazines with olefins to access α-allylic amines and allylic sulfones. Org Biomol Chem 2021; 19:8227-8231. [PMID: 34337641 DOI: 10.1039/d1ob01307f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we reported a dual-catalytic platform for the allylation of amines and sulfonyl hydrazines with olefins to selectively access α-allylic amines and allylic sulfones in good yields by combining photoredox catalysis and cobaloxime catalysis. This strategy avoided the use of a stoichiometric amount of terminal oxidant and the use of pre-functionalized allylic precursors, representing a green and ideal atom- & step-economical process. Good substrate scope and gram-scale synthesis demonstrated the utility of this protocol. Mechanistic studies revealed that a radical process is probably involved in this reaction.
Collapse
Affiliation(s)
- Hui Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| | - Hong Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| |
Collapse
|
63
|
Tlili A, Lakhdar S. Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1 CNRS CPE-Lyon INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Sami Lakhdar
- CNRS/Université Toulouse III—Paul Sabatier Laboratoire Hétérochimie Fondamentale et Appliquée LHFA UMR 5069 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| |
Collapse
|
64
|
Tlili A, Lakhdar S. Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Angew Chem Int Ed Engl 2021; 60:19526-19549. [PMID: 33881207 DOI: 10.1002/anie.202102262] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/16/2021] [Indexed: 01/18/2023]
Abstract
The use of organic photocatalysts has revolutionized the field of photoredox catalysis, as it allows access to reactivities that were traditionally restricted to transition-metal photocatalysts. This Minireview reports recent developments in the use of acridinium ions and cyanoarene derivatives in organic synthesis. The activation of inert chemical bonds as well as the late-stage functionalization of biorelevant molecules are discussed, with a special focus on their mechanistic aspects.
Collapse
Affiliation(s)
- Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Sami Lakhdar
- CNRS/Université Toulouse III-Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
65
|
Liu Y, Battaglioli S, Lombardi L, Menichetti A, Valenti G, Montalti M, Bandini M. Visible-Light Photoredox Catalyzed Dehydrogenative Synthesis of Allylic Carboxylates from Styrenes. Org Lett 2021; 23:4441-4446. [PMID: 34032451 PMCID: PMC8289305 DOI: 10.1021/acs.orglett.1c01375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 11/29/2022]
Abstract
The visible-light photoredox/[Co(III)] cocatalyzed dehydrogenative functionalization of cyclic and acyclic styryl derivatives with carboxylic acids is documented. The methodology enables the chemo- and regioselective allylic functionalization of styryl compounds, leading to allylic carboxylates (32 examples) under stoichiometric acceptorless conditions. Intermolecular as well as intramolecular variants are documented in high yields (up to 82%). A mechanistic rationale is also proposed on the basis of a combined experimental and spectroscopic investigation.
Collapse
Affiliation(s)
- Yang Liu
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Simone Battaglioli
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Lorenzo Lombardi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Arianna Menichetti
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Giovanni Valenti
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Marco Montalti
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
- Consorzio
CINMPIS, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
66
|
Karmakar S, Silamkoti A, Meanwell NA, Mathur A, Gupta AK. Utilization of C(
sp
3
)‐Carboxylic Acids and Their Redox‐Active Esters in Decarboxylative Carbon−Carbon Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100314] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sukhen Karmakar
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Arundutt Silamkoti
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Nicholas A. Meanwell
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arvind Mathur
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arun Kumar Gupta
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| |
Collapse
|
67
|
Jiao ZF, Tian YM, Guo XN, Radius U, Braunschweig H, Marder TB, Guo XY. Visible-light-driven graphene supported Cu/Pd alloy nanoparticle-catalyzed borylation of alkyl bromides and chlorides in air. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
68
|
Shi J, Yuan T, Zheng M, Wang X. Metal-Free Heterogeneous Semiconductor for Visible-Light Photocatalytic Decarboxylation of Carboxylic Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05211] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiale Shi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Tao Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| |
Collapse
|
69
|
Shi C, Li F, Chen Y, Lin S, Hao E, Guo Z, Wosqa UT, Zhang D, Shi L. Photocatalytic Umpolung Synthesis of Nucleophilic π-Allylcobalt Complexes for Allylation of Aldehydes. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05330] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Caizhe Shi
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fusheng Li
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuqing Chen
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shuangjie Lin
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Erjun Hao
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhuowen Guo
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Urwa Tul Wosqa
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dandan Zhang
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lei Shi
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
70
|
Tian YM, Guo XN, Braunschweig H, Radius U, Marder TB. Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chem Rev 2021; 121:3561-3597. [PMID: 33596057 DOI: 10.1021/acs.chemrev.0c01236] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organoboron compounds have important synthetic value and can be applied in numerous transformations. The development of practical and convenient ways to synthesize boronate esters has thus attracted significant interest. Photoinduced borylations originated from stoichiometric reactions of alkanes and arenes with well-defined metal-boryl complexes. Now, photoredox-initiated borylations, catalyzed by either transition metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this Focus Review, we summarize research on photoinduced borylations, especially emphasizing recent developments and trends. This includes the photoinduced borylation of arenes, alkanes, aryl/alkyl halides, activated carboxylic acids, amines, alcohols, and so on based on transition metal catalysis, metal-free organocatalysis, and direct photochemical activation. We focus on reaction mechanisms involving single-electron transfer, triplet-energy transfer, and other radical processes.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Xiao-Ning Guo
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
71
|
Tu JL, Tang W, Xu W, Liu F. Iminyl-Radical-Promoted C-C Bond Cleavage/Heck-Like Coupling via Dual Cobaloxime and Photoredox Catalysis. J Org Chem 2021; 86:2929-2940. [PMID: 33481602 DOI: 10.1021/acs.joc.0c02834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report herein an unprecedented protocol for radical-olefin coupling of α-imino-oxy acids and alkenes for the synthesis of alkene-containing nitriles via synergistic photoredox and cobaloxime catalysis. With visible-light irradiation, the transformation provides a variety of corresponding alkene-containing nitriles under mild reaction conditions. The C-C bond cleavage/Heck-like coupling reaction could generate E-selective coupling products with excellent chemo- and stereo-selectivity. This iminyl-radical-mediated reaction is external-oxidant-free, exhibits wide functional-group compatibility, and occurs with the extrusion of acetone, H2, and CO2.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wei Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
72
|
Wu HL, Li XB, Tung CH, Wu LZ. Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Chem Commun (Camb) 2020; 56:15496-15512. [PMID: 33300513 DOI: 10.1039/d0cc05870j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired transformation of small-molecules to energy-related feedstocks is an attractive research area to overcome both the environmental issues and the depletion of fossil fuels. The highly effective metalloenzymes in nature provide blueprints for the utilization of bioinspired metal complexes for artificial photosynthesis. Through simpler structural and functional mimics, the representative herein is the pivotal development of several critical small molecule conversions catalyzed by metal complexes, e.g., water oxidation, proton and CO2 reduction and organic chemical transformation of small molecules. Of great achievement is the establishment of bioinspired metal complexes as catalysts with high stability, specific selectivity and satisfactory efficiency to drive the multiple-electron and multiple-proton processes related to small molecule transformation. Also, potential opportunities and challenges for future development in these appealing areas are highlighted.
Collapse
Affiliation(s)
- Hao-Lin Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | |
Collapse
|
73
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
74
|
Guo JD, Yang XL, Chen B, Tung CH, Wu LZ. Photoredox/Cobalt-Catalyzed C(sp3)–H Bond Functionalization toward Phenanthrene Skeletons with Hydrogen Evolution. Org Lett 2020; 22:9627-9632. [DOI: 10.1021/acs.orglett.0c03665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia-Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
75
|
Zhang D, Tang ZL, Ouyang XH, Song RJ, Li JH. Copper-catalyzed oxidative decarboxylative alkylation of cinnamic acids with 4-alkyl-1,4-dihydropyridines. Chem Commun (Camb) 2020; 56:14055-14058. [PMID: 33103675 DOI: 10.1039/d0cc06401g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have developed a new oxidative decarboxylation of cinnamic acids with 4-alkyl-1,4-dihydropyridines to construct C(sp3)-C(sp2) bonds in the presence of copper catalyst and dicumyl peroxide (DCP). A variety of internal alkenes have been obtained with mild conditions, broad substrate scope and excellent functional group tolerance. This method has significant potential for application by using inexpensive and stable cinnamic acids instead of alkenyl halides and nitro-olefins.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zi-Liang Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
76
|
Chen T, Han LB, Tan Q, Liu X, Liu L, Huang T. Phosphorylation of Carboxylic Acids and Their Derivatives with P(O)–H Compounds Forming P(O)–C Bonds. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractHerein, we highlight advances in the phosphorylation of readily available carboxylic acids and their derivatives forming synthetically important P(O)–sp3C, P(O)–sp2C, and P(O)–spC bonds, with an emphasis on the results demonstrated since 2010. This review examines the challenges associated with the use of this strategy for the synthesis of organophosphorus compounds and details advances in the design of catalytic systems that suppress these problems thus resulting in notable progress. Mechanistic details are discussed where available.1 Introduction2 Formation of P(O)–sp3C Bonds3 Formation of P(O)–sp2C Bonds4 Formation of P(O)–spC Bonds5 Outlook and Conclusion
Collapse
Affiliation(s)
- Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan University
| | - Li-Biao Han
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Qihang Tan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan University
| | - Xue Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan University
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan University
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan University
| |
Collapse
|
77
|
Liu JL, Tu JL, Liu F. Visible-Light-Promoted Intramolecular α-Allylation of Aldehydes in the Absence of Sacrificial Hydrogen Acceptors. Org Lett 2020; 22:7369-7372. [PMID: 32886516 DOI: 10.1021/acs.orglett.0c02742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein an unprecedented protocol for radical cyclization of aldehydes with pendant alkenes via synergistic photoredox, cobaloxime, and amine catalysis. The transformation was achieved in the absence of external oxidants, providing a variety of 5-, 6-, and 7-membered ring products with alkene transposition in satisfactory yields. The reaction exhibits wide functional group compatibility and occurs under mild conditions with extrusion of H2.
Collapse
Affiliation(s)
- Jia-Li Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jia-Lin Tu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
78
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
79
|
Cartwright KC, Joseph E, Comadoll CG, Tunge JA. Photoredox/Cobalt Dual‐Catalyzed Decarboxylative Elimination of Carboxylic Acids: Development and Mechanistic Insight. Chemistry 2020; 26:12454-12471. [DOI: 10.1002/chem.202001952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Kaitie C. Cartwright
- Department of Chemistry The University of Kansas 1567 Irving Hill Rd. Lawrence KS 66045 USA
| | - Ebbin Joseph
- Department of Chemistry The University of Kansas 1567 Irving Hill Rd. Lawrence KS 66045 USA
| | - Chelsea G. Comadoll
- Department of Chemistry The University of Kansas 1567 Irving Hill Rd. Lawrence KS 66045 USA
| | - Jon A. Tunge
- Department of Chemistry The University of Kansas 1567 Irving Hill Rd. Lawrence KS 66045 USA
| |
Collapse
|
80
|
Photoinduced Copper‐Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes. Angew Chem Int Ed Engl 2020; 59:16926-16932. [DOI: 10.1002/anie.202006317] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Indexed: 12/13/2022]
|
81
|
Xia H, Li Z, Gu Q, Dong X, Fang J, Du X, Wang L, Liu X. Photoinduced Copper‐Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hai‐Dong Xia
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Zhong‐Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Qiang‐Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Xiao‐Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Jia‐Heng Fang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xuan‐Yi Du
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Li‐Lei Wang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xin‐Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
82
|
Lei T, Liang G, Cheng YY, Chen B, Tung CH, Wu LZ. Cobaloxime Catalysis for Enamine Phosphorylation with Hydrogen Evolution. Org Lett 2020; 22:5385-5389. [PMID: 32585106 DOI: 10.1021/acs.orglett.0c01709] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct phosphorylation of enamine and enamide with hydrogen evolution was realized via cobaloxime catalysis under visible-light irradiation. Control experiments and spectroscopic studies demonstrated a reductive quenching pathway of cobaloxime catalyst to produce phosphinoyl radical, which underwent cross-coupling with various enamines (and enamides) to give diverse β-phosphinoyl products in good to excellent yields. More interestingly, Z/E mixture of acyclic enamines could convert into single Z-products with good reactivity.
Collapse
Affiliation(s)
- Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ge Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
83
|
Zhang XY, Ning C, Long YJ, Wei Y, Shi M. Visible-Light-Mediated Decarboxylative Tandem Carbocyclization of Acrylamide-Attached Alkylidenecyclopropanes: Access to Polycyclic Benzazepine Derivatives. Org Lett 2020; 22:5212-5216. [DOI: 10.1021/acs.orglett.0c01856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Yu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
| | - Chao Ning
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
| | - Yong-Jie Long
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People’s Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
84
|
Ramesh K, Satyanarayana G. Transition-Metal Catalyzed Stereoselective γ-Arylation and Friedel-Crafts Alkylation: A Concise Synthesis of Indenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Karu Ramesh
- Department of Chemistry; Indian Institute of Technology (IIT) Hyderabad; 502 285, Sangareddy District Kandi - Telangana INDIA
| | - Gedu Satyanarayana
- Department of Chemistry; Indian Institute of Technology (IIT) Hyderabad; 502 285, Sangareddy District Kandi - Telangana INDIA
| |
Collapse
|
85
|
Fu H, Li P, Wang Z, Li X, Dai Q, Hu C. Synthesis of protected α-amino acids via decarboxylation amination from malonate derivatives. Org Biomol Chem 2020; 18:4439-4446. [PMID: 32469354 DOI: 10.1039/d0ob00677g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A general and efficient strategy for the synthesis of protected α-amino acids is reported. The method uses malonate derivatives as the starting materials and Cs2CO3 as a base at 60 degrees, giving α-amino acid derivatives in moderate yields by releasing CO2. This methodology shows broad substrate scope (primary and secondary acids), excellent functional group tolerance and high efficiency to give the desired products under mild reaction conditions. It also allows the construction of β and γ-amino acids and other unnatural products.
Collapse
Affiliation(s)
- Hui Fu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Peihe Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Zheng Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiaoying Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Qipu Dai
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Changwen Hu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
86
|
Mastandrea MM, Cañellas S, Caldentey X, Pericàs MA. Decarboxylative Hydroalkylation of Alkynes via Dual Copper-Photoredox Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01742] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marco M. Mastandrea
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Instutite of Science and Technology (BIST), Avda. Països Catalans 16, E-43007, Tarragona, Spain
- Departament de Quı́mica Analı́tica i Química Orgànica, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Instutite of Science and Technology (BIST), Avda. Països Catalans 16, E-43007, Tarragona, Spain
| | - Xisco Caldentey
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Instutite of Science and Technology (BIST), Avda. Països Catalans 16, E-43007, Tarragona, Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Instutite of Science and Technology (BIST), Avda. Països Catalans 16, E-43007, Tarragona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franqués 1-11, 08028, Barcelona, Spain
| |
Collapse
|
87
|
Chen J, Allyson ZG, Xin J, Guan Z, He Y. Photo‐Mediated Decarboxylative Ketonization of Atropic Acids with Sulfonyl Hydrazides: Direct Access to
β
‐Ketosulfones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jie Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 People's Republic of China
| | - Zoe G. Allyson
- Department of ChemistryCollege of Saint Benedict and Saint John's University Collegeville MN 56321 USA
| | - Jing‐Rui Xin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 People's Republic of China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 People's Republic of China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 People's Republic of China
| |
Collapse
|
88
|
|
89
|
Teng L, Liu X, Guo P, Yu Y, Cao H. Visible-Light-Induced Regioselective Dicarbonylation of Indolizines with Oxoaldehydes via Direct C–H Functionalization. Org Lett 2020; 22:3841-3845. [DOI: 10.1021/acs.orglett.0c01094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lili Teng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Pengfeng Guo
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
90
|
Cao H, Kuang Y, Shi X, Wong KL, Tan BB, Kwan JMC, Liu X, Wu J. Photoinduced site-selective alkenylation of alkanes and aldehydes with aryl alkenes. Nat Commun 2020; 11:1956. [PMID: 32327665 PMCID: PMC7181776 DOI: 10.1038/s41467-020-15878-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/25/2020] [Indexed: 11/09/2022] Open
Abstract
The dehydrogenative alkenylation of C-H bonds with alkenes represents an atom- and step-economical approach for olefin synthesis and molecular editing. Site-selective alkenylation of alkanes and aldehydes with the C-H substrate as the limiting reagent holds significant synthetic value. We herein report a photocatalytic method for the direct alkenylation of alkanes and aldehydes with aryl alkenes in the absence of any external oxidant. A diverse range of commodity feedstocks and pharmaceutical compounds are smoothly alkenylated in useful yields with the C-H partner as the limiting reagent. The late-stage alkenylation of complex molecules occurs with high levels of site selectivity for sterically accessible and electron-rich C-H bonds. This strategy relies on the synergistic combination of direct hydrogen atom transfer photocatalysis with cobaloxime-mediated hydrogen-evolution cross-coupling, which promises to inspire additional perspectives for selective C-H functionalizations in a green manner.
Collapse
Affiliation(s)
- Hui Cao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Yulong Kuang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Xiangcheng Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Koi Lin Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Boon Beng Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jeric Mun Chung Kwan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore. .,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
91
|
Wang YT, Fu MC, Zhao B, Shang R, Fu Y. Photocatalytic decarboxylative alkenylation of α-amino and α-hydroxy acid-derived redox active esters by NaI/PPh 3 catalysis. Chem Commun (Camb) 2020; 56:2495-2498. [PMID: 32003367 DOI: 10.1039/c9cc09654j] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report the photocatalytic decarboxylative alkenylation reactions of N-(acyloxy)phthalimide derived from α-amino and α-hydroxy acids with 1,1-diarylethene, and with cinnamic acid derivatives through double decarboxylation, using sodium iodide and triphenylphosphine as redox catalysts. The reaction proceeds under mild irradiation conditions with visible blue light (440 nm or 456 nm) in an acetone solvent without recourse to transition-metal or organic dye based photoredox catalysts. The reaction proceeds via photoactivation of a transiently self-assembled chromophore from N-(acyloxy)phthalimide and NaI/PPh3. Solvation plays a crucial role in the reactivity.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China.
| | | | | | | | | |
Collapse
|
92
|
Chen X, Zhou XY. Decarboxylation of indole-3-carboxylic acids under metal-free conditions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1703137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
93
|
Hao L, Wang G, Sun J, Xu J, Li H, Duan G, Xia C, Zhang P. From Phenylhydrazone to 1
H
‐1,2,4‐Triazoles via Nitrification, Reduction and Cyclization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Liqiang Hao
- Institute of Pharmacology, School of Pharmaceutical SciencesShandong First Medical University & Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Guodong Wang
- Institute of Pharmacology, School of Pharmaceutical SciencesShandong First Medical University & Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Jian Sun
- Institute of Pharmacology, School of Pharmaceutical SciencesShandong First Medical University & Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Jun Xu
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Hongshuang Li
- Institute of Pharmacology, School of Pharmaceutical SciencesShandong First Medical University & Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Guiyun Duan
- Institute of Pharmacology, School of Pharmaceutical SciencesShandong First Medical University & Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Chengcai Xia
- Institute of Pharmacology, School of Pharmaceutical SciencesShandong First Medical University & Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 People's Republic of China
| |
Collapse
|
94
|
Ye Y, Chen H, Yao K, Gong H. Iron-Catalyzed Reductive Vinylation of Tertiary Alkyl Oxalates with Activated Vinyl Halides. Org Lett 2020; 22:2070-2075. [PMID: 32096641 DOI: 10.1021/acs.orglett.0c00561] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present herein a rare and efficient method for the creation of vinylated all carbon quaternary centers via Fe-catalyzed cross-electrophile coupling of vinyl halides with tertiary alkyl methyl oxalates. The reaction displays excellent functional group tolerance and broad substrate scope, which allows cascade radical cyclization and vinylation to afford complex bicyclic and spiral structural motifs. The reaction proceeds via tertiary alkyl radicals, and the putative vinyl-Br/Fe complexation appears to be crucial for activating the alkene and enabling a possibly concerted radical addition/C-Fe forming process.
Collapse
Affiliation(s)
- Yang Ye
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Haifeng Chen
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Ken Yao
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, China
| |
Collapse
|
95
|
Tu JL, Liu JL, Tang W, Su M, Liu F. Radical Aza-Cyclization of α-Imino-oxy Acids for Synthesis of Alkene-Containing N-Heterocycles via Dual Cobaloxime and Photoredox Catalysis. Org Lett 2020; 22:1222-1226. [DOI: 10.1021/acs.orglett.0c00224] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia-Lin Tu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Jia-Li Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Wan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| |
Collapse
|
96
|
Xu Q, Zheng B, Zhou X, Pan L, Liu Q, Li Y. Photoinduced C(sp 2)-H/C(sp 2)-H Cross-Coupling of Alkenes: Direct Synthesis of 1,3-Dienes. Org Lett 2020; 22:1692-1697. [PMID: 31944775 DOI: 10.1021/acs.orglett.9b04201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A highly concise route to substituted 1,3-dienes from vinylarenes and ketene dithioacetals under photoinduced cross-coupling reaction is described. The reaction proceeded in a highly regio- and stereoselective manner and showed broad functional group tolerance. More than 35 substituted 1,3-dienes were synthesized with good to excellent yields through the construction of the Csp2-Csp2 bond without using noble metal and external oxidants, and natural sunlight could also induce the reaction to afford gram-scale synthesis under ambient conditions.
Collapse
Affiliation(s)
- Qi Xu
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Baihui Zheng
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxuan Zhou
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
97
|
Affiliation(s)
- Shuning Mao
- Department of Chemistry; Lishui University No. 1; Xueyuan Road 323000 Lishui City Zhejiang Province P. R. China
| | - Kaijun Chen
- Department of Chemistry; Lishui University No. 1; Xueyuan Road 323000 Lishui City Zhejiang Province P. R. China
| | - Guobing Yan
- Department of Chemistry; Lishui University No. 1; Xueyuan Road 323000 Lishui City Zhejiang Province P. R. China
| | - Dayun Huang
- Department of Chemistry; Lishui University No. 1; Xueyuan Road 323000 Lishui City Zhejiang Province P. R. China
| |
Collapse
|
98
|
Chen H, Ye Y, Tong W, Fang J, Gong H. Formation of allylated quaternary carbon centers via C-O/C-O bond fragmentation of oxalates and allyl carbonates. Chem Commun (Camb) 2020; 56:454-457. [PMID: 31825428 DOI: 10.1039/c9cc07072a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Disclosed herein emphasizes Fe-promoted cross-electrophile allylation of tertiary alkyl oxalates with allyl carbonates that generates all C(sp3)-quaternary centers. The reaction involves fragmentation of tertiary alkyl oxalate C-O bonds to give tertiary alkyl radical intermediates, addition of the radicals to less hindered alkene terminals, and subsequent cleavage of the allyl C-O bonds. Allylation with 2-aryl substituted allyl carbonates was mediated by Zn/MgCl2, and Fe is used to promote the radical addition efficiency. By introduction of activated alkenes, a three-component radical cascade reaction took place.
Collapse
Affiliation(s)
- Haifeng Chen
- School of Materials Science and Engineering, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | | | | | | | | |
Collapse
|
99
|
Zhang H, Xiao Q, Qi XK, Gao XW, Tong QX, Zhong JJ. Selective photoredox decarboxylation of α-ketoacids to allylic ketones and 1,4-dicarbonyl compounds dependent on cobaloxime catalysis. Chem Commun (Camb) 2020; 56:12530-12533. [DOI: 10.1039/d0cc05580h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The selective synthesis of allylic ketones and 1,4-dicarbonyl compounds by photoredox/cobaloxime co-catalysis and photoredox catalysis, respectively, is described herein.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University, and Chemistry and Chemical Engineering Laboratory of Guangdong Province
- Guangdong 515063
- P. R. China
| | - Qian Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University, and Chemistry and Chemical Engineering Laboratory of Guangdong Province
- Guangdong 515063
- P. R. China
| | - Xu-Kuan Qi
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University, and Chemistry and Chemical Engineering Laboratory of Guangdong Province
- Guangdong 515063
- P. R. China
| | - Xue-Wang Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University, and Chemistry and Chemical Engineering Laboratory of Guangdong Province
- Guangdong 515063
- P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University, and Chemistry and Chemical Engineering Laboratory of Guangdong Province
- Guangdong 515063
- P. R. China
| |
Collapse
|
100
|
Suo MT, Yang S, Yang JC, Liu ZY, Zhang JJ, Guo LN. Iron catalyzed ketoalkylation and ketoalkylation/etherification of styrenes initiated by selective C–C bond cleavage. Org Chem Front 2020. [DOI: 10.1039/d0qo00671h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A mild and efficient iron-catalyzed ketoalkyl-Heck-type coupling initiated by radical C–C bond cleavage is described. Furthermore, this concise catalytic system was also applicable for the three-component ketoalkylation/etherification of styrenes.
Collapse
Affiliation(s)
- Meng-Ting Suo
- Department of Chemistry
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
| | - Shuo Yang
- Department of Chemistry
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
| | - Jun-Cheng Yang
- Department of Chemistry
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
| | - Ze-Yu Liu
- Department of Chemistry
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
| | - Jun-Jie Zhang
- Department of Chemistry
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
| | - Li-Na Guo
- Department of Chemistry
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
| |
Collapse
|